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Modern camera calibration and multiview stereo techniqueblerusers to
smoothly navigate between different views of a scene caghtuseng stan-
dard cameras. The underlying automatic 3D reconstruction mstivork
well for buildings and regular structures but often fail egetation, vehi-
cles and other complex geometry present in everyday urbarescéon-
sequently, missing depth information makes image-based riegd¢BR)
for such scenes very challenging. Our goal is to proptausible free-
viewpoint navigation for such datasets. To do this, we phtice a new IBR
algorithm that is robust to missing or unreliable geometrgyjating plau-
sible novel views even in regions quite far from the input ceanpositions.
We rst oversegment the input images, creating superpixelbashoge-
neous color content which often tends to preserve deptoutiswities. We

then introduce aepth-synthesiapproach for poorly reconstructed regions

based on a graph structure on the oversegmentation and aippedpaver-
sal of the graph. The superpixels augmented with synthesiepth dllow
us to de ne a local shape-preserving warp which compensatesdccu-
rate depth. Our rendering algorithm blends the warped imagesgener-
ates plausible image-based novel views for our challenginget scenes.
Our results demonstrate novel view synthesis in real time fdtipheichal-
lenging scenes with signi cant depth complexity, providiagonvincing
immersive navigation experience.
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1. INTRODUCTION

Recent advances in automatic camera calibration [Snavely et al.
2006] and multiview stereo [Goesele et al. 2007; Furukawa and
Ponce 2009] have resulted in several novel applications. As an
example, using a small set of photographs of a given scene cap-
tured with standard cameras from several viewpoints, methods such
as [Eisemann et al. 2008; Goesele et al. 2010] enable smooth tran-
sitions between the different views. The underlying 3D reconstruc-
tion methods work remarkably well for buildings and regular struc-
tures; however, in everyday scenes containing vegetation and other
complex geometry, there are always regions which do not have re-
liable or dense 3D information. Image-based rendering (IBR) for
such scenes is thus very challenging.

Our goal is to providglausiblefree-viewpoint navigation for such
casually captured multiview datasets, which contain poorly and/or
sparsely reconstructed regions when using state-of-the-art multi-
view stereo (e.g., [Goesele et al. 2007; Furukawa and Ponce 2009]).
To do this, we introduce a new image-based rendering algorithm
that is robust to missing and/or unreliable geometry and which pro-
videsplausiblenovel views, even in regions quite far from the in-
put camera positions. We introduceepth-synthesiapproach for
poorly reconstructed regions andogal shape-preserving warp to
achieve this goal.

Recent IBR approaches try to compensate for poor 3D informa-
tion. Methods which depend upon a 3D geometric model or proxy,
result in signi cant ghosting or misalignment artifacts, even when
compensating for poor 3D with optical ow [Eisemann et al. 2008].
Non-photorealistic rendering (NPR) styles [Goesele et al. 2010] are
very effective for view transitions in photo collections, providing a
satisfactory solution for different lighting conditions or dynamic
scene content, such as moving people. Despite these advantages
such methods fall short of our goal of providing plausible novel
views for free-viewpoint navigation. The silhouette-based warp of
[Chaurasia et al. 2011] can address our target scenes; however it
requires manual pre-processing of the input images, limiting its ap-
plicability.
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2 Chaurasia et al.

The main challenge in achieving our goals is treating poorly re- A signi cant part of IBR research has concentrated on more re-
constructed depth in many regions of each image and the lack of stricted and controlled settings than ours, typically involving stereo
precise silhouettes for the datasets we consider. rigs or other specialized (mostly) indoor capture setups. As a re-
sult, these methods do not have the kind of poorly reconstructed
regions we encounter in our datasets. Co-segmentation techniques
like [Zitnick et al. 2005; Bleyer et al. 2011] require dense capture
while [Kowdle et al. 2012] handle a single object-of-interest only.
These have not been shown on wide-baseline multiview unordered
éahoto collections with multiple foreground objects, which we fo-
tus on here. Over-segmentation has been used to enforce silhou-
ettes in depth maps [Zitnick and Kang 2007]. Other applications
of oversegmentation include view-interpolation [Stich et al. 2011],
depth estimation [Cigla et al. 2007], improving depth of man-made
structures [Mtus'’k and Kosecka 2010] etc. We use superpixels for
depth-synthesis, local warping and adaptive blending. In contrast
to previous methods which assume good depth, superpixels allow
us to delineate regions with unreliable or poor depth, helping our
depth synthesis. The coherent image regions and silhouettes pro-
We have applied our approach to 12 different scenes (see Figure 7)yvided by superpixels also help our local warp.

including one from Microsoft Photosynth, two from [Pollefeys

et al. 2008] and three from [Chaurasia et al. 2011]. In the accompa- 3D reconstruction and depth propagatioMulti-view stereo
nying video and supplemental material, we demonstrate recorded|Goesele et al. 2007; Furukawa and Ponce 2009]) can reconstruct
interactive navigation sessions for all scenes, which show that our reasonable point clouds for many scenes. We target scenes which
method provides plausible novel view synthesis in real time, result- are captured with a simple digital camera, in a casual manner, rather
Ing In very convincing immersive navigation. than methods which require speci c camerarigs (e.g., the 8-camera
setup in [Zitnick et al. 2004]) suitable for the use of stereo algo-
rithms. Please refer to [Seitz et al. 2006] for an excellent overview.

