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Modern camera calibration and multiview stereo techniques enable users to
smoothly navigate between different views of a scene captured using stan-
dard cameras. The underlying automatic 3D reconstruction methods work
well for buildings and regular structures but often fail on vegetation, vehi-
cles and other complex geometry present in everyday urban scenes. Con-
sequently, missing depth information makes image-based rendering (IBR)
for such scenes very challenging. Our goal is to provideplausible free-
viewpoint navigation for such datasets. To do this, we introduce a new IBR
algorithm that is robust to missing or unreliable geometry, providing plau-
sible novel views even in regions quite far from the input camera positions.
We �rst oversegment the input images, creating superpixels ofhomoge-
neous color content which often tends to preserve depth discontinuities. We
then introduce adepth-synthesisapproach for poorly reconstructed regions
based on a graph structure on the oversegmentation and appropriate traver-
sal of the graph. The superpixels augmented with synthesized depth allow
us to de�ne a local shape-preserving warp which compensates for inaccu-
rate depth. Our rendering algorithm blends the warped images, and gener-
ates plausible image-based novel views for our challenging target scenes.
Our results demonstrate novel view synthesis in real time for multiple chal-
lenging scenes with signi�cant depth complexity, providinga convincing
immersive navigation experience.
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1. INTRODUCTION

Recent advances in automatic camera calibration [Snavely et al.
2006] and multiview stereo [Goesele et al. 2007; Furukawa and
Ponce 2009] have resulted in several novel applications. As an
example, using a small set of photographs of a given scene cap-
tured with standard cameras from several viewpoints, methods such
as [Eisemann et al. 2008; Goesele et al. 2010] enable smooth tran-
sitions between the different views. The underlying 3D reconstruc-
tion methods work remarkably well for buildings and regular struc-
tures; however, in everyday scenes containing vegetation and other
complex geometry, there are always regions which do not have re-
liable or dense 3D information. Image-based rendering (IBR) for
such scenes is thus very challenging.

Our goal is to provideplausiblefree-viewpoint navigation for such
casually captured multiview datasets, which contain poorly and/or
sparsely reconstructed regions when using state-of-the-art multi-
view stereo (e.g., [Goesele et al. 2007; Furukawa and Ponce 2009]).
To do this, we introduce a new image-based rendering algorithm
that is robust to missing and/or unreliable geometry and which pro-
videsplausiblenovel views, even in regions quite far from the in-
put camera positions. We introduce adepth-synthesisapproach for
poorly reconstructed regions and alocal shape-preserving warp to
achieve this goal.

Recent IBR approaches try to compensate for poor 3D informa-
tion. Methods which depend upon a 3D geometric model or proxy,
result in signi�cant ghosting or misalignment artifacts, even when
compensating for poor 3D with optical �ow [Eisemann et al. 2008].
Non-photorealistic rendering (NPR) styles [Goesele et al. 2010] are
very effective for view transitions in photo collections, providing a
satisfactory solution for different lighting conditions or dynamic
scene content, such as moving people. Despite these advantages
such methods fall short of our goal of providing plausible novel
views for free-viewpoint navigation. The silhouette-based warp of
[Chaurasia et al. 2011] can address our target scenes; however it
requires manual pre-processing of the input images, limiting its ap-
plicability.
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The main challenge in achieving our goals is treating poorly re-
constructed depth in many regions of each image and the lack of
precise silhouettes for the datasets we consider.

Our main contributions are (i) a depth-synthesis algorithm which
provides depth samples in regions with poor depth, and (ii) alo-
cal shape-preserving warp and rendering algorithm that provides
plausible novel views. We build our solution on an oversegmenta-
tion [Achanta et al. 2012] of input images. Superpixels provide ho-
mogeneous image regions and preserve depth discontinuities: the
motivation for this choice is that superpixels allow our algorithm to
both identify regions requiring depth synthesis and to �nd appropri-
ate depth exemplars. In addition, superpixels correspond to homo-
geneous image content, and thus maximize the bene�t of our local
shape-preserving warp during rendering. Our synthesized depth is
not necessarily photoconsistent: however, it isplausibleand thanks
to the shape-preserving warps, our method also producesplausible
novel views, even when the user is far from the input cameras.

We have applied our approach to 12 different scenes (see Figure 7),
including one from Microsoft Photosynth, two from [Pollefeys
et al. 2008] and three from [Chaurasia et al. 2011]. In the accompa-
nying video and supplemental material, we demonstrate recorded
interactive navigation sessions for all scenes, which show that our
method provides plausible novel view synthesis in real time, result-
ing in very convincing immersive navigation.

2. PREVIOUS WORK

Image-based rendering.Since the early work on plenoptic mod-
eling [McMillan and Bishop 1995], many image-based render-
ing algorithms have been developed, such as light �elds [Levoy
and Hanrahan 1996] and unstructured lumigraphs [Buehler et al.
2001] among many others. Other interesting applications have re-
sulted from this work, e.g., camera stabilization [Liu et al. 2009],
video enhancement [Gupta et al. 2009] or commercial products like
Google Street View.

Image interpolation approaches, e.g., [Mahajan et al. 2009; Lipski
et al. 2010; Stich et al. 2011] have recently received attention, with
impressive results. We do not discuss them further, since we con-
centrate on wide-baseline input datasets and free-viewpoint navi-
gation. Most wide-baseline IBR techniques, e.g., [Debevec et al.
1996; Buehler et al. 2001; Eisemann et al. 2008] use geometric
proxies to re-project input images to novel views. Regions with
poor reconstruction result in a poor proxy, and signi�cant visual ar-
tifacts in rendering. Ambient Point Clouds [Goesele et al. 2010]
use a non-photorealistic rendering style in poorly reconstructed
regions, and are restricted to view interpolation. In contrast, our
depth-synthesis approach, coupled with our local shape preserving
warp provides plausible free-viewpoint navigation.

