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This article presents an algebraic analysis of a mesh-compression technique called high-pass quantization [Sorkine et al. 2003].
In high-pass quantization, a rectangular matrix based on the mesh topological Laplacian is applied to the vectors of the Cartesian
coordinates of a polygonal mesh. The resulting vectors, called δ-coordinates, are then quantized. The applied matrix is a function
of the topology of the mesh and the indices of a small set of mesh vertices (anchors) but not of the location of the vertices. An
approximation of the geometry can be reconstructed from the quantized δ-coordinates and the spatial locations of the anchors.
In this article, we show how to algebraically bound the reconstruction error that this method generates. We show that the small
singular value of the transformation matrix can be used to bound both the quantization error and the rounding error which is
due to the use of floating-point arithmetic. Furthermore, we prove a bound on this singular value. The bound is a function of the
topology of the mesh and of the selected anchors. We also propose a new anchor-selection algorithm, inspired by this bound. We
show experimentally that the method is effective and that the computed upper bound on the error is not too pessimistic.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve surface,
solid, and object representations
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1. INTRODUCTION

High-pass mesh quantization is a compression technique for three-dimensional polygonal meshes. This
technique assumes that the connectivity of the mesh has already been encoded, and that it is, therefore,
known to both the encoder and to the decoder. The goal of the technique is to compactly encode the co-
ordinates of the vertices of the mesh. High-pass quantization, which was recently proposed by Sorkine
et al. [2003], encodes the coordinates by applying a linear transformation based on the mesh Laplacian
to the coordinates and quantizing the transformed coordinates. The decoder then applies another trans-
formation to recover an approximation of the original coordinates from the quantized transformed data.
The advantage of encoding the transformed coordinates lies in the fact that they can be aggressively
quantized without introducing visually disturbing errors. As shown in Sorkine et al. [2003], the quan-
tization error is mostly comprised of low-frequency bands, while the high-frequency components of the
reconstructed surface are preserved. Since humans are usually more sensitive to changes in lighting
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(or normals) and the local high-frequency details of the surface, low-frequency errors are perceived as
less visible.

Applying the mesh Laplacian to the coordinate prior to quantization is a bad idea. In high-pass
quantization, we do not apply the Laplacian itself but rather a carefully constructed operator derived
from it. The construction aims to control two aspects of the compression and decompression process.
First, the Laplacian is singular, and it tends to be ill conditioned on large meshes. The singularity
reflects the fact that Laplacian-transformed coordinates do not prescribe the absolute positioning of
the mesh in space; this singularity is easy to handle. But the ill conditioning is more difficult to handle.
If not addressed, the ill conditioning leads to a decompression operator with a large norm which greatly
amplifies even small quantization errors. Our construction addresses the ill conditioning using so-called
anchor points in the mesh. Anchor points are mesh points whose original coordinates are included in
the encoded (transformed) mesh coordinates. In this article, we show how to estimate the condition of
the Laplacian-derived operator from the connectivity of the mesh and the identity of the anchors. By
adding anchors appropriately, we control the norm of the quantization error.

The shape of the error is the other aspect of the compression process that our construction aims to
control. Laplacian coordinates, with or without anchors, can be thought of as smoothness constraints
that the decompressor tries to satisfy. A small Laplacian coordinate at a mesh vertex implies that the
mesh is smooth around that vertex, and a large Laplacian coordinate implies local roughness. Anchors
add constraints on absolute positioning of the anchor vertices to the decompression process. The key to
high-pass quantization is to use both smoothness and absolute positioning constraints at the anchors.
This is what controls the shape of the quantization error.

Sorkine et al. [2003] presented the algebraic framework of high-pass quantization together with a
partial argument that explained why it works well. More specifically, that argument showed how the
eigenvalues of the linear transformations that the encoder and the decoder apply effect the quantization
error. However, the analysis in Sorkine et al. [2003] is incomplete: (1) the analysis only applies to one
class of matrices (so-called k-anchor invertible Laplacians) but not to the matrices that are actually
used in the algorithm (k-anchor rectangular Laplacians); (2) the eigenvalues of the transformations are
not analyzed; and (3) the effect of rounding errors on encoding and decoding is not analyzed. In this
article we rectify the deficiencies of Sorkine et al. [2003]. In particular, we extend the analysis to show
that the singular values of rectangular Laplacians can bound the encoding error, we present bounds
on the eigenvalues and singular values of Laplacians, and we bound the effect of rounding errors on
the method. The bounds that we derive for the singular/eigenvalues and for the encoding and rounding
errors are given in terms of topological properties of the mesh, so the bounds are relatively easily to
estimate. These topologically-derived bounds are also useful for selecting anchors, the extra vertices
whose coordinates are used to decode the mesh.

We complement this analysis with a new anchor-selection algorithm and with experimental results.
The new algorithm selects anchor points so as to minimize our theoretical error bound. The new ex-
perimental results further strengthen the claims in Sorkine et al. [2003] concerning the effectiveness
of high-pass quantization, and they show how our theoretical bounds relate to the actual encoding
errors. It should be noted that the bounds on the condition number of k-anchor rectangular Laplacians
are useful for evaluating any methods based on such matrices such as mesh editing with differential
coordinates [Lipman et al. 2004].

2. BACKGROUND: MESH COMPRESSION

Mesh compression involves two problems that are usually solved, at least conceptually, separately: the
mesh connectivity encoding and the geometry encoding. While state-of-the-art connectivity encoding
techniques are extremely effective [Touma and Gotsman 1998; Gumhold 2000; Alliez and Desbrun
ACM Transactions on Graphics, Vol. 24, No. 4, October 2005.
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2001; Khodakovsky et al. 2002], compressing the geometry remains a challenge. The encoded geometry
is, on average, at least five times larger than the encoded connectivity even when the coordinates are
prequantized to 10–12 bits. Finer quantization for higher precision increases the importance of effective
geometry encoding even further.

Earlier works on geometry compression employed prediction-correction coding of quantized vertex
coordinates. Linear predictors are usually used; the most common one is known as the parallelogram
predictor [Touma and Gotsman 1998]. The displacements are compressed by some entropy encoder.
Chou and Meng [2002] use vector quantization instead to gain speed.

Recent compression methods represent the mesh geometry using effective bases such as the spectral
basis [Karni and Gotsman 2000] which generalizes the Fourier basis functions to irregular connectivity,
or the wavelet basis [Khodakovsky et al. 2000]. The spectral encoding of Karni and Gotsman [2000]
preserves the original connectivity of the mesh, and relies on the fact that it is known both to the
encoder and the geometry decoder (this is also the case with the high-pass quantization method). The
mesh compression framework of Khodakovsky et al. [2000] requires semiregular remeshing of the input
mesh. While their method achieves excellent compression ratios, it is not connectivity-lossless which
puts this work in a somewhat different category. In many cases, it is desirable to preserve the original
connectivity of the mesh, especially when it carefully models certain features and is particularly adapted
to the surface geometry. For a recent survey on mesh compression techniques, the reader is referred
to Alliez and Gotsman [2005].

3. BACKGROUND: HIGH-PASS QUANTIZATION

This section reviews the high-pass mesh quantization method [Sorkine et al. 2003] that our article
analyzes.

Sorkine et al. [2003] proposed a new approach to geometry quantization that works meshes with
arbitrary connectivity. Instead of directly quantizing the Cartesian coordinates which may lead to
errors that damage the high-frequency details of the surface, they proposed to first transform the
coordinates to another space by applying the Laplacian operator associated with the mesh topology.
The transformed coordinates are called δ-coordinates. The quantization is applied to the δ-coordinates,
and the geometry of the mesh can be restored on the decoder side by solving a linear least-squares
system defined by the extended Laplacian matrix which is described later in this section. They showed
that introducing high-frequency errors by quantizing the δ-coordinates results in low-frequency errors
in the reconstructed Cartesian coordinates and argued that low-frequency displacements in the surface
geometry are less noticeable to the human eye than high-frequency displacements.