Our main contributions are (i) a depth-synthesis algorithm which
provides depth samples in regions with poor depth, and (id- a

cal shape-preserving warp and rendering algorithm that provides
plausible novel views. We build our solution on an oversegmenta-
tion [Achanta et al. 2012] of input images. Superpixels provide ho-
mogeneous image regions and preserve depth discontinuities: th
motivation for this choice is that superpixels allow our algorithm to
both identify regions requiring depth synthesis and to nd appropri-
ate depth exemplars. In addition, superpixels correspond to homo-
geneous image content, and thus maximize the bene t of our local
shape-preserving warp during rendering. Our synthesized depth is
not necessarily photoconsistent: however, filausibleand thanks

to the shape-preserving warps, our method also produleesible
novel views, even when the user is far from the input cameras.

2. PREVIOUS WORK
Modern multiview stereo [Furukawa and Ponce 2009; Pollefeys
Image-based renderingSince the early work on plenoptic mod- et al. 2008], together with recent improvements (e.g., [Gallup et al.
eling [McMillan and Bishop 1995], many image-based render- 2010]) provide the best results for the scenes we consider. Fu-
ing algorithms have been developed, such as light elds [Levoy rukawa et al. [2009] typically reconstruct 100k-200k pixels from
and Hanrahan 1996] and unstructured lumigraphs [Buehler et al. 5-6 megapixel images i.e., around 2% in our tests. Moreover, the
2001] among many others. Other interesting applications have re-distribution of depth samples is highly irregular, sparse and/or er-
sulted from this work, e.g., camera stabilization [Liu et al. 2009], roneous near silhouettes. Reconstructed 3D points or depth maps
video enhancement [Gupta et al. 2009] or commercial products like can then be merged using surface reconstruction [Kazhdan et al.
Google Street View. 2006; Fuhrmann and Goesele 2011] and used as “proxies” for IBR.

Image interpolation approaches, e.g., [Mahajan et al. 2009; Lipski The above methods typically rely on optimizing photo-consistency
etal. 2010; Stich et al. 2011] have recently received attention, with which becomes challenging for texture-poor surfaces, complex
impressive results. We do not discuss them further, since we con-(dis)occlusions (e.g. leaves), non-lambertian surfaces etc. They
centrate on wide-baseline input datasets and free-viewpoint navi- give excellent results on closed objects [Sinha et al. 2007], but ir-
gation. Most wide-baseline IBR techniques, e.g., [Debevec et al. regular objects such as trees are often poorly reconstructed or even
1996; Buehler et al. 2001; Eisemann et al. 2008] use geometric completely missed (see the examples in [Gallup et al. 2010], which
proxies to re-project input images to novel views. Regions with are similar to our target scenes). Objects of this kind do, however,
poor reconstruction result in a poor proxy, and signi cant visual ar- appear frequently in everyday (sub)urban scenes. By synthesizing
tifacts in rendering. Ambient Point Clouds [Goesele et al. 2010] depth in such poorly reconstructed regions, we enable plausible in-
use a non-photorealistic rendering style in poorly reconstructed teractive image-based navigation.

regions, and are restricted to view interpolation. In contrast, our
depth-synthesis approach, coupled with our local shape preserving
warp provides plausible free-viewpoint navigation.

Dense depth maps can be generated by propagating depth sam-
ples to unreconstructed pixels of the image. [Hawe et al. 2011]
show that dense disparity maps can be reconstructed from a sparse
Recent approaches have used variational warps guided by sparssub-sampling given high density of depth samples near silhouettes.
multiview stereo point clouds to warp images to novel views. Liu [Yang et al. 2007; Dolson et al. 2010] create pixel-dense dispar-
et al. [2009] used 3D points to warp video frames to novel cam- ity maps from the dense and regularly spaced disparity samples
era positions for video stabilization. Chaurasia et al. [2011] use provided by range scans, but the method is not appropriate in our
a similar approach for wide-baseline IBR and handle occlusions setting. Within the context of multiview stereo, piecewise-planar
by incorporating hand-marked silhouettes in the variational warp. reconstruction has been presented in [Sinha et al. 2009; Gallup
Manual silhouette annotation is a major drawback of this approach; et al. 2010]. Similarly, [Furukawa et al. 2009] t planes to the 3D
however the method demonstrates that shape-preserving warps capoint cloud to generate complete depth maps, giving impressive re-
produce plausible novel views. In contrast our approach is com- sults for structured and planar regions like facades. However, rich
pletely automatic and thiecal nature of our warp improves qual-  (sub)urban scenes often deviate from planar priors because of the
ity. We compare to [Eisemann et al. 2008], [Goesele et al. 2010] presence of vegetation, cars, etc. making these methods less effec-
and [Chaurasia et al. 2011] in Sec. 6.2. tive for our scenes.
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Goesele et al. [2010] use image-based depth interpolation withoutthese scenes. We also compare to the three most relevant recent
photo-consistency, which can lead to over-smooth depth maps andIBR algorithms [Eisemann et al. 2008; Goesele et al. 2010; Chaura-
silhouette attening. They use a graph-cut to retain interpolated sia et al. 2011]. Our approach diminishes many of the artifacts of
depth only in regions with a high density of depth samples, while these methods, and provides very convincing IBR navigation expe-
signi cant regions with sparse or irregular depth are discarded and riences, as can be seen in the accompanying videos.

instead rendered in an NPR style. Our depth synthesis allows plau-

sible IBR even for such problematic regions.

3. OVERVIEW AND MOTIVATION 4. DEPTH SYNTHESIS ALGORITHM

Our input is a set of images of a given scene, taken from different
viewpoints. After 3D reconstruction, we use [Achanta et al. 2012]

to oversegment each input image, an ef cient algorithm that gives
superpixels of approximately equal size and with regular shapes
(see Figure 1(b)), unlike [Felzenszwalb and Huttenlocher 2004]
which gives superpixels of highly irregular shapes and sizes due
to lack to compactness constraints.