Recent approaches have used variational warps guided by sparse
multiview stereo point clouds to warp images to novel views. Liu
et al. [2009] used 3D points to warp video frames to novel cam-
era positions for video stabilization. Chaurasia et al. [2011] use
a similar approach for wide-baseline IBR and handle occlusions
by incorporating hand-marked silhouettes in the variational warp.
Manual silhouette annotation is a major drawback of this approach;
however the method demonstrates that shape-preserving warps can
produce plausible novel views. In contrast our approach is com-
pletely automatic and thelocal nature of our warp improves qual-
ity. We compare to [Eisemann et al. 2008], [Goesele et al. 2010]
and [Chaurasia et al. 2011] in Sec. 6.2.

A signi�cant part of IBR research has concentrated on more re-
stricted and controlled settings than ours, typically involving stereo
rigs or other specialized (mostly) indoor capture setups. As a re-
sult, these methods do not have the kind of poorly reconstructed
regions we encounter in our datasets. Co-segmentation techniques
like [Zitnick et al. 2005; Bleyer et al. 2011] require dense capture
while [Kowdle et al. 2012] handle a single object-of-interest only.
These have not been shown on wide-baseline multiview unordered
photo collections with multiple foreground objects, which we fo-
cus on here. Over-segmentation has been used to enforce silhou-
ettes in depth maps [Zitnick and Kang 2007]. Other applications
of oversegmentation include view-interpolation [Stich et al. 2011],
depth estimation [Cigla et al. 2007], improving depth of man-made
structures [Mi�cu�ś�k and Ko�secḱa 2010] etc. We use superpixels for
depth-synthesis, local warping and adaptive blending. In contrast
to previous methods which assume good depth, superpixels allow
us to delineate regions with unreliable or poor depth, helping our
depth synthesis. The coherent image regions and silhouettes pro-
vided by superpixels also help our local warp.

3D reconstruction and depth propagation.Multi-view stereo
[Goesele et al. 2007; Furukawa and Ponce 2009]) can reconstruct
reasonable point clouds for many scenes. We target scenes which
are captured with a simple digital camera, in a casual manner, rather
than methods which require speci�c camera rigs (e.g., the 8-camera
setup in [Zitnick et al. 2004]) suitable for the use of stereo algo-
rithms. Please refer to [Seitz et al. 2006] for an excellent overview.

Modern multiview stereo [Furukawa and Ponce 2009; Pollefeys
et al. 2008], together with recent improvements (e.g., [Gallup et al.
2010]) provide the best results for the scenes we consider. Fu-
rukawa et al. [2009] typically reconstruct 100k-200k pixels from
5-6 megapixel images i.e., around 2% in our tests. Moreover, the
distribution of depth samples is highly irregular, sparse and/or er-
roneous near silhouettes. Reconstructed 3D points or depth maps
can then be merged using surface reconstruction [Kazhdan et al.
2006; Fuhrmann and Goesele 2011] and used as “proxies” for IBR.

The above methods typically rely on optimizing photo-consistency
which becomes challenging for texture-poor surfaces, complex
(dis)occlusions (e.g. leaves), non-lambertian surfaces etc. They
give excellent results on closed objects [Sinha et al. 2007], but ir-
regular objects such as trees are often poorly reconstructed or even
completely missed (see the examples in [Gallup et al. 2010], which
are similar to our target scenes). Objects of this kind do, however,
appear frequently in everyday (sub)urban scenes. By synthesizing
depth in such poorly reconstructed regions, we enable plausible in-
teractive image-based navigation.

Dense depth maps can be generated by propagating depth sam-
ples to unreconstructed pixels of the image. [Hawe et al. 2011]
show that dense disparity maps can be reconstructed from a sparse
sub-sampling given high density of depth samples near silhouettes.
[Yang et al. 2007; Dolson et al. 2010] create pixel-dense dispar-
ity maps from the dense and regularly spaced disparity samples
provided by range scans, but the method is not appropriate in our
setting. Within the context of multiview stereo, piecewise-planar
reconstruction has been presented in [Sinha et al. 2009; Gallup
et al. 2010]. Similarly, [Furukawa et al. 2009] �t planes to the 3D
point cloud to generate complete depth maps, giving impressive re-
sults for structured and planar regions like façades. However, rich
(sub)urban scenes often deviate from planar priors because of the
presence of vegetation, cars, etc. making these methods less effec-
tive for our scenes.
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Goesele et al. [2010] use image-based depth interpolation without
photo-consistency, which can lead to over-smooth depth maps and
silhouette �attening. They use a graph-cut to retain interpolated
depth only in regions with a high density of depth samples, while
signi�cant regions with sparse or irregular depth are discarded and
instead rendered in an NPR style. Our depth synthesis allows plau-
sible IBR even for such problematic regions.

3. OVERVIEW AND MOTIVATION

Our approach has two main steps: adepth-synthesispre-processing
step and alocal shape preserving warp, followed by a three-pass
rendering algorithm. Our input is a set of images of a scene, taken
from multiple viewpoints. We �rst extract camera matrices using
Bundler [Snavely et al. 2006] and use multiview stereo [Furukawa
and Ponce 2009] to reconstruct a 3D point cloud of the scene. We
project these 3D points into the images, providing a set of projected
depth samples in each image. We then oversegment [Achanta et al.
2012] all the input images creating superpixels that denote regions
of homogeneous color content and preserve depth discontinuities.
We assume the best reconstruction and segmentation techniques are
used. Our approach is independent of the choice of reconstruction
and segmentation approaches.