3.1 Quantization Errors Under Linear Transformations

Quantizing a vector x with continuous coefficients introduces an error qx , where x +qx is the quantized
vector. In this section, we show how to control the spectral behavior of the error using linear transfor-
mations. We assume that a simple fixed-point quantization is used so that the maximum quantization
error maxi |qi| is bounded by the expression 2−p(maxi xi − min j x j ), using p-bit quantized coefficients.

Suppose that, instead of quantizing the input vector x, we first transform x into a vector Ax, using
a nonsingular matrix A, and then quantize Ax. We denote the quantization error by qAx so that the
new quantized vector is Ax + qAx . The elements of the quantized vector are now discrete as are those
of x + qx . We can recover an approximation of x from this representation by multiplying the quantized
vector by A−1:

A−1(Ax + qAx) = x + A−1qAx .

The error in this approximation is A−1qAx , and we will shortly see that, under certain conditions, it
behaves quite differently than qx .
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Assume that A has an orthonormal eigen-decomposition AU = U�, where U is unitary and � is
diagonal. This assumption is satisfied when A is real and symmetric. Without loss of generality, we
assume that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, where λi = �ii are the eigenvalues of A. Since the processes we
are concerned with are invariant to scaling A, we also assume that |λ1| = 1. We express x as a linear
combination of A’s orthonormal eigenvectors, x = c1u1 + c2u2 + · · · + cnun, where ui are the columns of
U . We also have Ax = c1λ1u1 + c2λ2u2 + · · · + cnλnun. Similarly, since A−1U = U�−1, we can express
the quantization error as qAx = c′

1u1 + c′
2u2 + · · · + c′

nun, so

A−1qAx = c′
1λ

−1
1 u1 + c′

2λ
−1
2 u2 + · · · + c′

nλ−1
n un.

The transformation A is useful for quantization when three conditions hold.

(1) For typical inputs x, the norm of Ax is much smaller than the norm of x,
(2) Quantization errors with large c′

iλ
−1
i for large i (i.e., with strong representation for the last eigen-

vectors) are not disturbing,
(3) |λn| is not too small.

The first point is important since it implies that maxi |(Ax)i| � maxi |xi| which allows us to achieve a
given quantization error with fewer bits. The best choice of norm for this purpose is, of course, the max
norm, but since norms are essentially equivalent, the implication also holds if ‖Ax‖2 � ‖x‖2. Since
‖x‖2

2 = ∑
i c2

i and ‖Ax‖2
2 = ∑

i c2
i λ

2
i , the above condition occurs if and only if the first ci ’s are small

compared to the last ones. In other words, the first point holds if A, viewed as a filter, filters out strong
components of typical x ’s.

The importance of the second and third points stems from the fact that A−1 amplifies the components
of qAx in the direction of the last eigenvectors. If A has tiny eigenvalues, the amplification by a factor λ−1

i
is significant for large i. Even if the small eigenvalues of A are not tiny, the error may be unacceptable.
The quantization error A−1qAx always contains moderate components in the direction of eigenvectors
that correspond to the small eigenvalues of A. When small error components in these directions distort
the signal perceptively, the error will be unacceptable. Therefore, the last two points must hold for the
quantization error to be acceptable.

It may seem that the norm of Ax is irrelevant to compression since one can shrink Ax by a simple
scaling which is clearly useless for compression. The norm of Ax is relevant because we also demand
that |λ1| = ‖A‖2 = 1. The error is A−1qAx so ‖A−1qAx‖ ≤ ‖A−1‖‖qAx‖. Making Ax small by scaling A is
useless because it will shring ‖qAx‖ but will expand ‖A−1‖ by exactly the same factor. But making Ax
small while maintaining ‖A‖2 = 1 is useful.

3.2 Laplacian Transformations

In the following, we discuss the Laplacian matrix of the mesh and its variants and show that these
linear transformations work well as quantization transforms.

Let M be a given triangular mesh with n vertices. Each vertex i ∈ M is conventionally represented
using absolute Cartesian coordinates, denoted by vi = (xi, yi, zi). We denote the relative or δ-coordinates
of vi as follows:

δi = (
δ

(x)
i , δ

( y)
i , δ

(z)
i

) = divi −
d∑

k=1

vik ,

where di is the degree of vertex i, and ik is i’s k th neighbor. The transformation of the vector of absolute
Cartesian coordinates to the vector of relative coordinates can be represented by the matrix L = D − A,
where A is the mesh adjacency matrix, and D is the diagonal matrix Dii = di.
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The matrix L is called the Laplacian of the mesh [Fiedler 1973]. Laplacians of meshes have been
extensively studied [Chung 1997] primarily because their algebraic properties are related to the com-
binatorial properties of the meshes they represent. The Laplacian is symmetric, singular, and positive
semidefinite. The singularity stems from the fact that the system Lx = δ has an infinite number
of solutions which differ from each other by a vector that is constant on each connected component
of the mesh. Thus, we can actually recover x from δ if we know, in addition to δ, the Cartesian co-
ordinate of one xi in each connected component. We can formalize this method by dropping from L
the rows and columns that correspond to one vertex in each connected component called the anchor
of the component. The resulting matrix, which we call the basic invertible Laplacian, generates all
the δ’s that we need and is nonsingular. The next section explores other nonsingular variants of the
Laplacian.

To explain why variants of the Laplacian are effective quantization transforms, we first have to
introduce the notion of mesh frequencies (spectrum). The frequency of a real function x defined on the
vertices of a mesh M is the number of zero crossings along edges,

f (x) =
∑

(i, j )∈E(M )




1 xix j < 0

0 otherwise


 ,

where E(M ) is the set of edges of M so the summation is over adjacent vertices. It turns out that,
for many classes of graphs including 3D meshes, eigenvectors of the Laplacian (and related matrices,
such as our basic invertible Laplacian) corresponding to large eigenvalues are high-frequency mesh
functions, and eigenvectors corresponding to small eigenvalues are low-frequency mesh functions. In
other words, when i � j , λi > λ j and f (ui) � f (u j ). Furthermore, since 3D models are typically
smooth, possibly with some relatively small high-frequency perturbation, the coordinate vectors x, y ,
and z often have a large low-frequency and a small high-frequency content. That is, the first ci ’s are
often very small relative to the last ones.

This behavior of the eigenvectors of Laplacians and of typical 3D models implies that the first prop-
erty we need for effective quantization holds, namely, the 2-norm of Lx is typically much smaller than
the norm of x, and therefore the dynamic range of Lx is smaller than that of x. Laplacians also satisfy
the second requirement. As stated previously, eigenvectors associated with small eigenvalues are low-
frequency functions that are typically very smooth. When we add such smooth low-frequency errors to
a 3D model, large features of the model may slightly shift, scale, or rotate but the local features and cur-
vature are maintained. Thus, errors consisting mainly of small-eigenvalue low-frequency eigenvectors
are not visually disturbing.

However, simple Laplacian transformations do not satisfy our third requirement. The small eigen-
value of a basic invertible Laplacian is typically tiny; a good estimate for |λ−1

n | is the product of the
maximum topological distance of a vertex from the anchor vertex and the number of vertices in the
mesh (assuming there is one connected component; otherwise the maximum of this estimate over all
components) [Guattery and Miller 2000; Boman and Hendrickson 2003]. For a typical n-vertex 3D mesh,
the small eigenvalue is, therefore, likely to be �(n−1.5). This causes large low-frequency errors which
are clearly visible in the example in Figure 1.

3.3 The k-anchor Laplacian

An effective way to increase the small eigenvalue of a Laplacian is to add more anchor points. This
section analyzes the effect of two algorithm parameters on the magnitude and shape of the quantization
error. One parameter is the number and location of the anchor points. The second parameter is the
algorithm that transforms the relative (or δ) coordinates to the original coordinates.
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Fig. 1. An example of quantization errors in a one-dimensional mesh. The mesh here is a simple chain with 114 vertices
(enumerated on the x-axis). (a) shows a smooth function x defined on the mesh, its direct quantization, and a Laplacian-transform
quantization. The specific Laplacian that we use here is the 2-anchor invertible Laplacian, defined in Section 3.3, with anchors
at vertices 1 and 114. The quantizations were performed with 20 discrete values uniformly distributed between the minimum
and maximum absolute values of the vectors. The direct error vector is smaller in magnitude but has a strong high-frequency
oscillatory nature, whereas the Laplacian-transformed error vector is smooth. (b) explains this observation by plotting, on a
log scale the spectrum of the two errors. We can see that the direct quantization has moderate components in the direction of
all eigenvectors of the Laplacian (i.e., all frequencies), whereas the Laplacian-transformed error has strong components in the
direction of the smooth eigenvectors but very small components in the direction of high-frequency eigenvectors.