Our approach has two main stepsiepth-synthesigre-processing

step and docal shape preserving warp, followed by a three-pass

rendering algorithm. Our input is a set of images of a scene, taken

from multiple viewpoints. We rst extract camera matrices using

Bundler [Snavely et al. 2006] and use multiview stereo [Furukawa

and Ponce 2009] to reconstruct a 3D point cloud of the scene. We

project these 3D points into the images, providing a set of projected

depth samples in each image. We then oversegment [Achanta et alwe denote the set of all superpixels in an image By =

2012] all the input images creating superpixels that denote regionsf §; g »; ..., 15- We project the reconstructed 3D points into the

of homogeneous color content and preserve depth discontinuities.image, such that the depth at pixelis denoted byD [x] (shown

We assume the best reconstruction and segmentation techniques ar@ Figure 1(c)). The set of depth samples inside each superpixel is

used. Our approach is independent of the choice of reconstructionthysD[S;] = fx 2 S; j D[x] > 0g. We distinguish two classes of

and segmentation approaches. superpixels: those containing less taf% reconstructed pixels,
which we calltarget superpixelg¢shown in green in Figure 1(d))

Depth-synthesisThe key motivation for this step is that even af- and all others which we consider to have reliable depth.

ter using the best reconstruction, there can be signi cant regions

with no depth. Instead of discarding such regions, we synthesize

plausibledepth suitable for IBR walkthroughs, which is not neces-

sarily photoconsistent. The oversegmentation and projected depth

allow us to identify poorly reconstructed superpixels in each im-

age. Depth-synthesis lls in poorly reconstructed superpixels using

depth from “similar” superpixels of the image; wle notaugment

the 3D reconstruction. We create a graph structure with superpixels

as nodes and de ne a careful traversal of the graph which allows

us to identify best matching superpixels in terms of color and spa-

tial proximity. We keep the three best matching superpixels and @

interpolate the depth from these superpixels to add a small set of

new depth values into the original poorly reconstructed superpixel. |-

These best matches are generally not immediate spatial neighbor

our depth synthesis thus performsn-local interpolation which

maintains depth discontinuities provided by the superpixel repre-

sentation.

Local Shape-Preserving Warp and Renderif8uperpixels now
contain reconstructed depth from multiview stereplausiblesyn-
thesized depth. The depth samples may not be photoconsistent; re- (© (d)

projecting them will lead to visible artifacts in rendering. To al-

low plausible novel views, we perform lacal shape-preserving ~ Fig. 1. (a) Input image, (b) superpixel oversegmentation,p(cjected
warp on each superpixel individually, in contrast to previous meth- depth samples, and (tgrget superpixelsnarked in green. The superpixels
ods [Liu et al. 2009; Chaurasia et al. 2011] which warp the entire marked in orange could not be assigned depth reliably by quthdg/nthe-
image. Superpixels correspond to well-de ned regions of homo- sis step (Sec. 4.1.2). These are marked as holes.

geneous color content, and thus give good results with our local

shape-preserving warp.

Rendering is achieved with a three-pass blending algorithm. We
rst select four input cameras closest to the novel camera, andwarp4.1  Approach
these images to the target view. The four warped images are then
blended, with weights speci ed by camera orientation but also the
reliability of depth information in each warped superpixel. Finally,
we |l holes with Poisson blending [BYez et al. 2003].

Our goal is to synthesize plausible depth for a suf cient number of
points in each target superpixel. We do this by identifying a set of
source superpixejsvhich are spatially close and should ideally be-
We present an extensive set of example scenes, all containinglong to the same object in the scene as that of the target superpixel.
challenging regions which state-of-the-art multiview stereo recon- In addition, our goal is to have a fully automatic algorithm which
structs poorly. Our algorithm allows plausible navigation for all requires no scene dependent parameter tuning.
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4 Chaurasia et al.

There are several ways to achieve this goal; two seemingly

straightforward approaches include object classi cation and in-

terpolation/upsampling of existing depth. Object classi cation ap-

proaches [Andreetto et al. 2008] give remarkable results on some

classes of objects, such as man-made structures, animals, humans,

etc. However, for cluttered scenes such as ours, which often include

vegetation, results can be less reliable. In addition, our experiments

with e.g., [Andreetto et al. 2008] indicate very high computation

times. Please refer to [Chaurasia et al. 2011] for experiments with @) ()
state of the art segmentation algorithms.

Interpolation techniques have been used for regions with suf cient Fig- 2. (&) Target superpixel (red) and the set of similar histgs (yel-
depth density (e.g., [Goesele et al. 2010]). For the regions with low) in a color-content sense, (b) the shortest walk alboriselects 3 best
very sparse depth, these techniques result in silhouette attening Matches (cyan).

and over smooth depth maps which diminish parallax effects dur-

ing rendering. two superpixels which share a common boundary. We compute
We propose an efcient and robust approach which combines the path betweetarget superpixe§| and eactsource superpixel
image-content similarity and spatial proximity in the choice of S 2N [ST ] which involves thdeast change in coloiWe measure

; ; ; the change in color between two superpixels by tRedistance
source superpixels employed to synthesize depth. The irregular . . ‘ . )
shape of superpixel boundaries requires de nition of appropriate PEween their b histograms described above. This path is com-

distance metrics and search strategies both for image content an@yt€d by minimizing the path cost over all possible paths from

for spatial proximity. We use histogram comparison to identify su- 10§
perpixels with similarimage content and a graph traversal approach o
to provide a robust and parameter-free algorithm. Depth values . X1
within target superpixels are synthesized using an interpolation ap- Cst §) = d(Huao [ ()] Hian [ (t+21)) (D)
proach based on the distribution of depths in the source superpixels. t=1

C(Sf! §)= mn C" S5) )
4.1.1 Computing similar superpixelsWe rst compute a set of 21811 )]

