
LOW RES FIGURES

Tangible and Modular Input Device for Character Articulation

Alec Jacobson1 Daniele Panozzo1 Oliver Glauser1 Cédric Pradalier2 Otmar Hilliges1 Olga Sorkine-Hornung1

1ETH Zurich 2GeorgiaTech Lorraine — CNRS UMI 2958

Figure 1: Assembled from modular, interchangeable, and hot-pluggable parts (left), our novel device forms a skeletal tree matching the
Elephant. As the user manipulates each joint of the device, measured bone rotations animate a skeletal rig, and the Elephant comes to life.

Abstract

Articulation of 3D characters requires control over many degrees of
freedom: a difficult task with standard 2D interfaces. We present a
tangible input device composed of interchangeable, hot-pluggable
parts. Embedded sensors measure the device’s pose at rates suitable
for real-time editing and animation. Splitter parts allow branching
to accommodate any skeletal tree. During assembly, the device
recognizes topological changes as individual parts or pre-assembled
subtrees are plugged and unplugged. A novel semi-automatic reg-
istration approach helps the user quickly map the device’s degrees
of freedom to a virtual skeleton inside the character. User studies
report favorable comparisons to mouse and keyboard interfaces for
the tasks of target acquisition and pose replication. Our device pro-
vides input for character rigging and automatic weight computation,
direct skeletal deformation, interaction with physical simulations,
and handle-based variational geometric modeling.

CR Categories: I.3.1 [Computer Graphics]: Input devices

Keywords: tangible input, skeletal deformation, animation system

Links: DL PDF WEB VIDEO

1 Introduction

Interactively articulating virtual 3D characters lies at the heart of
computer animation and geometric modeling. Sophisticated tech-
niques express shape deformation in terms of a small set of degrees

of freedom, most often the joint angles of an internal skeleton. Yet,
even the ubiquitous skeletal deformation systems have too many pa-
rameters to be managed directly with traditional mouse and keyboard
input. Animators must rely on indirect methods such as inverse kine-
matics or decompose complex and integrated motions into sequential
manipulations of a small subset of the parameters—for example,
iteratively positioning each bone of a skeleton hierarchy.

While direct manipulation mouse and touch interfaces are successful
in 2D [Shneiderman 1997], 3D interactions with 2D input are ill-
posed and thus more challenging. Virtual 3D widgets, e.g. Arcballs
[Shoemake 1992], map 2D mouse input to 3D rotations, but inter-
action with the underlying 3D character is indirect and limited to a
subset of the overall articulation parameters. Successful commercial
products with 2D interfaces, e.g. Autodesk’s MAYA, are notorious
for steep learning curves and require interface-specific training.

Mouse and keyboard interfaces fall short because their control spaces
do not match the perceptual space of the 3D interaction task [Jacob
et al. 1994]. So instead, we propose direct physical manipulation
via a tangible interface [Ishii and Ullmer 1997] with degrees of
freedom in direct correspondence with the 3D rotations at skeletal
joints of the virtual character. The device is composed of modular,
hot-pluggable mechanical parts. The user may quickly assemble a
custom combination of measurement joints and branching splitters
to establish a one-to-one mapping between the physical device and
virtual skeleton (see Figure 1). We leverage modern advances in 3D
printing to produce compact, ready-to-assemble parts, comfortably
held with one or two hands.

Exploiting the benefits of proprioception and physical affordances,
an assembled device allows interaction with a physical manifestation
of the virtual object, without the need for a literal, fixed replication.
Each joint measures three rotation angles with accuracy of∼ 1◦ at a
frequency up to 250 Hz. This makes the device not only suitable for
rapid prototyping, but also precise control tasks such as meticulous
keyframe posing and real-time animation capture. Complementary
to the physical device, we introduce algorithms to facilitate the
device’s employment in the standard character rigging and animation
pipelines. A novel semi-automatic registration algorithm accounts
for the disparity between the device’s physical proportions and those
of the given virtual character. The user may then quickly match the
rest pose of a character and immediately begin animating.

http://doi.acm.org/10.1145/2601097.2601112
http://portal.acm.org/ft_gateway.cfm?id=2601112&type=pdf
http://igl.ethz.ch/projects/character-articulation-input-device/
http://igl.ethz.ch/projects/character-articulation-input-device/tangible-and-modular-input-device-for-character-articulation.mp4


LOW RES FIGURES

In traditional animation and posing, absolute positions and orienta-
tions are often specified separately or even by an external procedure
(e.g. game physics engine). Thus, our device only measures relative
bone orientations, allowing the user to move the device around on
her desk to suit her comfort (analogous to the relative positioning of
a typical desktop mouse).