Depth-synthesis.The key motivation for this step is that even af-
ter using the best reconstruction, there can be signi�cant regions
with no depth. Instead of discarding such regions, we synthesize
plausibledepth suitable for IBR walkthroughs, which is not neces-
sarily photoconsistent. The oversegmentation and projected depth
allow us to identify poorly reconstructed superpixels in each im-
age. Depth-synthesis �lls in poorly reconstructed superpixels using
depth from “similar” superpixels of the image; wedo notaugment
the 3D reconstruction. We create a graph structure with superpixels
as nodes and de�ne a careful traversal of the graph which allows
us to identify best matching superpixels in terms of color and spa-
tial proximity. We keep the three best matching superpixels and
interpolate the depth from these superpixels to add a small set of
new depth values into the original poorly reconstructed superpixel.
These best matches are generally not immediate spatial neighbors;
our depth synthesis thus performsnon-local interpolation which
maintains depth discontinuities provided by the superpixel repre-
sentation.

Local Shape-Preserving Warp and Rendering.Superpixels now
contain reconstructed depth from multiview stereo orplausiblesyn-
thesized depth. The depth samples may not be photoconsistent; re-
projecting them will lead to visible artifacts in rendering. To al-
low plausible novel views, we perform alocal shape-preserving
warp on each superpixel individually, in contrast to previous meth-
ods [Liu et al. 2009; Chaurasia et al. 2011] which warp the entire
image. Superpixels correspond to well-de�ned regions of homo-
geneous color content, and thus give good results with our local
shape-preserving warp.

Rendering is achieved with a three-pass blending algorithm. We
�rst select four input cameras closest to the novel camera, and warp
these images to the target view. The four warped images are then
blended, with weights speci�ed by camera orientation but also the
reliability of depth information in each warped superpixel. Finally,
we �ll holes with Poisson blending [Ṕerez et al. 2003].

We present an extensive set of example scenes, all containing
challenging regions which state-of-the-art multiview stereo recon-
structs poorly. Our algorithm allows plausible navigation for all

these scenes. We also compare to the three most relevant recent
IBR algorithms [Eisemann et al. 2008; Goesele et al. 2010; Chaura-
sia et al. 2011]. Our approach diminishes many of the artifacts of
these methods, and provides very convincing IBR navigation expe-
riences, as can be seen in the accompanying videos.

4. DEPTH SYNTHESIS ALGORITHM

Our input is a set of images of a given scene, taken from different
viewpoints. After 3D reconstruction, we use [Achanta et al. 2012]
to oversegment each input image, an ef�cient algorithm that gives
superpixels of approximately equal size and with regular shapes
(see Figure 1(b)), unlike [Felzenszwalb and Huttenlocher 2004]
which gives superpixels of highly irregular shapes and sizes due
to lack to compactness constraints.

We denote the set of all superpixels in an image byS =
f Si gi 2f 0:::n � 1g. We project the reconstructed 3D points into the
image, such that the depth at pixelx is denoted byD [x ] (shown
in Figure 1(c)). The set of depth samples inside each superpixel is
thusD[Si ] = f x 2 Si j D [x ] > 0g. We distinguish two classes of
superpixels: those containing less than0:5% reconstructed pixels,
which we calltarget superpixels(shown in green in Figure 1(d))
and all others which we consider to have reliable depth.

(a) (b)

(c) (d)

Fig. 1. (a) Input image, (b) superpixel oversegmentation, (c)projected
depth samples, and (d)target superpixelsmarked in green. The superpixels
marked in orange could not be assigned depth reliably by our depth synthe-
sis step (Sec. 4.1.2). These are marked as holes.

4.1 Approach

Our goal is to synthesize plausible depth for a suf�cient number of
points in each target superpixel. We do this by identifying a set of
source superpixels, which are spatially close and should ideally be-
long to the same object in the scene as that of the target superpixel.
In addition, our goal is to have a fully automatic algorithm which
requires no scene dependent parameter tuning.
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There are several ways to achieve this goal; two seemingly
straightforward approaches include object classi�cation and in-
terpolation/upsampling of existing depth. Object classi�cation ap-
proaches [Andreetto et al. 2008] give remarkable results on some
classes of objects, such as man-made structures, animals, humans,
etc. However, for cluttered scenes such as ours, which often include
vegetation, results can be less reliable. In addition, our experiments
with e.g., [Andreetto et al. 2008] indicate very high computation
times. Please refer to [Chaurasia et al. 2011] for experiments with
state of the art segmentation algorithms.

Interpolation techniques have been used for regions with suf�cient
depth density (e.g., [Goesele et al. 2010]). For the regions with
very sparse depth, these techniques result in silhouette �attening
and over smooth depth maps which diminish parallax effects dur-
ing rendering.

We propose an ef�cient and robust approach which combines
image-content similarity and spatial proximity in the choice of
source superpixels employed to synthesize depth. The irregular
shape of superpixel boundaries requires de�nition of appropriate
distance metrics and search strategies both for image content and
for spatial proximity. We use histogram comparison to identify su-
perpixels with similar image content and a graph traversal approach
to provide a robust and parameter-free algorithm. Depth values
within target superpixels are synthesized using an interpolation ap-
proach based on the distribution of depths in the source superpixels.