“most similar” superpixels for each target superpixel. Among many

similarity metrics for measuring the af nity of irregular image re-  where [ ST ! S;]is the set of all paths from target superpixel
gions, Grundmann et al. [2010] have successfully usedistance S’ to S, is one such path of lengthj such that (0) = S
between laB histograms of superpixels in order to measure color ang (j j) = S, C(S;! ;) is the cost of path , andd( ; )

similarity. Other metrics like sum of squared differences (SSD) are is the 2 distance between histograms. We implement the above
less suitable for irregular shapes and sizes of superpixels. Mea-ysing the Dijkstra shortest path algorithm where the edge weight
suring average color of a superpixel performed worse thas L petween two superpixels is thé LAB histogram distance.
histogram distance. Inspired by the approach of Grundmann et.

al [2010], we convert the image intoAB space and create sep-  \ye computeC(ST | ;) forall S; 2 N [ST]and choose a set of

arate histograms for each superpixel with 20 bins in each of L, . T
A and B axes. We concatenate the histograms to give a 60D de_three superpixell'[S;' ] with the smallest path costs. We then plot

scriptor Ha, [Si] for each superpixe§, 2 S. We compute the  the histogram of depth samples containefi 8 2 N'[S]']. A sin-
nearest neighbors of each target superpixel from all superpixels 9!€ Strong peak in the depth histogram or two contiguous peaks (see
already containing depth samples using the histogram descriptorsFigure 3(a),(c)) indicate that & 2 N'[S"] are at similar depths
space with 2 distance metric. This gives a set of “most similar” ~and can be reached fro8f without crossing color discontinuities,
superpixeld [S;]. We keep the 40 most similar superpixels, shown Which means that the superpixels are likely to belong to the same
in yellow in Figure 2(a) for the target superpixel shown in red. We object. We obtained similar results for 3-6 superpixels with small-
assume that any signi cant object would be around 5% of image €st paths costs; numbers higher than 6 often gave multiple peaks in
area, equivalent to 40-60 superpixels. We experimented successthe depth histogram e.g. Figure 3(d). If the nal depth histogram

fully with 40-80 most similar superpixels; higher numbers need- has more than two peaks or split peaks (see Figure 3(d)), then the
lessly increased computation. superpixels selected by our shortest walk algorithm most likely be-

long to different scene objects. We ignore such superpixels for the
moment. We use an iterative approach: superpixels lled in a previ-
ous iteration are used to add depth to remaining superpixels in the

object in rich urban scenes. This can occur because of texture-lesd €t itgratic()jna Thtfl algori}hm ;tops w hlen ;‘O motr_e sluperpixels t():_ant
architecture, stochastic texture (e.g., trees, hedges) or texture repe € assigned depth samples. 11 No PIXES of a particular scene objec
tition (e.g., windows) as shown in Figure 2(a). We re NdS; ] by were originally reconstructed, the superpixels of such an object will
selecting the spatially closest superpixels. However, the irregular nd source supe.rplxels from pther Ot.)JeCtS and the nal depth .h's'
and highly non-convex shapes of superpixels make Euclidean dis-09ram is most likely to remain unreliable. We discard superpixels
tance between superpixels very ambiguous. Moreover, the size ofW'th multiple split peaks and mark them as holes (see Figure 1(d)).
the spatial neighborhood is also ambiguous because of the varying
sizes of superpixels.

4.1.2 Shortest walk algorithmThese neighboring superpixels
can belong to very different objects or far off regions of the same

Note that we could incorporate spatial distance and histogram
distance in a single metric by weighing them appropriately, but this
We resolve the above ambiguity using a graph traversal algorithm. would involve tuning the weights carefully for each dataset depend-
We create a 2D superpixel graph by adding edges between anying on image content, object shapes, etc.
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Fig. 3. Top: target superpixel in yellow and tbeurce superpixellsr[SiT ]

in blue. Bottom: corresponding depth histogramsf\bﬂ’SiT]. Depth his-
togram for the rst has a single peak indicating reliable tiie[Split peaks
in the second indicate thaburce superpixelbave depth from a different
scene objects. This is true for the source superpixels atrdleestlhouette
which contains 3D points from the wall behind the tree (serifé 4(left)).

Fig. 4. Our depth synthesis adds samples with plausible dgjght)
values to poorly reconstructed regions shown in the leftreg(and Fig-
ure 1(c)).

4.1.3 Interpolating depth samplesie now interpolate depth
samples from theource superpixel&r [ST]. We create the com-

Fig. 5. Left: Superpixel segmentation showing superpixelsnattiple
depths as well as depth samples contained inside each swgiégbiown as
white dots). Middle: The regular grid which is used as warp mesérlaid
over each superpixel. Right: Warped superpixels and grid faovel view.
Warping each superpixels independently preserves afiigties. Note how
background superpixels slide under foreground.

Furukawa et al. [2009] do not reconstruct sky regions. We identify
such regions using the approach described in the appendix and as-
sign them 99th percentile depth of the image before applying the
above depth synthesis. This is an optional step required if there are
signi cant sky regions.

5. LOCAL WARPING OF SUPERPIXELS WITH DEPTH
SAMPLES

Depth samples from multiview stereo can be noisy, especially near
silhouettes. In addition, our synthesized depth is guiBusible
rather than photo-consistent or accurate. Consequently, direct re-
projection of superpixels using these depth samples, e.g., using the
Video Mesh data structure [Chen et al. 2011], will result in disturb-
ing artifacts. We demonstrate these problems in the Sec. 6.2.