Demonstrating our device’s capabilities, we discuss results from a
wide range of examples. Our device successfully provides input for
character rigging and automatic weight computation, direct skeletal
deformation, interaction with physical simulations, and handle-based
variational geometric modeling. User studies—testing target acqui-
sition and pose replication—report favorable findings comparing to
traditional mouse and keyboard interfaces. Our device is no less
accurate, but significantly more efficient.

2 Related work

Current commercial modeling and animation packages with mouse
and keyboard interfaces favor control over ease of use and demand a
high level of expertise. To alleviate this, many previous systems de-
vise alternative user interfaces for 3D character articulation ranging
from sketching (e.g. [Lin et al. 2012]) to full-blown motion capture
(e.g. [Ishigaki et al. 2009]). We briefly review several areas of the
related work that our system builds upon and extends.

Vision-based motion capture systems are among the most preva-
lent methods to create life-like animations of anthropomorphic, hu-
manoid characters, and the field is widely studied (e.g. [Ishigaki et al.
2009]). While producing high-quality results, most systems require
expensive equipment, large performance spaces, and often require
body suits with markers. Requiring a human actor, they are not well-
suited for the animation of non-humanoid characters. Nonetheless,
some systems map human body motions to non-humanoid shapes,
creating casual, but life-like animations [Seol et al. 2013; Chen
et al. 2012]. This mapping introduces ambiguities, and performance
capture still requires a large space and an actor.

Figure 2: Vision systems suffer
from occlusion problems. Our me-
chanical device does not and is
held comfortably with both hands.

Recent developments in hand-
pose estimation assuage space
requirements and bring motion
capture to desktop sized spaces
[Romero et al. 2010; Oikono-
midis et al. 2012]. Wang
& Popović track human hand
poses to animate arbitrary
shapes [2009]. Again, mapping
ambiguities prevent more pre-
cise interactions and now an ac-
tor’s hand is needed. Track-
ing a doll avoids the issue of
needing an actor’s body or hand
[Feng et al. 2008; Shim 2010],
but like all vision systems there
are lingering issues concerning
calibration, camera placement
and lighting. Most relevantly, a
hand-held input device is especially prone to occlusion problems
(see Figure 2). As a consequence of these issues, state-of-the-art
computer vision techniques rely heavily on a fixed skeletal topology
as a prior [Shotton et al. 2013]. In contrast, our mechanical device
is modular and automatically detects topology changes. Its internal
sensors function accurately regardless of the environment, making
the device not only suitable as a desktop tool at artist workstations
but also as a performance instrument.

Low degree of freedom tangible UIs. Ishii & Ullmer introduce
tangible user interfaces for manipulating virtual objects [1997]. A
vast range of tangible UIs exist using a variety of methods to track
physical objects, including computer vision, electrical tags and vi-
sual barcodes. Character animation prominently appears among
many application areas. In [Johnson et al. 1999], a plush toy with
embedded sensing recognizes discrete physical input events and
triggers playback of pre-recorded animations. More recently, a
vision-based 2D puppeteering system lets users perform 2D anima-
tions in real time using hand-drawn paper cut-out characters [Barnes
et al. 2008]. Analogously in 3D, Held et al. animate 3D characters
by tracking rigid physical objects’ positions and orientations [2012].
These systems already demonstrate the expressiveness of tangible
controllers for animation and storytelling. But unlike our approach,
which allows fine-grained control over a character’s many degrees
of freedom, they are restricted to independent rigid transformations.

Nonetheless, tracking rigid objects independently in time may be
used to animate deformable characters by layering animations [Oore
et al. 2002; Dontcheva et al. 2003; Shiratori et al. 2013]. A user eval-
uation with expert animators shows benefits of layered animations
over direct, full-body motion capture (in particular for non-humanoid
characters) but also reveals the need for integrated motion control
mechanisms (i.e. chains of joints) [Shiratori et al. 2013]. This is
difficult to achieve with their physical controllers. Our system builds
upon these ideas and due to its modularity allows for seamless tran-
sitions between layered animations of single joints, skeletal subtrees
and the integrated animation of the entire skeleton.