4.1.1 Computing similar superpixels.We �rst compute a set of
“most similar” superpixels for each target superpixel. Among many
similarity metrics for measuring the af�nity of irregular image re-
gions, Grundmann et al. [2010] have successfully used� 2 distance
between LAB histograms of superpixels in order to measure color
similarity. Other metrics like sum of squared differences (SSD) are
less suitable for irregular shapes and sizes of superpixels. Mea-
suring average color of a superpixel performed worse than LAB
histogram distance. Inspired by the approach of Grundmann et.
al [2010], we convert the image into LAB space and create sep-
arate histograms for each superpixel with 20 bins in each of L,
A and B axes. We concatenate the histograms to give a 60D de-
scriptor H Lab [Si ] for each superpixelSi 2 S. We compute the
nearest neighbors of each target superpixel from all superpixels
already containing depth samples using the histogram descriptors
space with� 2 distance metric. This gives a set of “most similar”
superpixelsN [Si ]. We keep the 40 most similar superpixels, shown
in yellow in Figure 2(a) for the target superpixel shown in red. We
assume that any signi�cant object would be around 5% of image
area, equivalent to 40-60 superpixels. We experimented success-
fully with 40-80 most similar superpixels; higher numbers need-
lessly increased computation.

4.1.2 Shortest walk algorithm.These neighboring superpixels
can belong to very different objects or far off regions of the same
object in rich urban scenes. This can occur because of texture-less
architecture, stochastic texture (e.g., trees, hedges) or texture repe-
tition (e.g., windows) as shown in Figure 2(a). We re�neN [Si ] by
selecting the spatially closest superpixels. However, the irregular
and highly non-convex shapes of superpixels make Euclidean dis-
tance between superpixels very ambiguous. Moreover, the size of
the spatial neighborhood is also ambiguous because of the varying
sizes of superpixels.

We resolve the above ambiguity using a graph traversal algorithm.
We create a 2D superpixel graph by adding edges between any

(a) (b)

Fig. 2. (a) Target superpixel (red) and the set of similar neighbors (yel-
low) in a color-content sense, (b) the shortest walk algorithm selects 3 best
matches (cyan).

two superpixels which share a common boundary. We compute
the path betweentarget superpixelST

i and eachsource superpixel
Sj 2 N [ST

i ] which involves theleast change in color. We measure
the change in color between two superpixels by the� 2 distance
between their LAB histograms described above. This path is com-
puted by minimizing the path costC over all possible paths from
ST

i to Sj .

C(ST
i


�! Sj ) =

j j� 1X

t =1

d(H Lab [ (t )]; H Lab [ (t + 1)]) (1)

~C(ST
i ! Sj ) = min

 2 �[ S T
i ! S j ]

C(ST
i


�! Sj ) (2)

where�[ ST
i ! Sj ] is the set of all paths from target superpixel

ST
i to Sj ,  is one such path of lengthj j such that (0) = ST

i

and  (j j) = Sj , C(Si

�! Sj ) is the cost of path , andd(�; �)

is the � 2 distance between histograms. We implement the above
using the Dijkstra shortest path algorithm where the edge weight
between two superpixels is the� 2 LAB histogram distance.

We compute~C(ST
i ! Sj ) for all Sj 2 N [ST

i ] and choose a set of
three superpixels~N [ST

i ] with the smallest path costs. We then plot
the histogram of depth samples contained in[ Sk 2 ~N [ST

i ]. A sin-
gle strong peak in the depth histogram or two contiguous peaks (see
Figure 3(a),(c)) indicate that allSk 2 ~N [ST

i ] are at similar depths
and can be reached fromST

i without crossing color discontinuities,
which means that the superpixels are likely to belong to the same
object. We obtained similar results for 3-6 superpixels with small-
est paths costs; numbers higher than 6 often gave multiple peaks in
the depth histogram e.g. Figure 3(d). If the �nal depth histogram
has more than two peaks or split peaks (see Figure 3(d)), then the
superpixels selected by our shortest walk algorithm most likely be-
long to different scene objects. We ignore such superpixels for the
moment. We use an iterative approach: superpixels �lled in a previ-
ous iteration are used to add depth to remaining superpixels in the
next iteration. The algorithm stops when no more superpixels can
be assigned depth samples. If no pixels of a particular scene object
were originally reconstructed, the superpixels of such an object will
�nd source superpixels from other objects and the �nal depth his-
togram is most likely to remain unreliable. We discard superpixels
with multiple split peaks and mark them as holes (see Figure 1(d)).

Note that we could incorporate spatial distance and LAB histogram
distance in a single metric by weighing them appropriately, but this
would involve tuning the weights carefully for each dataset depend-
ing on image content, object shapes, etc.
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Fig. 3. Top: target superpixel in yellow and thesource superpixels~N [ST
i ]

in blue. Bottom: corresponding depth histograms of~N [ST
i ]. Depth his-

togram for the �rst has a single peak indicating reliable depth. Split peaks
in the second indicate thatsource superpixelshave depth from a different
scene objects. This is true for the source superpixels at the tree silhouette
which contains 3D points from the wall behind the tree (see Figure 4(left)).

Fig. 4. Our depth synthesis adds samples with plausible depth(right)
values to poorly reconstructed regions shown in the left �gure (and Fig-
ure 1(c)).

4.1.3 Interpolating depth samples.We now interpolate depth
samples from thesource superpixels~N [ST

i ]. We create the com-
bined histogram of depth samples from all source superpixels. We
then create the joint probability distribution of depth samples by
normalizing the histogram bin size by the total area under the his-
togram. This gives the approximate probability density function
(PDF) of depth samples. Using the PDF as interpolation weights
automatically attenuates the effect of noisy depth samples. We in-
terpolate the inverse of depth values, as depth is inversely propor-
tional to disparity [Goesele et al. 2010]. The �nal inverse depth at
pixel x of ST

i is given by

1
D [x ]

=

X

Sk 2 ~N [S T
i ]

0

@
X

y 2D [Sk ]

P(D [y ])kx � y k� 2 � D � 1 [y ]

1

A

X

Sk 2 ~N [S T
i ]

0

@
X

y 2D [Sk ]

P(D [y ])kx � y k� 2

1

A

(3)

We add 10-15 depth samples at random pixels inST
i . The result

for the example in Figure 1(c) is shown in Figure 4. We got similar
results for 5-50 depth samples; higher numbers increased the size
of the warp optimization.