To alleviate these problems, we adopt a variational warp approach
to regularize the depth samples. In contrast to previous meth-
ods [Liu et al. 2009; Chaurasia et al. 2011], we do not warp the

entire image, but perform an individual local warp for each super-

pixel, which allows much more freedom to navigate in the scene

and reduces some artifacts (see Figure 10 and 11).

bined histogram of depth samples from all source superpixels. We

then create the joint probability distribution of depth samples by 5.1 Shape-preserving warp

normalizing the histogram bin size by the total area under the his-

togram. This gives the approximate probability density function At each frame, we warp each superpixel of each imagévidu-
(PDF) of depth samples. Using the PDF as interpolation weights a|ly to the novel view, represented by its projection matEix .
automatically attenuates the effect of noisy depth samples. We in- Our warp satis es two energy terms in a least-squares sense: a
terpolate the inverse of depth values, as depth is inversely propor-projection energyat each depth sample that is reprojected into the
tional to disparity [Goesele et al. 2010]. The nal inverse depth at novel view, and ashape-preserving energy regularization term

pixel x of ST is given by

0 1
X X
@ P(DlyDkx yk? D '[y]A
1 Sk2NIsT]  y2DISk] 1
= 0 1 3
D[x] X X ©
@ P(D[yDkx yk 2A
Sk2N[sT] vy2D[Sk]

We add 10-15 depth samples at random pixelSin The result

for each warp mesh triangle that preserves the shape of the super-
pixel during the warp.

We create an axis-aligned bounding box for each superpixel and
overlay a regular grid which serves as the warp mesh (see Figure 5,
middle). Each grid triangle contains zero or more depth samples.
The unknowns in the warp optimization are the warp grid vertex
positionsw. Our variational warp energy is similar to [Liu et al.
2009; Chaurasia et al. 2011], but each superpixel is warped sepa-
rately rather than warping the entire image, makingldcal warp.

for the example in Figure 1(c) is shown in Figure 4. We got similar Re-projection energyFor each depth sampl2[x], we locate the
results for 5-50 depth samples; higher numbers increased the sizdriangle T of the warp mesh that contains it. Denote the vertices

of the warp optimization.

of T by (vj,;Vj,;Vj,) and let the barycentric coordinates of the
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6 Chaurasia et al.

location of the depth sample at pixeln triangleT be( j; ;; ;): weights. This gives us four warped images where occluded back-
B . ground superpixels slide under foreground superpixels and disoc-
X= jVjp+ Vi, + Vgl (4) clusions create holes in the warped images (see Figure 6).

The reprojection energy measures the distance between the warped
position of the depth sample and the reprojected location using the
novel view matrixCy :

2

Ep[X]: i Vi, + i ¥is + i ¥is CN C|il(D[X]) ) (5)
whereC, il is the back-projection operator of imabe
Shape-preserving energyor each triangle of the warp mesh with (a) Warped image 1 (b) Warped image 2

vertices(Vim, ;Vm,; Vm3), this energy term measures its shape dis-
tortion after the warp. Ideally the triangle only undergoes a similar-
ity transformation, resulting in a null energy value. The similarity
energy is obtained by expressing one vertex of the triangle as a lin-
ear combination of the other two:

a = (Vm, le)T(sz Vm,) KVm, Vm, K (6)

b= (Vms Vmy)"Reo(Vim, Vm;)=KVm, VK (c) Warped image 3 (d) Warped image 4
Es[T] = k¥m, (a(¥m,; ¥m,)+ DReo(¥m, ¥m,)K%

whereRg is 90 rotation. Please refer to [Liu et al. 2009; Chaura-
sia et al. 2011] for the derivation of this energy term. The overall
energy function for the superpixel warp is given by

X X
EwlSk]= Eplx]+  ES[TI: )

x2D(Sk) T (e) Blended image

We minimizeE,, [Sk] for each superpixel by building a sparse lin-

ear system and solving it usingH©LMoD [Chen et al. 2008] on the Fig. 6. Warped superpixel images and nal result after blagdi

CPU. We solve thousands of small independent local warps in par-

allel, which is faster than a single global warp as in [Liu et al. 2009;

Chaurasia et al. 2011]. We compare to [Chaurasia et al. 2011] in ) ) .

Sec. 6.2 and also discuss the effect of the shape-preserving warp a§ass 2: BlendingWe render a screen-size quad into the frame

compared to methods which reproject depth samples directly (e.g., Puffer and blend the colors from the four warped images to get
[Chen et al. 2011]). the nal result. When shading a pixel in the fragment shader,

we assign an appropriate weight for each of the four warped im-
ages. A number of different blending strategies have been pro-
5.2 Rendering posed for composing novel views. View angle penalties have been
used in [Buehler et al. 2001] to compute smoothly varying blend-
Rendering is achieved in three passes. In the rst pass, we selecting weights. Chaurasia et al. [2011] scale the weight of the high-
and warp the four closest input cameras. Next, we blend the result-est weighted image by an additional factor to minimize blending,
ing warped superpixel images to synthesize the novel view. A nal which has been demonstrated to be a perceptually objectionable
hole- lling pass completes the rendering algorithm. ghosting artifact [Vangorp et al. 2011]. We rst compute the angle
penalties [Buehler et al. 2001] at each pixel and then discard the
Pass 1: Camera selection and warpingor each novel view, we two lowest weight candidates to avoid excessive blending.
select the four input cameras closest to the novel camera position
based on camera orientation. We warp the superpixels of each of
these images as described previously and render the warped supe
pixels of each image in a separate oating point render target with
depth test enabled. We reproject the median depth of a supérpixel
into the novel view and use it for the depth test. The warp mesh of
each superpixel is rendered with an alpha matte de ned by the out-
line of the superpixel. We use a “soft alpha matte” by rendering an
additional 4 pixel wide zone outside the superpixel boundary if the
neighboring superpixel's median depth is almost the same as the
current superpixel. This lls in small cracks between warped su-
perpixels, if any. We store the reprojected median depth and the su-
perpixel ID of each warped superpixel in an additional render target
while warping. These are used in the next pass to compute blending