The relationship between the original coordinates x and the relative coordinates δ is given, up to a
shift, by the linear system of equations Lx = δ. When we add anchors, we essentially add constraints
to this system of equations. Without loss of generality, we assume that the anchors are x1, . . . , xk , the
first k vertices of the mesh. For each anchor point xi j , j = 1, . . . , k, we add the constraint xi = xi, where
the left-hand side is taken to be an unknown and the right-hand side a known constant.

It may seem strange that we do not immediately substitute the known constant for the unknown,
but the reason for this will become apparent later. The full system of constraints that defines the
relationship between the absolute and relative coordinates is, therefore,(

L
Ik×k 0

)
x =

(
Lx
x1:k

)
=

(
δ

x1:k

)
. (1)

We denote this (n + k)-by-n matrix by L̃,

L̃ =
(

L
Ik×k 0

)
, (2)

and call it the k-anchor rectangular Laplacian.
With k anchors, the quantized representation of the mesh consists of the quantized δ’s and of the

absolute coordinates of the anchors. Since we take k to be much smaller than n, there is no need to
aggressively quantize the coordinates of the anchors, but they can be quantized as well. The quantized
vector that represents the mesh is, therefore,(

Lx + qLx
x1:k + qx1:k

)
=

(
Lx
x1:k

)
+ qL̃x = L̃x + qL̃x . (3)

The matrix L̃ is rectangular and full rank. Suppose that we try to recover an approximation x ′ to x from
L̃x +qL̃x . Trying to compute the approximation x ′ by solving the constraint system L̃x ′ = L̃x +qL̃x for x ′

will fail since this system is overdetermined and, therefore, most likely inconsistent. An approximation
x ′ can be computed in (at least) two ways. The simplest is to eliminate the last k rows from the system.
ACM Transactions on Graphics, Vol. 24, No. 4, October 2005.
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By adding row n + j to row j , for j = 1, . . . , k and deleting row n + j , we obtain a square symmetric
positive definite linear system of equations L̂x ′ = b which can be solved for x ′. This transformation
corresponds to multiplying both sides of the system L̃x ′ = L̃x + qL̃x by an n-by-(n + k) matrix

J =
(

In×n
Ik×k

0

)
, (4)

so

L̂ = J L̃ (5)

and b = J (L̃x + qL̃x). We call L̂ the k-anchor invertible Laplacian.1

The second method to obtain an approximation x ′ is to find the least-square solution x ′ to the full
rectangular system L̃x ′ ≈ L̃x + qL̃x . It turns out that the norm of the quantization error is essentially
the same in the two approximation methods, but the shape of the error is not. The shape of the error
when using a least-squares solution to the rectangular system is smoother and more visually pleasing
than the shape of the error resulting from the solution of the square invertible system.

4. ALGEBRAIC ANALYSIS OF K-ANCHOR LAPLACIANS

The norm and shape of the quantization errors in high-pass quantization depend on the spectrum and
singular vectors of k-anchor Laplacians. This section presents a detailed analysis of the spectrum of
these matrices. In particular, we prove bounds on their smallest and largest singular values. We are
mostly interested in the spectrum of the k-anchor rectangular Laplacian since we can directly relate
these to the magnitude of the quantization errors in high-pass quantization.

The section has two parts. The first part, consisting of Sections 4.1–4.3, bounds the norm of the error
in high-pass quantization. The goal of this part of the section is to prove Lemma 4.9 and Theorem 4.11.
Lemma 4.9 shows that the norm of the error is related to the smallest singular value of the rectangular
k-anchor Laplacian. How small can this singular value be? Theorem 4.11 essentially shows that, if every
vertex in the graph is reasonably close to an anchor, then this singular value cannot be small. We prove
Theorem 4.11 by first proving a similar bound on the smallest eigenvalue of the invertible k-anchor
Laplacian (in Theorem 4.3; this proof is complicated), and then showing how the small singular value
of the rectangular Laplacian is related to the small eigenvalue of the invertible Laplacian.

The second part of the section consists of Section 4.4 which discusses the shape of the error.

4.1 The Eigenvalues of L̂

In this section, we show how to bound from below the smallest eigenvalue of L̂. Bounding the small
eigenvalue from below ensures that the transformation L̂ satisfies condition (3) in Section 3.1.

The largest eigenvalue λmax(L̃) is at most 2dmax + 1, where dmax is the maximal degree in the
mesh [Chung 1997]. This bound is less important than the lower bound on the small eigenvalue since
it only ensures that the norm of the transformed coordinates is never much larger than the norm of
the absolute coordinates; in fact, we expect the transformed norm to be much smaller. We include the
bound for completeness and also to show that, even when our quantization method is not very effective,
it does not cause much harm.

We first show that bounding the spectrum of L̂ proves a lower bound on the quantization error x − x ′.
The bound is similar to the analysis of the quantization error in Section 3, but it is not identical. The

1This definition of the k-anchor invertible Laplacian is different than the definition given in Sorkine et al. [2003]. The definition
that we use here makes the analysis somewhat simpler. The difference is irrelevant to both the algorithms and the analysis since
the k-anchor invertible Laplacian is not used in actual mesh encoding; it is only used as a technical tool in the analysis of the
k-anchor rectangular Laplacian.
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difference, which turns out to be quite minor, stems from the fact that we now quantize an (n+k)-vector,
not an n-vector.

LEMMA 4.1. The norm of the quantization error x − x ′, resulting from solving

L̂x ′ = J L̃x ′ = J (L̃x + qL̃x),

is bounded by ‖x − x ′‖2 ≤ √
2λ−1

min(L̂)‖qL̃x‖2.

PROOF. We add the quantization error qL̃x to the right-hand side of Equation (1) and multiply both
sides by J ,

J L̃x ′ = J (L̃x + qL̃x). (6)

Because J L̃x ′ = L̂x ′, we can multiply both sides by L̂
−1

to obtain

x ′ = L̂
−1

J (L̃x + qL̃x) = L̂
−1

(L̂x + JqL̃x) = x + L̂
−1

JqL̃x ,

so

‖x − x ′‖2 ≤ ‖L̂
−1‖2‖J‖2‖qL̃x‖2.

We now bound the first two factors in the right-hand-side product. Because L̂ is symmetric positive
definite,

‖L̂
−1‖2 = λmax(L̂

−1
) = 1/λmin(L̂) = λ−1

min(L̂).

By the definition of the 1 and infinity norms,

‖J‖2
2 ≤ ‖J‖1‖J‖∞ = 1 · 2 = 2,

which completes the proof.

This lemma shows that to preserve the bound on the norm of x − x ′, the quantization error qx1:k for
the anchor points should be no larger than the quantization error qLx of the relative coordinates.

We now bound the smallest eigenvalue of L̂. We express the lower bound in terms of a set of paths
in the mesh. Given a set of anchor points, we assign each vertex a path to an anchor point. The bound
uses the following three metrics of the set of paths.

Definition 4.2. The dilation ϑ of the set of paths is the length, in edges, of the longest path in the
set. The congestion ϕ of the set is the maximal number of paths that use a single edge in the mesh. The
contention ρ of the set is the maximal number of vertices whose paths lead to a single anchor point.
The maximum is taken over all vertices for dilation, over all edges for congestion, and over all anchors
for contention.

The smaller the dilation, congestion, and contention, the better the bound on the small eigenvalue of
L̂. Note that, for a single set of anchor points, we can assign many different sets of paths, some of which
yield tighter bounds than others. In addition, even the best set of paths does not, in general, provide
a completely tight bound. For more details, see Boman and Hendrickson [2003]. But the dependence
of the bound on the dilation, congestion, and contention does provide us with guidelines as to how to
select the anchor points. The next theorem is the main result of this Section.