Fig. 5. Left: Superpixel segmentation showing superpixels atmultiple
depths as well as depth samples contained inside each superpixel (shown as
white dots). Middle: The regular grid which is used as warp mesh, overlaid
over each superpixel. Right: Warped superpixels and grid for a novel view.
Warping each superpixels independently preserves all silhouettes. Note how
background superpixels slide under foreground.

Furukawa et al. [2009] do not reconstruct sky regions. We identify
such regions using the approach described in the appendix and as-
sign them 99th percentile depth of the image before applying the
above depth synthesis. This is an optional step required if there are
signi�cant sky regions.

5. LOCAL WARPING OF SUPERPIXELS WITH DEPTH
SAMPLES

Depth samples from multiview stereo can be noisy, especially near
silhouettes. In addition, our synthesized depth is onlyplausible
rather than photo-consistent or accurate. Consequently, direct re-
projection of superpixels using these depth samples, e.g., using the
Video Mesh data structure [Chen et al. 2011], will result in disturb-
ing artifacts. We demonstrate these problems in the Sec. 6.2.

To alleviate these problems, we adopt a variational warp approach
to regularize the depth samples. In contrast to previous meth-
ods [Liu et al. 2009; Chaurasia et al. 2011], we do not warp the
entire image, but perform an individual local warp for each super-
pixel, which allows much more freedom to navigate in the scene
and reduces some artifacts (see Figure 10 and 11).

5.1 Shape-preserving warp

At each frame, we warp each superpixel of each imageindividu-
ally to the novel view, represented by its projection matrixCN .
Our warp satis�es two energy terms in a least-squares sense: are-
projection energyat each depth sample that is reprojected into the
novel view, and ashape-preserving energyor regularization term
for each warp mesh triangle that preserves the shape of the super-
pixel during the warp.

We create an axis-aligned bounding box for each superpixel and
overlay a regular grid which serves as the warp mesh (see Figure 5,
middle). Each grid triangle contains zero or more depth samples.
The unknowns in the warp optimization are the warp grid vertex
positions~v . Our variational warp energy is similar to [Liu et al.
2009; Chaurasia et al. 2011], but each superpixel is warped sepa-
rately rather than warping the entire image, making it alocal warp.

Re-projection energy.For each depth sampleD [x ], we locate the
triangleT of the warp mesh that contains it. Denote the vertices
of T by (v j 1 ; v j 2 ; v j 3 ) and let the barycentric coordinates of the
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location of the depth sample at pixelx in triangleT be(� j ; � j ;  j ):

x = � j v j 1 + � j v j 2 +  j v j 3 : (4)

The reprojection energy measures the distance between the warped
position of the depth sample and the reprojected location using the
novel view matrixCN :

Ep [x ] =

 � j ~v j 1 + � j ~v j 2 +  j ~v j 3 � CN

�
C � 1

I i
(D [x ])

� 
 2

; (5)

whereC � 1
I i

is the back-projection operator of imageI i .

Shape-preserving energy.For each triangle of the warp mesh with
vertices(v m 1 ; v m 2 ; v m 3 ), this energy term measures its shape dis-
tortion after the warp. Ideally the triangle only undergoes a similar-
ity transformation, resulting in a null energy value. The similarity
energy is obtained by expressing one vertex of the triangle as a lin-
ear combination of the other two:

a = ( v m 3 � v m 1 )T (v m 2 � v m 1 )=kv m 2 � v m 1 k (6)

b = ( v m 3 � v m 1 )T R90 (v m 2 � v m 1 )=kv m 2 � v m 1 k

Es [T ] = k~v m 3 � (a (~v m 1 � ~v m 2 ) + b R90 (~v m 1 � ~v m 2 )) k2 ;

whereR90 is 90� rotation. Please refer to [Liu et al. 2009; Chaura-
sia et al. 2011] for the derivation of this energy term. The overall
energy function for the superpixel warp is given by

Ew [Sk ] =
X

x 2D ( Sk )

Ep [x ] +
X

T

Es [T ]: (7)

We minimizeEw [Sk ] for each superpixel by building a sparse lin-
ear system and solving it using CHOLMOD [Chen et al. 2008] on the
CPU. We solve thousands of small independent local warps in par-
allel, which is faster than a single global warp as in [Liu et al. 2009;
Chaurasia et al. 2011]. We compare to [Chaurasia et al. 2011] in
Sec. 6.2 and also discuss the effect of the shape-preserving warp as
compared to methods which reproject depth samples directly (e.g.,
[Chen et al. 2011]).

5.2 Rendering

Rendering is achieved in three passes. In the �rst pass, we select
and warp the four closest input cameras. Next, we blend the result-
ing warped superpixel images to synthesize the novel view. A �nal
hole-�lling pass completes the rendering algorithm.

Pass 1: Camera selection and warping.For each novel view, we
select the four input cameras closest to the novel camera position
based on camera orientation. We warp the superpixels of each of
these images as described previously and render the warped super-
pixels of each image in a separate �oating point render target with
depth test enabled. We reproject the median depth of a superpixel1

into the novel view and use it for the depth test. The warp mesh of
each superpixel is rendered with an alpha matte de�ned by the out-
line of the superpixel. We use a “soft alpha matte” by rendering an
additional 4 pixel wide zone outside the superpixel boundary if the
neighboring superpixel's median depth is almost the same as the
current superpixel. This �lls in small cracks between warped su-
perpixels, if any. We store the reprojected median depth and the su-
perpixel ID of each warped superpixel in an additional render target
while warping. These are used in the next pass to compute blending

1computed as median of all depth samples contained within the superpixel.

weights. This gives us four warped images where occluded back-
ground superpixels slide under foreground superpixels and disoc-
clusions create holes in the warped images (see Figure 6).