We use an adaptive blending scheme by creating a superpixel cor-
respondence graph across images. We add a correspondence edge
between two superpixels from different images if they share 3D
reconstructed points. If the pixels to be blended have a correspon-
dence edge, we use the weights computed above. If superpixels do
not have such a correspondence edge and one superpixel contains
“true” depth samples obtained from PMVS while the other contains
depth samples added by our synthesis, we increase the weight of the
former by a factor of 2.0. In all other cases of non-corresponding
superpixels, we reduce ghosting artifacts by using the heuristic that
it is better to display incorrect parallax on background regions;
background parallax errors being less noticeable than those in the
foreground. We therefore increase the blending weight of the pixel
with the higher depth value by a factor of 2.0; tests showed that this
value provides satisfactory results on our datasets. Values higher
1computed as median of all depth samples contained within trergixgl. than 4 effectively disable blending.
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Table |. Depth synthesis running times these depth samples while nding dominant planes in the scene,

while [Goesele et al. 2010] use “ambient point clouds” to produce

an NPR effect. In contrast, our depth synthesis facilitates plausible
Images 27 30 28 12 25 30 20 10 24 25 35 36 renderingusing justthese few points. More often than not, urban or

suburban scenes do contain trees, vegetation and cars; our method

bs 46 66 75 51 126 136 41 23 57 50 152 120  thus represents a signi cant step in making IBR algorithms practi-

Number of images used and depth synthesis times in minutes. 1: Museukds@um2, cal.

3: University, 4: Yellowhousd 2, 5: ChapelHilll, 6: ChapelHill2, 7: Aquariu20, 8:

Street10, 9: VictorHugol, 10: VictorHugo2, 11: Commerce, 12 School.

Scene 1 2 3 4 5 6 7 8 9 10 11 12

Pass 3: Hole lling. Moving the novel view signi cantly away
from input cameras creates large disoccluded regions which are not
captured by any of the input images. Such regions appear as holes;
we solve the Poisson equatiorgjez et al. 2003] with zero gradient
values to create blurred color in such holes (see Figure13(c)). () Yellowhousel2 (b) Street10 (c) VictorHugo2

6. RESULTS AND COMPARISONS

We present results and comparisons, which are best appreciated by
watching the accompanying video and supplemental material.

(d) Aquarium20 (e) ChapelHill1 (f) ChapelHill2

6.1 Results

Fig. 8. Original reconstructed points for one of the imagesifisome of
We have tested our approach on a wide variety of datasets, includ-our datasets. Though architecture is well reconstructegipme with veg-
ing scenes captured by ourselves and by others. We downloadecktation or other foreground objects are very poorly reqoottd. Our ap-
Schoot from Microsoft Photosynth. ChapelHilll and ChapelHill2  proach is capable of generating plausible renderings eresuth regions.
are from the street-side capture in [Pollefeys et al. 2008]; we sub-
sampled the video stream to simulate a sparse casual photo cap-
ture. Aquarium20, Streetl0 and Yellowhousd 2 are taken from
[Chaurasia et al. 2011] which assumes manual silhouette marking
and thus includes challenging re ective surfaces (car windows). We i i . ) .
have additionally captured six new scenes: Museum1, Museumszhere exists a vast literature on mage-based rendering techniques.
University, VictorHugo1, VictorHugo2 and Commerce. We show HOWwever, only a few recent solutions target the type of datasets
synthesized views for viewpoints which are quite far from input W€ focus on, i.e., scenes captured with a simple digital camera, in
cameras in Figure 7. We list the number of images and running Which large regions are very poorly reconstructed.
times for depth synthesis for all the datasets in Table I. Only 10 to
35 images are required for all our scenes. Depth synthesis runningOverall IBR comparison.To evaluate our overall IBR result, we
times are reported for an unoptimizedAM.AB implementation compare our method to three recent approaches. We compare to
which could be accelerated by an order of magnitude by running Floating Textures [Eisemann et al. 2008] using the author's imple-
multiple images of the dataset in parallel on separate cores. Multi- mentation. This approach also requires a 3D model or “proxy” of
view stereo including Bundler [Snavely et al. 2006] and PMVS [Fu- the scene, which we create using [Kazhdan et al. 2006] from the re-
rukawa and Ponce 2009] took between 30-60 minutes for all our constructed point cloud. We use our own implementation for Am-
datasets depending upon the number of images. We modi ed the bient Point Clouds [Goesele et al. 2010] and the author's imple-
oversegmentation source code of [Achanta et al. 2012] to segmentmentation for Silhouette-aware Warping [Chaurasia et al. 2011].
multiple images in parallel which gave running times of 1-3 min- To validate our implementation of [Goesele et al. 2010], we pro-
utes for all the images in any our datasets. vide a rendering of the Hanau dataset in the supplemental material
which shows that our implementation closely resembles the origi-
nal method. We also implemented the rendering method of [Chen

6.2 Comparisons

Rendering is real-time with an average frame rate of 53 FPS and 50
FPS at 800 600 and 1280 800 resolutions respectively on a 12- R ; i
core Intel Xeon X5650 2.67Ghz CPU Withibia Quadro 6000 S 20LLD hich i an alternative warp approach based on repro
GPU running Fedora 16. We achieve 23 FPS and 13 FPS respec- ' '
tively on a laptop with a dual-core Intel 2640M 2.80GHz CPU and In Figure 9, we compare our view interpolation results for Yel-
NVIDIA GTX 525M GPU running Fedora 16. lowhousel2 and Museum1 datasets. Floating textures [Eisemann
et al. 2008] have ghosting artifacts because poor or wrong 3D ge-
ometry leads to texture misalignment which are too big to com-
pensate by optical ow. [Goesele et al. 2010] use a NPR effect by
smearing an ambient point cloud for all poorly reconstructed re-
gions which leads to disturbing artifacts if such regions lie on im-
portant scene objects, e.g., cars, trees etc. Our depth synthesis al-
I lows plausible novel views even for such regions. Despite the man-
2http://photosynth.net/view.aspx?cid=aaeb8ecf-cteis4be42- ual silhouette marking, [Chaurasia et al. 2011] gives distortions in
bclae2f896c0 several regions which is even more pronounced if the novel camera