THEOREM 4.3. The smallest eigenvalue of L̂ satisfies

λmin(L̂) ≥ 1
ϕ · ϑ + ρ

.
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We use the following strategy to prove this theorem. We will show how to factor L̂ into L̂ = V V T . The
eigenvalues of L̂ are the squares of the singular values of V so it suffices to bound the small singular
value of V . The factor V will have a special structure in which each column corresponds to one edge of
the mesh or to one anchor point. We will then use the given set of paths from vertices to anchor points to
construct a matrix W such that V W = I , and show how the norm of W is related to the path structure.
The equation V W = I will allow us to relate the 2-norm of W which we can bound using the path set
to the small singular value of V which we seek to bound.

The following definitions are used in the construction of the factor V .

Definition 4.4. The edge-vector
〈
ij
〉

in R
n is a vector with exactly two nonzeros, 〈i j 〉min(i, j ) = 1 and

〈i j 〉max(i, j ) = −1. The vertex-vector 〈i〉 in R
n is a vector with exactly one nonzero, 〈i〉i = 1.

We associate an edge-vector 〈i j 〉 with an edge connecting vertex i with vertex j . The following lemma
demonstrates one of the connections between edges and their corresponding vectors.

LEMMA 4.5. The edge-vectors of a simple path between vertices i and j span the edge-vector 〈i j 〉 with
coefficients ±1.

The following lemma describes a factorization of k-anchor Laplacian matrices:

LEMMA 4.6. A k-anchor Laplacian matrix L̂ can be factored into L̂ = V V T , such that V = ( V1 V2 ),
where V2 is a matrix of unscaled edge-vectors, each column corresponding to one nonzero off-diagonal
in L̂, and V1 is a matrix of vertex-vectors, each column corresponding to an anchor point.

PROOF. For each off-diagonal nonzero l̂ i j = −1 (each edge of the mesh), V has a column containing
the edge-vector 〈i j 〉, and for each anchor j , V has a vertex-vector 〈 j 〉. The edge-vectors constitute V2
and the vertex-vectors constitute V1. It is easy to verify that L̂ = V V T . For a more detailed proof,
see Boman et al. [2004].

Given the above factorization, we bound the smallest singular value of V . Our course of action in
bounding the smallest singular value of V is as follows: we shall find a matrix W ∈ Rm×n such that
V W = In×n. As the next lemma shows, the matrix G with the smallest 2-norm satisfying V G = In×n
is the Moore-Penrose pseudo-inverse G = V + of V [Golub and Loan 1996, pages 257–258]. Therefore,
any matrix W satisfying V W = In×n has the property ‖W‖ ≥ ‖V +‖. We shall then find an upper bound
C on ‖W‖. Since C ≥ ‖W‖ ≥ ‖V +‖ = 1

σmin(V ) , we will be able to conclude that σmin(V ) ≥ 1
C . We first prove

a technical lemma concerning the pseudo-inverse (this result is probably well-known, but we have not
found it in the literature).

LEMMA 4.7. Let V be a full-rank n-by-m real matrix, and let G be an m-by-n real matrix such that
V G = In×n. Then ‖G‖2 ≥ ‖V +‖2.

PROOF. The singular values of V +V are n ones and m− n zeros, so its 2-norm is 1. We now show that,
for any x with unit 2-norm, we have ‖V +x‖2 ≤ ‖Gx‖2. Let c = ‖Gx‖2, and let y = Gx/c, so ‖ y‖2 = 1.
We have Gx = c y , and multiplying V from the left on both sides, we get x = Ix = V Gx = cV y .
Multiplying now from the left by V +, we get V +x = cV +V y , so ‖V +x‖2 = ‖cV +V y‖2 ≤ c‖V +V y‖2 ≤
c‖V +V ‖2‖ y‖2 = c · 1 · 1 = c = ‖Gx‖2 .

We are now ready to bound the singular values of V .

LEMMA 4.8. Given a k-anchor Laplacian L̂ with a factorization into edge-and vertex-vectors L̂ = V V T

as in Lemma 4.6, and a set of paths

	 = {πi = (i, i1, i2, . . . , j )|i = 1, . . . , n and j is an anchor},
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we have

σmin(V ) ≥ 1√
ϕ(	) · ϑ(	) + ρ(	)

.

PROOF. Finding a matrix W satisfying V W = In×n is equivalent to finding a vector wi for i = 1, . . . , n
such that V wi = ei, where ei = 〈i〉 is the ith unit vector.

Let ji be the anchor endpoint of πi. It is easy to verify that

〈i ji〉 = (−1)(i> ji )
∑

(�1,�2)∈πi

(−1)(�1>�2) 〈�1�2〉 .

(We use the convention that a boolean predicate such as (i > j ) evaluates to 1 if it is true and to 0
otherwise.) By Lemma 4.6, all the edge-vectors in the summation are columns of V . To obtain wi, it
remains is to add or subtract 〈 ji〉, and perhaps to multiply by −1,

〈i〉 = (−1)(i> ji ) 〈i ji〉 + 〈 ji〉 .

The last two equations together specify wi which contains only 1’s, −1’s, and 0’s.
Now that we have found, column by column, a matrix W such that V W = In×n, we partition the rows

of W such that

V W = (V1V2)
(

W1
W2

)
.

The rows of W1 correspond to the columns of V1, the vertex-vectors in V , and the rows of W2 corresponds
to the columns of V2, the edge-vectors in V . We will bound the norm of W by bounding separately the
norms of W1 and of W2. We first bound ‖W1‖2:

‖W1‖2
2 ≤ ‖W1‖1 ‖W1‖∞ =

(
max

j

∑
i

|[W1]i j |
) (

max
i

∑
j

|[W1]i j |
)

= 1 · ρ(	).

The 1-norm of W1 is 1 since there is exactly 1 nonzero in each column of i, in position ji, and its value
is 1. The ∞-norm of W1 is the contention of the path set since each row of W1 corresponds to one anchor
point, and it appears with value 1 in each path (column) that ends in it. Therefore, each row in W1
contains at most ρ(	) 1’s, and the other entries are all 0.

Bounding ‖W2‖2 is similar. Each row in W2 corresponds to one edge of the mesh and each column to
a path in 	. Each edge is used in at most ϕ(	) paths, so ‖W2‖∞ = ϕ(	). Each path contains at most
ϑ(	) edges, so ‖W2‖1 = ϑ(	). Therefore,

‖W‖2
2 = max

‖x‖2=1
‖W x‖2

2

= max
‖x‖2=1

∥∥∥∥ W1x
W2x

∥∥∥∥
2

2

= max
‖x‖2=1

(
‖W1x‖2

2 + ‖W2x‖2
2

)
≤ max

‖x1‖2=1
‖W1x1‖2

2 + max
‖x2‖2=1

‖W2x2‖2
2

= ‖W1‖2
2 + ‖W2‖2

2

≤ ϕ(	)ϑ(	) + ρ(	).

The bound on σmin(V ) follows immediately from the bound on ‖W‖2 and from the discussion preceding
the statement of the lemma.
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Now we can conclude that λmin(L̂) ≥ 1
ϕ·ϑ+ρ

. This follows from two facts: (1) in a symmetric positive
definite matrix, the singular values are the same as the eigenvectors, therefore λmin(L̂) = σmin(L̂); (2)
if L̂ = V V T , then the singular values of L̂ are the squares of the singular values of V (this follows
directly from V ’s SVD decomposition).

We can now easily prove Theorem 4.3:

PROOF. λmin(L̂) = σmin(L̂) = σ 2
min(V ) ≥ 1

ϕ·ϑ+ρ
.

4.2 Bounding the Quantization Error Using the Singular Values of L̃

We now show that, if we define x ′ as the least-squares minimizer of ‖L̃x ′ − L̃x + qL̃x‖2, the norm of
the error x − x ′ can be bounded using estimates on the singular values of L̃. The analysis that follows
is equivalent to the analysis in Lemma 4.1, but for the case of L̃, the k-anchor rectangular Laplacian
rather than for the case of L̂, the square k-anchor invertible Laplacian.