(a) Warped image 1 (b) Warped image 2

(c) Warped image 3 (d) Warped image 4

(e) Blended image

Fig. 6. Warped superpixel images and �nal result after blending.

Pass 2: Blending.We render a screen-size quad into the frame
buffer and blend the colors from the four warped images to get
the �nal result. When shading a pixel in the fragment shader,
we assign an appropriate weight for each of the four warped im-
ages. A number of different blending strategies have been pro-
posed for composing novel views. View angle penalties have been
used in [Buehler et al. 2001] to compute smoothly varying blend-
ing weights. Chaurasia et al. [2011] scale the weight of the high-
est weighted image by an additional factor to minimize blending,
which has been demonstrated to be a perceptually objectionable
ghosting artifact [Vangorp et al. 2011]. We �rst compute the angle
penalties [Buehler et al. 2001] at each pixel and then discard the
two lowest weight candidates to avoid excessive blending.

We use an adaptive blending scheme by creating a superpixel cor-
respondence graph across images. We add a correspondence edge
between two superpixels from different images if they share 3D
reconstructed points. If the pixels to be blended have a correspon-
dence edge, we use the weights computed above. If superpixels do
not have such a correspondence edge and one superpixel contains
“true” depth samples obtained from PMVS while the other contains
depth samples added by our synthesis, we increase the weight of the
former by a factor of 2.0. In all other cases of non-corresponding
superpixels, we reduce ghosting artifacts by using the heuristic that
it is better to display incorrect parallax on background regions;
background parallax errors being less noticeable than those in the
foreground. We therefore increase the blending weight of the pixel
with the higher depth value by a factor of 2.0; tests showed that this
value provides satisfactory results on our datasets. Values higher
than 4 effectively disable blending.
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Table I. Depth synthesis running times

Scene 1 2 3 4 5 6 7 8 9 10 11 12

Images 27 30 28 12 25 30 20 10 24 25 35 36

DS 46 66 75 51 126 136 41 23 57 50 152 120

Number of images used and depth synthesis times in minutes. 1: Museum1, 2: Museum2,
3: University, 4: Yellowhouse12, 5: ChapelHill1, 6: ChapelHill2, 7: Aquarium20, 8:
Street10, 9: VictorHugo1, 10: VictorHugo2, 11: Commerce, 12 School.

Pass 3: Hole �lling. Moving the novel view signi�cantly away
from input cameras creates large disoccluded regions which are not
captured by any of the input images. Such regions appear as holes;
we solve the Poisson equation [Pérez et al. 2003] with zero gradient
values to create blurred color in such holes (see Figure13(c)).

6. RESULTS AND COMPARISONS

We present results and comparisons, which are best appreciated by
watching the accompanying video and supplemental material.

6.1 Results

We have tested our approach on a wide variety of datasets, includ-
ing scenes captured by ourselves and by others. We downloaded
School2 from Microsoft Photosynth. ChapelHill1 and ChapelHill2
are from the street-side capture in [Pollefeys et al. 2008]; we sub-
sampled the video stream to simulate a sparse casual photo cap-
ture. Aquarium20, Street10 and Yellowhouse12 are taken from
[Chaurasia et al. 2011] which assumes manual silhouette marking
and thus includes challenging re�ective surfaces (car windows). We
have additionally captured six new scenes: Museum1, Museum2,
University, VictorHugo1, VictorHugo2 and Commerce. We show
synthesized views for viewpoints which are quite far from input
cameras in Figure 7. We list the number of images and running
times for depth synthesis for all the datasets in Table I. Only 10 to
35 images are required for all our scenes. Depth synthesis running
times are reported for an unoptimized MATLAB implementation
which could be accelerated by an order of magnitude by running
multiple images of the dataset in parallel on separate cores. Multi-
view stereo including Bundler [Snavely et al. 2006] and PMVS [Fu-
rukawa and Ponce 2009] took between 30-60 minutes for all our
datasets depending upon the number of images. We modi�ed the
oversegmentation source code of [Achanta et al. 2012] to segment
multiple images in parallel which gave running times of 1-3 min-
utes for all the images in any our datasets.

Rendering is real-time with an average frame rate of 53 FPS and 50
FPS at 800� 600 and 1280� 800 resolutions respectively on a 12-
core Intel Xeon X5650 2.67Ghz CPU with NVIDIA Quadro 6000
GPU running Fedora 16. We achieve 23 FPS and 13 FPS respec-
tively on a laptop with a dual-core Intel 2640M 2.80GHz CPU and
NVIDIA GTX 525M GPU running Fedora 16.

Our algorithm works well on a variety of different scenes, which
all include challenging cases of poorly reconstructed vegetation
and other foreground objects (e.g. cars). As shown in Figure 8,
such regions get very few depth samples from multiview stereo.
Piecewise-planar techniques like [Sinha et al. 2009] tend to ignore

2http://photosynth.net/view.aspx?cid=aaeb8ecf-cfef-4c03-be42-
bc1ae2f896c0

these depth samples while �nding dominant planes in the scene,
while [Goesele et al. 2010] use “ambient point clouds” to produce
an NPR effect. In contrast, our depth synthesis facilitates plausible
rendering using just these few points. More often than not, urban or
suburban scenes do contain trees, vegetation and cars; our method
thus represents a signi�cant step in making IBR algorithms practi-
cal.