Our algorithm works well on a variety of different scenes, which

all include challenging cases of poorly reconstructed vegetation
and other foreground objects (e.g. cars). As shown in Figure 8,
such regions get very few depth samples from multiview stereo.
Piecewise-planar techniques like [Sinha et al. 2009] tend to ignore
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Fig. 7. A single frame and corresponding top view of the scemelfl the datasets. In scanline order, University, Museuvi@orHugol, VictorHugo2,
Commerce (our capture); School (Photosynth); ChapelHillgp2IHill2 ([Pollefeys et al. 2008]); Aquariw®0, Streetl0 ([Chaurasia et al. 2011]) datasets.
The top view shows the input cameras in yellow, novel cameradrarel the 4 images selected for generating the novel view i, Bllease see video and
supplemental material for all complete recorded sequences.
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Depth Synthesis and Local Warps for Plausible Image-based Navigation 9

(a) Our result (b) [Eisemann et al. 2008] (c) [Goesele et al. 2010] (d) [Chaurasia et al. 2011]

Fig. 9. View interpolation comparison for the Yellowhous2 and Museuml datasets. [Eisemann et al. 2008] depends on a 3& amabthus shows
signi cant ghosting. In regions with very poor depth (segutee 8), our method is able to create plausible results wiGBleekele et al. 2010] creates a smeared
point cloud. [Chaurasia et al. 2011] gives results similaouwos after 1.5 hours of manual intervention to mark accurdtesettes and add/correct depth
samples, however some distortions are still visible whictobemuch more pronounced away from view-interpolation path fsgure 10).

(a) Our result (b) [Eisemann et al. 2008] (c) [Chaurasia et al. 2011] (d) Novel camera position

Fig. 10. Free-viewpoint navigation comparison for the Yehousel2 and Museum1l datasets. Our method produces plausiblesresalt for viewpoints
quite far from the input images. In contrast, the artifact§ifemann et al. 2008] are clearly visible. The distortionsiined by the global warp of [Chaurasia
et al. 2011] are even more pronounced, despite 1.5 hours ofahimervention.

is moved away from the view interpolation path, as shown in Fig- hind the novel camera because such a depth sample behind cannot

ure 10. We do not include [Goesele et al. 2010] in free-viewpoint be projected into the novel camera (see Figure 11). Our local warp

IBR comparison because it is designed only for view interpolation. simply ignores the superpixels which contain such depth samples,
while the rest of the image is warped normally. This makes our

The results for Museum1 dataset for [Chaurasia et al. 2011] in Fig- approach suitable for potential immersive applications.

ure 9 and 10 required 1.5 hours of manual intervention because

a large number of silhouettes had to be marked and depth samples

had to be added in large regions such as trees. Even then, the results

show a lot of distortion because the global warp diffuses distortions Comparison with Video Meshlhe warp described in Video

due to the slightest depth gradients over the whole image, which be-Mesh [Chen et al. 2011] triangulates and reprojects depth samples

come particularly severe when moving away from the view inter- directly into the novel view. Inaccurate or outlier depth values can

polation path (see Figure 10). Adding too many intersecting silhou- cause the depth sample to be reprojected at incorrect pixel coordi-

ettes into the Conformal Delaunay triangulation of [Chaurasia et al. nates, causing objectionable artifacts, most noticeable in the form

2011] leads to numerical issues. In contrast, our method scales toof cracks. Our warp regularizes the effect of noisy depth values

scenes with arbitrary number of silhouettes. Also, the global warp and outliers with the shape preserving constraint (see Sec. 5). As a

disintegrates when any depth sample of the input image lies be- consequence, our results have far fewer cracks (see Figure 12).
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10 Chaurasia et al.

Fig. 11. The global warp of [Chaurasia et al. 2011] (left) nlisgrates if

any depth samples Eehindthe novel camera as shown in top view (right). (@) (b)
This prevents the user from walking “into” the scene. Our leearp does

not suffer from this limitation (middle).

©

Fig. 13. (a) Incorrect depth assignment on the unreconstluback-

(@) (b) ground tree which is barely distinguishable from the fooegd tree, (b)
very thin structures cannot be properly represented byrpixst and re-
sult in rendering artifacts, and (c) hole lling in disocded regions not
captured in input images results in blurring.

due to hard-to-reconstruct objects such as vegetation or complex
foreground geometry, which occur very frequently in real-world
scenes. We have used [Furukawa and Ponce 2009] for reconstruc-
tion; we believe that such scenes will prove to be challenging for

(© (d) any multiview stereo algorithm.
Fig. 12. (a) Superpixels warped using our approach, (b) rpiyss We presentadepth-synthesis algorithm using agr_aph structure built
warped using our implementation of Video Mesh [Chen et al. RO(E} on an oversegmentation of the input images. This step provides a
nal result generated from our warped superpixels in (a), (dl result plausiblesolution for regions with very sparse 3D reconstruction

while other existing approaches [Sinha et al. 2009; Goesele et al.
2010] ignore such sparse depth. We then use the oversegmentation
6.3 Limitations to develop a localized shape-preserving warp and rendering algo-
rithm. This approach has a very low run-time overhead, and our