LEMMA 4.9. Let x ′ be the least-squares minimizer of ‖L̃x ′ − L̃x + qL̃x‖2. The norm of the error x − x ′ is
bounded by

‖x − x ′‖2 ≤ σ−1
min(L̃)‖qL̃x‖2,

where σmin(L̃) denotes the nth and smallest singular value of L̃.

PROOF. We express x ′ in terms of the Moore-Penrose pseudo-inverse L̃+ of L̃,

x ′ = L̃+ (
L̃x + qL̃x

) = x + L̃+qL̃x .

Therefore,

‖x − x ′‖2 ≤ ‖L̃+‖2‖qL̃x‖2 = σ−1
min(L̃)‖qL̃x‖2.

4.3 The Singular Values of L̃

The next step is to show that the singular values of L̃ cannot be much smaller than the smallest
eigenvalue of L̂. In fact, we show that they are at most a factor of

√
2 smaller.

The proof of Lemma 4.1 shows that the 2-norm of J is at most
√

2. It is easy to show that the norm
is, in fact, exactly

√
2 and that all the singular values of J are either 1 or

√
2. The next lemma shows

that the
√

2 bound on the norm of J ensures that σmin(L̃) ≥ λmin(L̂)/
√

2.

LEMMA 4.10. Let A, B, and C be matrices such that AB = C. Then

σmin(B) ≥ σmin(C)
σmax(A)

.

PROOF. Suppose for contradiction that σmin(B) = ε < σmin(C)/σmax(A). Then there exist vectors x and y
such that ‖x‖2 = ‖ y‖2 = 1, and Bx = ε y . (x and y are the right and left singular vectors corresponding
to σmin(B).) Therefore,

‖Cx‖2 = ‖ABx‖2 = ‖Aε y‖2 = ε‖Ay‖2 ≤ εσmax(A)‖ y‖2 = εσmax(A) < σmin(C) ,

a contradiction.

We can now prove the main theorem of this section.

THEOREM 4.11.

σmin(L̃) ≥ λmin(L̂)√
2

.
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Fig. 2. The same mesh as in Figure 1, but with an additional anchor point at vertex 86. The Laplacian here is a 3-anchor
invertible Laplacian with anchors at vertices 1, 86, and 114. The transformed quantization error is no longer smooth at the
anchor point even though the vector x is smooth there.

PROOF. Since J L̃ = L̂, by the previous lemma

σmin(L̃) ≥ σmin(L̂)
σmax(J )

= σmin(L̂)√
2

= λmin(L̂)√
2

.

4.4 Singular Vectors and the Shape of the Error

Why do we propose to use a rectangular Laplacian rather than a square invertible one? The reason
lies in the shape of the quantization error that each method generates. We have already seen that
adding anchor points increases the smallest singular value of both the invertible and the rectangular
Laplacians. Furthermore, in both cases, the 2-norm of the error x − x ′ is bounded by

√
2λ−1

min(L̂)
∥∥qL̃x

∥∥
2,

exactly the same bound. (The actual errors will differ and the norms will most likely differ since the
bounds are not tight, but the bounds we proved are exactly the same.) We have found, however, that
the shape of the error is visually better when we obtain the approximation x ′ from the rectangular
Laplacian. The main difference between the two errors is that the rectangular approximation x ′ is
usually smooth where x is smooth but the invertible approximation is not. The invertible approximation
is almost always nonsmooth at the anchors where spikes seem to always appear.

The crucial observation is that the k-anchor invertible Laplacian essentially forces the error x − x ′

to zero at the anchors and allows the error to grow as we get farther and farther away from the anchor
points. When we obtain x ′ from solving a least-squares problem whose coefficient matrix is L̃, x ′ can
differ from x everywhere, including at the anchor points. This allows x ′ to be smooth.

Formalizing this explanation is hard and is beyond the scope of this article. The error x ′ − x consists,
in both cases, mainly of the singular vectors of L̃ or L̂ that correspond to the smallest singular values.
If these singular vectors are smooth, the error x − x ′ will be smooth, so x ′ will be smooth where x
is smooth. Are these vectors smooth? The numerical example in Figure 2 indicates that the relevant
singular/eigen vectors of L̂ are not smooth. Our experiments also indicate that the singular vectors of
L̃ that correspond to small singular values are smooth.

In this article, we do not attempt to prove these statements about the shape of the singular vectors.
In general, the singular vectors of Laplacian and Laplacian-like matrices have not been researched as
much as the singular values. It is generally believed that the vectors corresponding to small singular
values are indeed smooth. This belief underlies important algorithms such as multigrid [Briggs et al.
2000] and spectral separators [Pothen et al. 1990]. Some additional progress towards an understanding
of the relationships between the graph and the eigenvectors of its Laplacian were made recently by
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Ben-Chen and Gotsman [2005]. On the other hand, there is also research that indicates that these
vectors are not always well-behaved [Guattery and Miller 2000].

We leave the full mathematical analysis of the shape of the errors as an open problem in this article;
the empirical evidence shown in Sorkine et al. [2003] supports our claim.

5. THE EFFECT OF ANCHOR POINTS ON NUMERICAL ACCURACY

So far, we have analyzed the norm of the error assuming that x ′ is the exact solution of L̂x ′ = J (L̃x+qL̃x)
or the exact minimizer of ‖L̃x ′ − (L̃x +qL̃x)‖2. Since we cannot determine x ′ exactly using floating-point
arithmetic, what we actually obtain is an approximation x ′′ to x ′. The total error x − x ′′ depends on both
x − x ′ and x ′ − x ′′. In this section, we analyze the numerical error x ′ − x ′′ and show that it too depends
primarily on the small singular values of the coefficient matrices L̂ and L̃, and hence on the anchor
points. The results in this section rely on standard error bounds from numerical linear algebra. For
details on these error bounds, see, for example, Higham [2002] or Trefethen and Bau [2000]; the first
reference is an encyclopedic monograph, the second a readable textbook.

We assume that the approximation x ′′ is obtained using a backward stable algorithm. For the in-
vertible problem, this means that x ′′ is the exact solution of (L̂ + δL̂)x ′′ = J (L̃x + qL̃x), where δL̂ is a
small perturbation such that ‖δL̂‖/‖L̂‖ = O(εmachine), where εmachine is a small constant depending on
the floating-point arithmetic, about 10−16 for double-precision IEEE-754 arithmetic, which is now used
on virtually all computers. For the rectangular problem, backward stability means that x ′′ is the exact
minimizer of (L̃ + δL̃)x ′′ − (L̃x + qL̃x) for a similarly small perturbation.

Since L̂ is a symmetric positive-definite matrix and since L̃ is full rank, most linear-equation solvers
and most least-squares solvers are backward stable when applied to them. This includes sparse direct
Cholesky factorization solvers for the square problem, sparse QR solvers for the rectangular least-
squares problem, and most iterative algorithms for these problems.

When we obtain an approximation x ′′ using a backward stable algorithm, the relative norm of the
so-called forward error x ′ − x ′′ is bounded by the condition number κ of the problem times εmachine,

‖x ′′ − x ′‖
‖x ′‖ = O(κεmachine). (7)

For the invertible problem, the condition number is simply the condition number of the coefficient
matrix,

κinv = ‖L̂‖‖L̂
−1‖. (8)

The norm in Equation (8) is the matrix norm induced by the vector norm in Equation (7). When we use
the 2-norm in Equations (8) and (7), we have

κinv = σmax(L̂)
σmin(L̂)

.

The quantity σmax(L̂)/σmin(L̂) is called the spectral condition number of L̂ and is denoted by κ2(L̂) or
simply κ2 when the matrix is clear from the context.