(a) Yellowhouse12 (b) Street10 (c) VictorHugo2

(d) Aquarium20 (e) ChapelHill1 (f) ChapelHill2

Fig. 8. Original reconstructed points for one of the images from some of
our datasets. Though architecture is well reconstructed, regions with veg-
etation or other foreground objects are very poorly reconstructed. Our ap-
proach is capable of generating plausible renderings even for such regions.

6.2 Comparisons

There exists a vast literature on image-based rendering techniques.
However, only a few recent solutions target the type of datasets
we focus on, i.e., scenes captured with a simple digital camera, in
which large regions are very poorly reconstructed.

Overall IBR comparison.To evaluate our overall IBR result, we
compare our method to three recent approaches. We compare to
Floating Textures [Eisemann et al. 2008] using the author's imple-
mentation. This approach also requires a 3D model or “proxy” of
the scene, which we create using [Kazhdan et al. 2006] from the re-
constructed point cloud. We use our own implementation for Am-
bient Point Clouds [Goesele et al. 2010] and the author's imple-
mentation for Silhouette-aware Warping [Chaurasia et al. 2011].
To validate our implementation of [Goesele et al. 2010], we pro-
vide a rendering of the Hanau dataset in the supplemental material
which shows that our implementation closely resembles the origi-
nal method. We also implemented the rendering method of [Chen
et al. 2011], which is an alternative warp approach based on repro-
jection, allowing a comparison to our shape-preserving warp.

In Figure 9, we compare our view interpolation results for Yel-
lowhouse12 and Museum1 datasets. Floating textures [Eisemann
et al. 2008] have ghosting artifacts because poor or wrong 3D ge-
ometry leads to texture misalignment which are too big to com-
pensate by optical �ow. [Goesele et al. 2010] use a NPR effect by
smearing an ambient point cloud for all poorly reconstructed re-
gions which leads to disturbing artifacts if such regions lie on im-
portant scene objects, e.g., cars, trees etc. Our depth synthesis al-
lows plausible novel views even for such regions. Despite the man-
ual silhouette marking, [Chaurasia et al. 2011] gives distortions in
several regions which is even more pronounced if the novel camera
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Fig. 7. A single frame and corresponding top view of the scene for all the datasets. In scanline order, University, Museum2,VictorHugo1, VictorHugo2,
Commerce (our capture); School (Photosynth); ChapelHill1, ChapelHill2 ([Pollefeys et al. 2008]); Aquarium20, Street10 ([Chaurasia et al. 2011]) datasets.
The top view shows the input cameras in yellow, novel camera in red and the 4 images selected for generating the novel view in blue. Please see video and
supplemental material for all complete recorded sequences.
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(a) Our result (b) [Eisemann et al. 2008] (c) [Goesele et al. 2010] (d) [Chaurasia et al. 2011]

Fig. 9. View interpolation comparison for the Yellowhouse12 and Museum1 datasets. [Eisemann et al. 2008] depends on a 3D model and thus shows
signi�cant ghosting. In regions with very poor depth (see Figure 8), our method is able to create plausible results while [Goesele et al. 2010] creates a smeared
point cloud. [Chaurasia et al. 2011] gives results similar toours after 1.5 hours of manual intervention to mark accurate silhouettes and add/correct depth
samples, however some distortions are still visible which become much more pronounced away from view-interpolation path (see Figure 10).

(a) Our result (b) [Eisemann et al. 2008] (c) [Chaurasia et al. 2011] (d) Novel camera position

Fig. 10. Free-viewpoint navigation comparison for the Yellowhouse12 and Museum1 datasets. Our method produces plausible results even for viewpoints
quite far from the input images. In contrast, the artifacts of[Eisemann et al. 2008] are clearly visible. The distortions incurred by the global warp of [Chaurasia
et al. 2011] are even more pronounced, despite 1.5 hours of manual intervention.

is moved away from the view interpolation path, as shown in Fig-
ure 10. We do not include [Goesele et al. 2010] in free-viewpoint
IBR comparison because it is designed only for view interpolation.

The results for Museum1 dataset for [Chaurasia et al. 2011] in Fig-
ure 9 and 10 required 1.5 hours of manual intervention because
a large number of silhouettes had to be marked and depth samples
had to be added in large regions such as trees. Even then, the results
show a lot of distortion because the global warp diffuses distortions
due to the slightest depth gradients over the whole image, which be-
come particularly severe when moving away from the view inter-
polation path (see Figure 10). Adding too many intersecting silhou-
ettes into the Conformal Delaunay triangulation of [Chaurasia et al.
2011] leads to numerical issues. In contrast, our method scales to
scenes with arbitrary number of silhouettes. Also, the global warp
disintegrates when any depth sample of the input image lies be-

hind the novel camera because such a depth sample behind cannot
be projected into the novel camera (see Figure 11). Our local warp
simply ignores the superpixels which contain such depth samples,
while the rest of the image is warped normally. This makes our
approach suitable for potential immersive applications.

Comparison with Video Mesh.The warp described in Video
Mesh [Chen et al. 2011] triangulates and reprojects depth samples
directly into the novel view. Inaccurate or outlier depth values can
cause the depth sample to be reprojected at incorrect pixel coordi-
nates, causing objectionable artifacts, most noticeable in the form
of cracks. Our warp regularizes the effect of noisy depth values
and outliers with the shape preserving constraint (see Sec. 5). As a
consequence, our results have far fewer cracks (see Figure 12).
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Fig. 11. The global warp of [Chaurasia et al. 2011] (left) disintegrates if
any depth samples isbehindthe novel camera as shown in top view (right).
This prevents the user from walking “into” the scene. Our local warp does
not suffer from this limitation (middle).