Mechanical systems. A number of systems directly map a me-
chanical skeleton to an on-screen character. The mechanical control
of non-humanoid, but custom fixed-topology, characters is perhaps
originally introduced by the “Dinosaur Input Device”, used to pro-
duce Jurassic Park [Knep et al. 1995]. The Monkey system of
[Esposito et al. 1995] and later the Qumarion of [Celsys, Inc. 2013]
optimize their designs for fixed humanoid topology at the cost of
generality. The fixed humanoid-topology robot of [Yoshizaki et al.
2011] complements rotation sensors with actuating motors. In the
context of keyframe posing, this convenient feature allows the device
to reconfigure itself to previous poses. While certainly useful, actua-
tion comes with serious drawbacks such as limited range of motion,
slower response time and bulkier designs with limited or no recon-
figurability. The fixed topology of the robot becomes particularly
problematic when animating characters, as highlighted in [Yoshizaki
et al. 2011]. The reconfigurable input device of [Weller et al. 2008]
employs large, ball-and-socket joints. Though ball-and-sockets are
intuitive in many scenarios, the achieved angular precision of 20◦ is
insufficient for direct character animation. In contrast, our joints are
compact and measure sub-degree accurate angles with high preci-
sion. Solving in some ways the inverse problem to ours, the Topobo
device of [Raffle et al. 2004] is an assembly system that enables the
construction of robots which record and replay motion sequences.
Each piece is a separate unit that measures angles using servo motors.
However, a piece does not know its relationship with others or its
place in the global topology, thus it may not be readily used as an
input device.

Skeleton fitting and deformation transfer. The way we help
register the device within an input shape bears similarity to existing
methods for skeleton extraction, registration or fitting. In geometry
processing, techniques exist to robustly extract the medial axis or
“curve skeleton” of a shape (e.g. [Tagliasacchi et al. 2012]). Though
ostensibly similar to animation skeletons, curve skeletons are meant
as a compact, abstract representation of the shape. Skeleton fitting
methods for animation do exist, notably [Baran and Popović 2007].
The method fits a skeleton with given topology to an upright-oriented
character, performing best on humanoids. Their expensive combina-



LOW RES FIGURES

Figure 3: A device instance may consist of joints (1), splitters (2),
extension segments(3), endcaps (4), and a controller (5).

torial optimization would not easily take advantage of the real-time
angle measurements of our device. Our interactive approach exactly
matches measured orientations. It may register to the entire shape
or to parts of it, and it updates as the device topology changes. In
computer vision, skeleton fitting has become part of the standard
motion capture and pose recognition pipelines. Robust fits are found
by querying databases of skeleton poses with feature keys based on
depth images or tracked extremities [Shotton et al. 2013; Sridhar
et al. 2013]. However, databases are generally populated with exam-
ple poses of specific topologies tailored for common scenarios, e.g.
upright humans or pointing hand gestures.

Our skeleton matching procedure maps measured angles to a preex-
isting animation rig’s skeleton, whose proportions and orientations
may differ. The more general topic problem of transferring defor-
mations between arbitrarily different skeletons or shapes is well
studied, e.g. [Sumner and Popović 2004; Baran et al. 2009; Bharaj
et al. 2012]. We avoid such heavy-handed methods by utilizing our
device’s modularity: instead of mapping to an ill-fitting device, the
user may simply reassemble a more appropriate one.

3 Hardware

Our goal is to design an easy to use input device for general-purpose
3D skeletal articulation. This goal breaks down into sub-criteria.
To control a variety of characters with different skeletal topologies
(alligators, centaurs, ostriches, etc.), the device must be modular and
reconfigurable. To operate comfortably at a desk, the device should
be compact in size and structurally sound to prevent accidental
deformation. Finally, the device must measure 3D rotations with
high precision and accuracy (see Figure 4).

A user constructs an instance of our device on the fly from modular
parts or nodes. Figure 3 shows a typical configuration with a leg-
end of node types. Mechanically moveable joints have embedded
sensors measuring three intrinsic Euler angles. Static splitters allow
branching in the skeletal tree. Static extension segments increase sep-
aration between joints and splitters. Passive endcaps cover exposed
electronics and provide a comfortable manipulation handle. The
entire skeletal tree connects to the host computer via the controller
which transmits data, and powers the other nodes.