The condition number of least-squares problems is a little more complicated. We denote by θ the
angle between the right-hand side (L̃x + q) (here q = qL̃x) and its projection into the column space of
L̃. Since L̃x is in this column space, the size of tan θ is roughly proportional to ‖q‖2/‖L̃x‖, which is
proportional to how aggressive the quantization is. Therefore, tan θ will usually be small. We denote by
η the quantity

η = ‖L̃‖2‖x‖2

‖L̃x‖2
.
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This quantity is bounded by 1 ≤ η ≤ κ2(L̃). In our case, unfortunately, η will not be large because L̃x
contains some values of x, namely the anchors, so its norm will not be much smaller than the norm of
x. Given θ and η, we can express the condition number of solving least-squares problems,

κrect = κ2(L̃) + κ2(L̃)2 tan θ

η
.

In our case, κ2(L̃) and κ2(L̂) depend only on the small eigenvalue of L̂, which we have already shown
to be strongly influenced by the anchor points. Since σmax(L̂) = λmax(L̂) ≤ 2dmax + 1, where dmax is
the maximal degree of a vertex in the mesh, and since σmax(L̃) ≤ √

2λmax(L̂), in both cases, the largest
singular value is bounded by a small constant so κ(L) = O(λ−1

min(L̂)) for both L’s.

THEOREM 5.1. Let λ = λmin(L̂), ε = εmachine, and q = qL̃x. The 2-norm of the error x − x ′′, when x ′′ is
computed from the invertible Laplacian using a backward-stable algorithm, is bounded by

‖x − x ′′‖2 ≤ O(λ−1‖q‖2 + λ−1ε‖x‖2 + λ−2ε‖q‖2).

PROOF. By Lemma 4.9, ‖x ′‖2 = ‖x ′ + x − x‖2 ≤ ‖x − x ′‖2 + ‖x‖2 ≤ λ−1‖q‖2 + ‖x‖2 . The inequality and
the discussion preceding the theorem yield

‖x − x ′′‖2 = ‖x − x ′ + x ′ − x ′′‖2

≤ ‖x − x ′‖ + ‖x ′ − x ′′‖2

≤ λ−1‖q‖2 + ‖x ′ − x ′′‖2 by Lemma 4.9
≤ λ−1‖q‖2 + O(κ2(L̂)ε‖x ′‖2)
= λ−1‖q‖2 + O(λ−1ε(λ−1‖q‖2 + ‖x‖2))
= λ−1‖q‖2 + O(λ−1ε‖x‖2 + λ−2ε‖q‖2) .

We now state the corresponding theorem for the least-squares case. The proof, which we omit, is
identical except for the expression of the condition number.

THEOREM 5.2. Let λ = λmin(L̂), ε = εmachine, and q = qL̃x. The 2-norm of the error x − x ′′, when x ′′ is
computed from the rectangular least-squares problem using a backward-stable algorithm, is bounded
by

‖x − x ′′‖2 ≤ O
(

λ−1‖q‖2 + λ−1ε‖x‖2 + λ−2 tan θε‖x‖2

η
+ λ−2ε‖q‖2 + λ−3 tan θε‖q‖2

η

)
.

One way of solving the least-squares problem is by constructing and solving the so-called normal
equations. This solution method relies on the fact that the least-squares minimizer x ′ is also the solu-
tion of the symmetric positive-definite linear system L̃T L̃x ′ = L̃T (L̃x + qL̃x). Even when the normal
equations are solved using a backward-stable algorithm, the whole algorithm is not backward stable
with respect to the original least-squares problem. The computed solution satisfies only

‖x ′′ − x ′‖2

‖x ′‖2
= O

(
κ2(L̂)2εmachine

)
.

Because the error bound is much larger in this case (and usually much larger in practice), this method
is usually not recommended. However, since in our application, we can control and estimate κ2(L̂) by
adding anchor points, we can ensure that even the normal-equations forward error is acceptable.
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Fig. 3. Comparison of the congestion-dilation-contention bound on σmin (see Theorem 4.11) with the actual value of σmin. The
x-axis shows the number of anchors used.

6. ALGORITHMIC ISSUES AND RESULTS

Two algorithmic problems arise in the high-pass quantization method: the anchor-selection problem
and the linear least-squares problem. This section explains how these issues can be addressed and
shows some experimental results.

6.1 Evaluating the Bound on σmin

In order to exploit the theoretical results presented in the previous section, we need an algorithm
to evaluate the lower bound on σmin, the smallest singular value of L̃. Given a set of anchor vertices
{a1, a2, . . . , ak}, we are looking for some partition of all the mesh vertices into k subsets, such that we can
define the values ϕ, ϑ, ρ (congestion, dilation, and contention) reasonably. Since finding a partition that
strictly maximizes the bound in Theorem 4.11 does not seem feasible, we use the following heuristic. We
simultaneously grow patches of vertices around the anchors by running k-source BFS. This algorithm
produces a rather balanced partition that keeps the values of ϑ and ρ small. After the partition has
been computed, the calculation of ϑ and ρ is straightforward. To compute ϕ, we use the parent pointers
stored for each vertex during the BFS procedure. These pointers define the tree of paths from each
vertex to the root (source anchor vertex). Clearly, the most loaded edges are the edges whose source
vertex is the root. By counting the number of vertices in the subtrees hanging on those edges, we obtain
their edge loads, and compute the maximum over all the k subsets.

We have compared the evaluation of the lower bound of σmin with the real value of σmin on moderately-
sized meshes. The accurate value of σmin was computed in MATLAB. Figure 3 shows two representative
graphs summarizing this experiment. The horizontal axis in the graphs represents the number of
anchor rows present in L̃. We incrementally added random anchor vertices and plotted the value of
σmin and the lower bound. As can be seen from these graphs, the bound differs from the real value by
1.5–2.5 orders of magnitude and behaves consistently with the real σmin. We can thus conclude that
our theoretical bound is not too pessimistic and can be used in practical algorithms for choosing the
anchors, as discussed in the following.
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Fig. 4. Anchors on the Feline model chosen by the bound-driven algorithm. The first three images display stages of the incre-
mental anchor-selection procedure. The even spacing of the anchors increases the lower bound on σmin. The graph compares the
L∞ reconstruction error for anchors chosen with the greedy scheme as in Sorkine et al. [2003] (in red) and the bound-driven
scheme (in blue), when using the same level of δ-coordinates quantization (6 bits/coordinate).

6.2 Algorithms for Placing Anchor Points

Sorkine et al. [2003] use the following adaptive and greedy algorithm to select anchor points. They
begin by placing one random anchor point and generating a 1-anchor rectangular Laplacian, denoted
by L̃1. They then use this matrix to transform the coordinates, quantize the δ-coordinates, compute an
approximation x ′′

1, and compute the error x − x ′′
1. The second anchor is placed at the vertex with the

largest error to yield L̃2. These iterations continue until either a satisfactory error is attained, or until
a given number k of anchors is placed.

The advantage of this scheme is that it directly attempts to minimize the reconstruction error rather
than its bound. However, the first iterations of the greedy algorithm may compute ineffective anchors
since, in the beginning, only a few anchors are used, and the matrix L̃ is thus ill-conditioned. Therefore,
the first reconstructed vectors x ′′

i will contain very high errors.
The congestion-dilation-contention bounds that we present in this article suggest another anchor-

selection scheme, one that aims to maximize the lower bound on σmin. This scheme can be used to select
enough effective anchors to ensure reasonable conditioning of L̃ and more anchors can then be added
using the previous greedy algorithm.

As mentioned previously, it is hard to strictly maximize the bound on σmin. To choose anchors so as
to make the bound expression larger, we again propose a heuristic method. It selects the anchors one
by one, while minimizing the value of ϑ . The method operates as follows. We start with one randomly
chosen anchor and compute its edge-distance from all the other vertices in the mesh by running BFS.
The furthest vertex is chosen as the next anchor, and we proceed in the same manner. In the i-th
iteration, we have a set of i anchor vertices; we run i-source BFS from these vertices to find the vertex
that achieves the longest edge distance from an anchor (the value of ϑ). This vertex is assigned as
the (i + 1)-th anchor. The procedure stops when we reach a large enough value of the bound or after
a prescribed number of steps. It should be noted that actually there is no need to run the complete
i-source BFS in every step. It is enough to run (partial) BFS from the last chosen anchor in order to
update the distances. The front propagation of the BFS procedure stops whenever we meet a vertex
whose old distance value is smaller than the distance that would be assigned by the current BFS.