(a) (b)

(c) (d)

Fig. 12. (a) Superpixels warped using our approach, (b) superpixels
warped using our implementation of Video Mesh [Chen et al. 2011], (c)
�nal result generated from our warped superpixels in (a), (d) �nal result
generated from Video Mesh style warping in (b).

6.3 Limitations

We have demonstrated our method on a large and diverse set of very
challenging scenes. Evidently, the method does have limitations.
The �rst limitation comes from depth synthesis: if the target super-
pixel corresponds to an object at a depth which does not exist else-
where in the image, incorrect depth may be assigned. This is shown
in Figure 13(a), where the background tree is not reconstructed at
all and ends up being assigned depth from the foreground tree. The
confounding factors are that the trees are spatial neighbors and have
extremely similar color/texture to the extent that the boundary be-
tween the trees is barely discernible to the human eye. Depth syn-
thesis does not handle completely unreconstructed regions dynamic
content e.g., people. Our approach is limited by the capabilities of
the oversegmentation: very thin structures cannot be captured (see
Figure 13(b)). Finally, our hole �lling approach is very basic. We
resort to blurring in holes caused by disocclusions if we move far
from the input views and visualize regions of the scene not cap-
tured in the input images. We discuss possible solutions to these
limitations in Sec. 7.

7. DISCUSSION, FUTURE WORK AND CONCLUSIONS

We have presented a new approach to provide plausible image-
based rendering for navigation in casually captured multiview
datasets which have poorly reconstructed regions. Such regions are

(a) (b)

(c)

Fig. 13. (a) Incorrect depth assignment on the unreconstructed back-
ground tree which is barely distinguishable from the foreground tree, (b)
very thin structures cannot be properly represented by superpixel and re-
sult in rendering artifacts, and (c) hole �lling in disoccluded regions not
captured in input images results in blurring.

due to hard-to-reconstruct objects such as vegetation or complex
foreground geometry, which occur very frequently in real-world
scenes. We have used [Furukawa and Ponce 2009] for reconstruc-
tion; we believe that such scenes will prove to be challenging for
any multiview stereo algorithm.

We present a depth-synthesis algorithm using a graph structure built
on an oversegmentation of the input images. This step provides a
plausiblesolution for regions with very sparse 3D reconstruction
while other existing approaches [Sinha et al. 2009; Goesele et al.
2010] ignore such sparse depth. We then use the oversegmentation
to develop a localized shape-preserving warp and rendering algo-
rithm. This approach has a very low run-time overhead, and our
three-pass GPU implementation allows interactive display rates.
We demonstrate our approach on 12 different datasets, including
one from Microsoft Photosynth, and others from [Pollefeys et al.
2008] and [Chaurasia et al. 2011], apart from our own datasets.
We also present comparisons with the three most recent IBR algo-
rithms which can treat datasets with similar properties [Eisemann
et al. 2008; Goesele et al. 2010; Chaurasia et al. 2011]. Our method
avoids many of the visual artifacts in these previous methods, and
has signi�cant advantages such as free-viewpoint navigation (com-
pared to [Goesele et al. 2010]) and the fact that it requires no man-
ual intervention (compared to [Chaurasia et al. 2011]).

We also discussed the limitations of our method (Sec. 6.3), which
leads naturally to directions for future work. In particular, we will
investigate ways to provide structure-preserving hole-�lling when
moving too far from the input viewpoints. Inpainting [Criminisi
et al. 2003], combined with recent acceleration techniques e.g.,
PatchMatch [Barnes et al. 2009], could provide a basis for such a
solution. However, achieving acceptable levels of quality and speed
requires signi�cant algorithmic advances, which could be based on
the availability of depth and silhouette information provided by our
approach. A second direction involves a way to combine piece-
wise planar-reconstruction [Gallup et al. 2010] with our depth syn-
thesis algorithm; this would involve rethinking how we combine
oversegmentation with synthesis. The treatment of re�ections and
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transparency is still challenging in our approach. Recent advances
[Sinha et al. 2012] provide a promising direction.

Finally, we believe that our approach is a signi�cant step to-
wards plausible free-viewpoint image-based navigation from inter-
net photo collections. This is why we have focused on images cap-
tured casually using consumer cameras instead of assuming studio
capture or stereo setups.

APPENDIX

We discuss the details of depth synthesis for images which have
signi�cant sky regions, speci�cally the University and ChapelHill2
datasets. Our depth synthesis approach can synthesize depth values
on objects which havesomethough sparse depth samples. Large
regions of sky typically have no depth samples at all. We identify
such sky regions in the image using a graph-cut. We assume that the
images are captured upright and sky pixels are close to the top bor-
der. We create a graph with all the pixels of the image as nodes and
add edges between adjacent pixels. The label costs for the graph
cut are given in the following table. We keep a very high penalty

Pixel Label 0 cost Label 1 cost

Pixels along top border contained in su-
perpixels with no depth samples

0 106

All other pixels contained in a superpixel
with no depth samples 1 0

All other pixels 106 0

of 106 for having neighboring pixels with different labels, except
at superpixel boundaries where we relax it to 100. After computing
the graph cut using [Kolmogorov and Zabih 2004], we mark the
pixels labeled0 as sky and assign them 99th percentile depth of the
image. Note that [Hoiem et al. 2007] may be used to identify sky
regions; we resort to this approach because it is suf�cient and much
faster.
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dering of façades.Comput. Graph. Forum 30,4, 1241–1250.

YANG, Q., YANG, R., DAVIS , J., AND NISTÉR, D. 2007. Spatial-depth
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