We have demonstrated our method on a large and diverse set of verfhree-pass GPU implementation allows interactive display rates.
challenging scenes. Evidently, the method does have limitations. W& demonstrate our approach on 12 different datasets, including
The rst limitation comes from depth synthesis: if the target super- ©ne€ from Microsoft Photosynth, and others from [Pollefeys et al.
pixel corresponds to an object at a depth which does not exist else-2008] and [Chaurasia et al. 2011], apart from our own datasets.
where in the image, incorrect depth may be assigned. This is shown'Ve also present comparisons with the three most recent IBR algo-
in Figure 13(a), where the background tree is not reconstructed atfithms which can treat datasets with S|m!lar properties [Eisemann
all and ends up being assigned depth from the foreground tree. Theet al. 2008; Goesele et al. 2010; Chaurasia et al. 2011]. Our method
confounding factors are that the trees are spatial neighbors and havévoids many of the visual artifacts in these previous methods, and
extremely similar color/texture to the extent that the boundary be- Nas signi cant advantages such as free-viewpoint navigation (com-
tween the trees is barely discernible to the human eye. Depth syr]_par(.ed to [Golesele et al. 2010]) and the fact that it requires no man-
thesis does not handle completely unreconstructed regions dynamicial intervention (compared to [Chaurasia et al. 2011]).

content e.g., people. Our approach is limited by the capabilities of ) o )
the oversegmentation: very thin structures cannot be captured (sed/Ve also discussed the limitations of our method (Sec. 6.3), which
Figure 13(b)). Finally, our hole lling approach is very basic. We !eads _naturally to dlrectlc_)ns for future work. In partlcular_, we will
resort to blurring in holes caused by disocclusions if we move far investigate ways to provide structure-preserving hole- lling when
from the input views and visualize regions of the scene not cap- moving too far from the input viewpoints. Inpainting [Criminisi

tured in the input images. We discuss possible solutions to these€t al. 2003], combined with recent acceleration techniques e.g.,
limitations in Sec. 7. PatchMatch [Barnes et al. 2009], could provide a basis for such a

solution. However, achieving acceptable levels of quality and speed
requires signi cant algorithmic advances, which could be based on
7. DISCUSSION, FUTURE WORK AND CONCLUSIONS the availability of depth and silhouette information provided by our
approach. A second direction involves a way to combine piece-
We have presented a new approach to provide plausible image-wise planar-reconstruction [Gallup et al. 2010] with our depth syn-
based rendering for navigation in casually captured multiview thesis algorithm; this would involve rethinking how we combine
datasets which have poorly reconstructed regions. Such regions ar@versegmentation with synthesis. The treatment of re ections and

generated from Video Mesh style warping in (b).

ACM Transactions on Graphics, Vol. 32, No. 3, Article 30, Publication dhiee 2013.



Depth Synthesis and Local Warps for Plausible Image-based Navigation

11

transparency is still challenging in our approach. Recent advancesCHeN, J., RRIs, S., WANG, J., MATUSIK, W., COHEN, M., AND Du-

[Sinha et al. 2012] provide a promising direction.

Finally, we believe that our approach is a signicant step to-
wards plausible free-viewpoint image-based navigation from inter-

net photo collections. This is why we have focused on images cap-
tured casually using consumer cameras instead of assuming studio

capture or stereo setups.

APPENDIX

RAND, F. 2011. The video mesh: A data structure for image-based-three
dimensional video editing. IRroc. ICCP.

CHEN, Y., Davis, T. A., HAGER, W. W.,AND RAJAMANICKAM , S. 2008.

Algorithm 887: Cholmod, supernodal sparse cholesky fazation and

update/downdateACM Trans. Math. Softw. 38, 22:1-22:14.

CIGLA, C., ZABULIS, X., AND ALATAN, A. 2007. Region-based dense
depth extraction from multi-view video. IRroc. ICIP.

CRIMINISI, A., PEREZ, P.,AND TOYAMA, K. 2003. Object removal by
exemplar-based inpainting. Froc. CVPR721-728.

We discuss the details of depth synthesis for images which have DEBEVEC, P. E., RYLOR, C. J.,AND MALIK, J. 1996. Modeling and

signi cant sky regions, speci cally the University and ChapelHill2

rendering architecture from photographs: a hybrid geomatrg image-

datasets. Our depth synthesis approach can synthesize depth valuesbased approach. Rroc. SIGGRAPH11-20.

on objects which haveomethough sparse depth samples. Large
regions of sky typically have no depth samples at all. We identify

such sky regions in the image using a graph-cut. We assume that thegjsemann, M

DoLsON, J., BAEK, J., RAGEMANN, C.,AND THRUN, S. 2010. Upsam-
pling range data in dynamic environments.Froc. CVPR 1141-1148.

., DECKER, B. D., MAGNOR, M., BEKAERT, P,

images are captured upright and sky pixels are close to the top bor- pe Acuiar, E., AHMED, N., THEOBALT, C.,AND SELLENT, A. 2008.
der. We create a graph with all the pixels of the image as nodes and Floating texturesComput. Graph. Forum 22, 409-418.
add edges between adjacent pixels. The label costs for the graph-¢, ;enszwale. P. E. AnD HUTTENLOCHER D. P. 2004. Efcient

cut are given in the following table. We keep a very high penalty

Pixel Label 0 cost Label 1 cost
Pixels along top border contained in su- 0 106
perpixels with no depth samples

All other pixels contained in a superpixel

with no depth samples 0

All other pixels 108 0

of 10° for having neighboring pixels with different labels, except

at superpixel boundaries where we relax it to 100. After computing
the graph cut using [Kolmogorov and Zabih 2004], we mark the
pixels labeled as sky and assign them 99th percentile depth of the
image. Note that [Hoiem et al. 2007] may be used to identify sky

regions; we resort to this approach because it is suf cient and much

faster.
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