Figure 4 shows some steps of the anchor-selection algorithm on the Feline model. The anchors are
well-spaced which is favorable for the congestion-dilation-contention bound. The graph in Figure 4 plots
the reconstruction of the max-norm as a function of the number of anchors. The red line denotes the
values for anchors chosen with the bound-maximizing scheme, while the blue line represents the greedy
scheme used in Sorkine et al. [2003]. As expected, the greedy scheme produces somewhat smaller errors
since it operates directly to minimize the max-norm error. However, on larger meshes, the error-bound
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minimization scheme gives an initial set of anchors to make L̃ well-conditioned and thus provides a
good starting point for the greedy algorithm. Moreover, this scheme is much faster since it does not
require reconstruction of the Cartesian coordinates at each iteration.

After the anchor placement strategy has been fixed, the shape of the mesh reconstructed with the
high-pass quantization technique depends mainly on two factors: the level of δ-coordinates quantization
and the amount of anchors. The Cartesian coordinates of the anchors should be mildly quantized
to preserve accuracy. Adding anchors to the representation is cheap: if B is the number of bits per
coordinate (typically, between 12–14), then a single anchor requires 3B + log(n) bits (log(n) bits for the
index of the anchor vertex). As suggested by the theoretical bounds in Theorems 4.3 and 4.11, we can
keep the condition number of the system (and hence the L2 error) constant by ensuring that the dilation,
congestion, and contention are bounded by a constant. When the number of anchors is a constant fraction
p of the number of mesh vertices n, the dilation, congestion, and contention are usually bounded by a
constant or grow very slowly with n. As discussed in Sorkine et al. [2003], for visually acceptable value
of L2 error, p is rather small, up to 1%. This is due to the fact that the visual quality is more affected by
the change of high-frequency details (e.g., surface normals or the surface local smoothness properties)
rather than global low-frequency errors. Adding anchors to a fixed δ-quantization only helps to make
the low-frequency error smaller, but hardly effects the high-frequency error. On the other hand, adding
more bit planes to the δ-coordinates significantly reduces the high-frequency error as well as the low-
frequency error (see the ‖qL̃x‖2 component of the L2 error bound in Lemma 4.9). However, this is more
expensive since adding a single bit per δ-coordinate requires the addition of n bits to the representation
(prior to entropy-coding).

The visual tables in Figures 5 and 6 demonstrate the effect of adding anchors versus adding bits
to the δ-coordinates. Each row in the tables displays reconstructed models with a varying number of
anchors for a fixed δ-quantization level. As shown in the figures, the surface smoothness properties
vary in different rows but not columns, while the surface general pose (affected by low-frequency error)
decreases both in the rows (top to bottom as more bits are added to the δ-coordinates) and in the columns
(left to right as more anchors are added). This is also supported numerically by the values of the Sq and
Mq errors (see Sorkine et al. [2003]). In all the experiments, fixed quantization of 12 bits/coordinate
was applied to the positions of the anchor vertices.

It is important to note that state-of-the-art geometry encoding methods, such as the wavelet com-
pression [Khodakovsky et al. 2000], employ zerotree encoding with a clever bit-allocation scheme that
adapts to the local surface shape. We believe that adaptive encoding will benefit our geometry encoding
scheme as well; currently, we uniformly quantize the δ-coordinates of the entire mesh and encode them
with a standard arithmetic encoder that does not fully exploit the specific nature of the data. This
rather naive compression is obviously not optimal as supported by the statistics in Table I, where we
compare the file sizes of the models compressed by our method with those of Khodakovsky et al. [2000].
However, in contrast to Guskov et al. [2000] and Khodakovsky et al. [2000] and others, our method does
not require any remeshing. It would be appropriate to compare our method with the spectral compres-
sion of Karni and Gotsman [2000] since the latter method also preserves the original mesh connectivity
but currently, it is infeasible to apply this method to meshes with more than a few thousand vertices
because it requires computing the eigenvectors of the mesh Laplacian matrix on both the encoder and
the decoder side.

6.3 Solving Least-Squares Problems

Decompressing a mesh function in the high-pass quantization method requires solving a linear least-
squares problem. Sorkine et al. [2003] discussed this important algorithmic issue only briefly. To allow
the reader a broader perspective on this issue, we survey here state-of-the-art least-square solvers.
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Fig. 5. Visual table of quantization results for the Twirl model (5201 vertices). The vertical axis corresponds to the number
of bits per coordinate used in δ-quantization. The horizontal axis corresponds to the number of anchor points used. Mq and Sq
denote the Euclidean RMS error and the smoothness error, respectively (see Sorkine et al. [2003]). The file sizes given below
each reconstruction were obtained by arithmetic encoding of the quantized δ-coordinates and the anchors.
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Fig. 6. Visual table of quantization results for the Camel model (39074 vertices). The vertical axis corresponds to the number
of bits per coordinate used in δ-quantization. The horizontal axis corresponds to the number of anchor points used. Mq and Sq
denote the Euclidean RMS error and the smoothness error, respectively (see Sorkine et al. [2003]). The file sizes given below each
reconstruction were obtained by arithmetic encoding of the quantized δ-coordinates and the anchors.
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Table I. Comparison Between our Geometry Encoding and the Wavelet Encoder
of Khodakovsky et al. [2000] (The file sizes are displayed in percents-relative to the
uncompressed mesh geometry. The models were compressed by both methods with
approximately the same visual error on the order of 10−4 so that the compressed

mesh is indistinguishable from the original.)
Model Number of Vertices Relative Wavelet Filesize (%) Relative Highpass Filesize (%)

Rabbit 107,522 0.354 0.895
Bunny 118,206 0.429 0.662
Horse 112,642 0.321 0.457
Venus 198,658 0.336 0.543
Feline 258,046 0.389 0.790

We briefly mention some key algorithms, provide some sample performance data, and explain how the
quantization and compression methods can be tailored to ensure fast decompression. For a more com-
plete discussion of algorithms for sparse linear least-squares problems, see Björck’s monograph [1996].

Sparse least-squares solvers fall into two categories, direct and iterative. Most direct solvers factor
the coefficient matrix L̃ into a product of an orthonormal matrix Q and an upper triangular matrix
R, L̃ = QR. Once the factorization is computed, the minimizer x̂ of ‖L̃x − b‖2 is found by solving the
triangular linear system of equations Rx̂ = QT b. This algorithm is backward stable. The matrix R is
typically very sparse, although not as sparse as L̃; it is represented explicitly in such algorithms. In
particular, since, in our case, the meshes are almost planar graphs and have small vertex separators, R
is guaranteed to remain sparse [George and Ng 1988]. The matrix Q is not as sparse, but it has a sparse
representation as a product of elementary orthogonal factors [George and Heath 1980; George and Ng
1986]. To reduce the work and storage required for the factorization, the columns of the input matrix L̃
are usually reordered prior to the factorization [George and Ng 1983; Heggernes and Matstoms 1996;
Brainman and Toledo 2002; Davis et al. 2004].

Another class of direct solvers, which is normally considered numerically unstable, uses a triangular
factorization of the coefficient matrix L̃T L̃ of the so-called normal equations. Once triangular factor
R is found (it is mathematically the same R as in the L̃ = QR factorization), the minimizer is found
by solving two triangular linear systems of equations, RT (Rx̂) = L̃T b. This procedure is faster than
the QR procedure but produces less accurate solutions because solving the normal equations is not
backward stable. However, the accuracy of the solutions depends on the condition number of L̃ (ratio of
extreme singular values), and, as we have shown in Section 5 the matrix L̃ is well-conditioned thanks
to the anchors so, in this case, solving the normal-equations problem yields accurate solutions.

The running times and storage requirements of direct solvers can be further reduced by cutting the
mesh into patches as proposed by Karni and Gotsman [2000] and solving on each patch separately. All
the boundary vertices are then considered anchors to ensure that the solutions on different patches are
consistent. We believe that this optimization would usually be unnecessary and that problems involving
entire meshes can be solved efficiently, but we mention it as a way of handling extremely large cases.
Note that to ensure that the patches are consistent, the k-anchor invertible Laplacian would need to
be used here, not the k-anchor rectangular Laplacian.

In all direct methods, the factorization is computed once and used to solve for multiple mesh functions.
Most of the time is spent in computing the factorization, and the cost of solving for a minimizer is
negligible. Therefore, the cost of decompression using these methods is almost independent of the
number of mesh functions (x, y , z, and perhaps other information such as color).

Direct methods are fast. Table II records the solution times for the models used in our experiments.
The table shows the time to decompose the coefficient matrix of the normal equations into its triangular
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Table II. Running Times of Solving the Linear Least-Squares
Systems for the Different Models (Most time is spent on the

factorization of the coefficient matrix which can be done during the
transmission of the δ-coordinates. Solving for a single mesh function

(x, y or z) takes only a negligible amount of time (see rightmost
column). The experimental setup is described in the text.)

Model Number of Vertices Factorization (sec.) Solving (sec.)

Eight 2,718 0.085 0.004
Twirl 5,201 0.098 0.006
Horse 19,851 0.900 0.032
Fandisk 20,111 1.091 0.040
Camel 39,074 2.096 0.073
Venus 50,002 3.402 0.112
Max Planck 100,086 7.713 0.240

factors and the subsequent solution time for one mesh function. For example, computing the triangular
factorization of the horse, a model with 19,851 vertices, took 0.9 seconds on a 2.4GHz Pentium 4
computer, and solving for a single mesh function took 0.032 seconds once the factorization has been
computed. The linear solver that we used for these experiments is TAUCS version 2.2 [Toledo 2003]
which uses internally two additional libraries, ATLAS version 3.4.1 [Whaley et al. 2000] and METIS version
4.0 [Karypis and Kumar 1998]. TAUCS and METIS were compiled using the Intel C/C++ compiler version
7.1 for Linux, and ATLAS was compiled using GCC version 2.95.2. The options to the compilers included
optimization options (-O3) and Pentium 4-specific instructions (-xW for the Intel compiler and inlined
assembly language in ATLAS). For additional performance evaluations of TAUCS, see Rotkin and Toledo
[2004] and Irony et al. [2004]. We did not have a code of similar performance for computing the sparse
QR factorization, but we estimate that it should be about 4–6 times slower.

Even though direct methods are fast, their running times usually scale superlinearly with the size
of the mesh. Iterative least-squares solvers, which do not factor the coefficient matrix, sometimes scale
better than direct methods. Perhaps the most widely-used least-squares iterative solver is LSQR which
is based on a Krylov bidiagonalization procedure [Paige and Saunders 1982a, 1982b]. Other popular
solvers include CGLS, a conjugate-gradients algorithm for solving the normal equations [Elfving 1978;
Björck and Elfving 1979], and CRAIG, an error-minimization bidiagonalization procedure [Craig 1955];
see also Paige and Saunders [1982b] and Saunders [1995].

The convergence of these methods depends on the distribution of the singular values of the coefficient
matrix L̃ as well as on the initial approximation. In our case, L̃ is always well-conditioned so we can
expect reasonably rapid convergence. Furthermore, the decoder knows the values of the mesh function
at the anchor vertices. By interpolating these values at nonanchor vertices, the decoder can quickly
produce a good initial approximation (note, however, that, even at the anchor points, the known values
of the original mesh function need not coincide with the values of the least-squares minimizer).

The iterative methods mentioned can be accelerated by using a preconditioner, (informally, an ap-
proximate inverse of L̃). The relationship of our coefficient matrix L̃ to a graph Laplacian can proba-
bly be exploited when constructing a preconditioner since highly effective preconditioners have been
discovered for Laplacians. The most important classes of such preconditioners are algebraic multi-
grid preconditioners [Brandt et al. 1984], incomplete Cholesky preconditioners [Meijerink and van
der Vorst 1977; Gustafsson 1978], and more recently, support preconditioners [Vaidya 1991; Boman
and Hendrickson 2003; Chen and Toledo 2003]. For further information about iterative solvers and
preconditioning, see Barret et al. [1993], Axelsson [1994], Björck [1996], and Saad [1996].
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7. CONCLUSIONS

In this article, we have shown that it is possible to rigorously bound the error in a lossy compression
method for three-dimensional meshes. The article focuses on one particular compression method, that
presented by Sorkine et al. [2003], but our analysis technique is probably applicable to a range of
methods using similar matrices. In particular, our analysis also sheds light on the errors in a more
recent compression method Sorkine et al. [2005] in which the encoder does not send the δ-coordinates
to the decoder at all, only the anchor vertices. It is also useful for analyzing Laplacian-based mesh
editing techniques [Lipman et al. 2004].

Our analysis bounds the total error generated by high-pass quantization, both the quantization
component of the error and the rounding component. In other words, it accounts for the fact that the
decoder uses floating-point arithmetic to reconstruct the mesh. On the other hand, our analysis does not
cover the shape of the errors. Empirical results show that the error is smooth and, therefore, visually
acceptable; these results are consistent with other applications of the small eigenvectors of Laplacians.

Our analysis yields an error bound that is easy to compute as we have shown in Section 6.1. This
leads to two algorithmic benefits in addition to the insight on why high-pass quantization works. First,
it can be used by an encoder to quickly encode a mesh to a prescribed error bound. That is, the encoder
can quantize the coordinates and then add anchors until the computed error bound drops below a
prescribed threshold. Since our error bound is not tight, the actual error will usually be smaller than
that prescribed. The encoding might not be as economical as possible but it will be produced quickly and
it will satisfy the prescribed error bound. Second, the computed bound can drive the anchor selection
algorithm, as shown in Section 6.1.

We have used three algebraic techniques to prove our error bound. Two of them are quite novel. Our
bound on the small eigenvalue of an invertible Laplacian is a relatively standard application of an area
of combinatorial matrix theory called support theory, but the technique of separating of W into W1
and W2 is new. The main algebraic novelty in the article lies in the application of support theory to
the analysis of the spectrum of rectangular matrices. The analysis of the rounding error is relatively
straightforward.

Our research raises a number of interesting open problems for future research.

(1) Can one rigorously analyze the behavior of the eigenvectors of the Laplacian of 3D meshes? Our
method works because, for a vector x of mesh coordinates, ‖Lx‖ tends to be much smaller than ‖x‖.
This happens because most of the energy of x is concentrated in the subspace of Rn that is spanned
by the eigenvectors of L that correspond to small eigenvalues. But does this always happen? The
answer depends on the relationship between the eigenvectors of the Laplacian and typical mesh-
coordinate vectors. Ben-Chen and Gotsman [2005] have taken the first step towards resolving
this question. They have shown that, under certain probabilistic assumptions on the shape of 3D
meshes, most of the energy of the mesh-coordinate vectors indeed lies in the sub-spaces spanned by
the small eigenvectors. Another analysis, done by Guattery and Miller [2000] in a different context,
may provide another perspective on the issue.

(2) Our bound on the small singular values of k-anchor Laplacian uses a maximal congestion-dilation-
contention metric on an embedding of paths from all the vertices to the anchors. It is probably
possible to derive other computable bounds that might sometimes be tighter such as a bound that
depends on average dilation of this embedding.

(3) Can one solve the least-squares problems that arise in our method in time linear or almost linear in
the size of the mesh? We have demonstrated reasonably small running times even for large meshes,
but our solution method scales superlinearly. It would be useful to find solution methods with better
scaling. Algebraic multigrid methods can almost certainly solve the invertible k-anchor Laplacian
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equations in O(n) work. We are not yet sure whether algebraic multigrid methods can also effec-
tively solve the least-squares problem arising from the rectangular Laplacian. Another direction
might be an iterative solver, such as LSQR or CGLS, coupled with an effective preconditioner. In
particular, it would be interesting to know whether graph-theoretical pre-conditioners, such as
support-tree [Gremban et al. 1995; Gremban 1996] and support-graph [Vaidya 1991; Bern et al.
2001; Spielman and Teng 2003; Boman et al. 2004] preconditioners can be adapted to this problem.
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