While the entire device is a custom design, it is nonetheless easy to
reproduce. We provide a complete OpenHardware specification in
supplemental material. We include CAD files for 3D printing and
circuit schematics, both ready for outsourced fabrication.

Angular measurements at joints. Skeletal deformation is con-
ducted with a kinematic tree of internal rigid bones. The skeleton’s
deformation is then parameterized by relative rotations orienting

Figure 4: Left: A joint has three rotational degrees of freedom
parameterized by Euler angles: ϕ (twist), θ (bend), ψ (twist). Right:
Bending range is just over 180◦ and comparing visually measured
physical angles with the sensor’s reveals an accuracy of ∼ 1◦.

Figure 5: An undisturbed joint left on a desk for two seconds
measures variations in angle < 0.1◦ for all three sensors. The
theoretical minimum jitter is 0.022◦ [Melexis Sys. 2013]. Observing
these angles for 10 minutes shows maximum variation±0.066◦ with
a mean of 0.005◦ and standard deviation of 0.013◦.

each bone with respect to its parent. Though typically fixed during
deformation, bone lengths vary across skeletons and models. To
maximize modularity and facilitate design, our joints are a single
fixed size, in general not matching the lengths of virtual skeletons’
bones. We alleviate this disparity in software (see Section 4). To
steer such a skeleton, our device reports relative rotations for each
corresponding bone in the form of three intrinsic Euler angles. Our
joints are composed of two twisting parts connected via a bending
hinge (see Figure 4, left). The resulting relative rotation at the ith
joint in the device is the composition of rotations by the twist angle
ϕ, the bend angle θ and the final twist angle ψ:

Ri = Rz(ϕ)Rx(θ)Rz(ψ), (1)

where Rw(α) rotates about the w-axis by angle α. We align the
relative z-axis to lie along the joint when all angles read 0◦.

The signed rotation angle of each part is measured by a correspond-
ing Hall sensor and permanent magnet pair. Hall sensors are readily
available in very small form-factors [Melexis Sys. 2013] and mea-
sure the orientation of our magnets’ magnetic fields with an accuracy
of∼ 1◦ (see Figure 4, right) and a precision of< 0.1◦ (see Figure 5).
We place a small, flat magnet less than a millimeter away from each
sensor. This ensures a very stable magnetic field not affected by
external magnetic perturbations common in office environments.
Each joint consumes 50mA at
5V. Powered solely by USB,
our device could support up
to 10 joints. With an external
power-source (e.g. battery or
wall adapter) more joints can
be supported by the controller.

Before arriving at Hall sensors, we also evaluated two alternative
sensor types. Potentiometers do not provide sufficient precision and
suffer from a “dead-zone”. A combination of a 3D accelerometer
and a 3D magnetometer seems promising, since it frees mechanical
design, but would require a locally stable magnetic field within



LOW RES FIGURES

Figure 6: Splitters need one-time calibration of outlet orientations
(left). This is easy using a joint rotated so that outgoing frames
match incoming frames (right), aided by embossed arrows (yellow).

a range of 10cm. Our experiments show that the magnetic field
diverges wildly inside an office environment, leading to angular
errors above 40◦. Our final Hall sensor and magnet pairing avoids
this as the magnetic field is entirely dominated by the nearby magnet,
not even detectably affected by the other magnets on the same joint.

Instead of our twist-bend-twist joints, one could imagine a ball-and-
socket style joints akin to the human shoulder joint. The socket
would need to simultaneously hold the joint securely in place and
not limit the range of motion. The articulated 3D-printed characters
of [Bächer et al. 2012; Calı̀ et al. 2012] use ball-and-socket joints
and cite friction and range of motion as lingering challenges, even
without worrying about embedding sensor electronics. Accurate
angle measurements also appear elusive. The LED and photosen-
sors used for the large ball-and-socket joints in [Weller et al. 2008]
measure rotations with orders of magnitude worse accuracy than our
twist-bend-twist joints with Hall sensors. Our rotation parameteriza-
tion suffers inherently from gimbal lock, but retains high accuracy,
range of motion and easy friction control. Twisting angles span a
range slightly less than 360◦, the bending angle slightly more than
180◦. Three accessible screws control the frictional stiffness of each
joint.

Data marshalling. Each joint also contains a dedicated microcon-
troller. An assembled instance of our device can be understood as
a reconfigurable sensor network. Each joint acquires angular data
locally and communicates via a shared bus with the controller. Each
component has a small amount of persistent memory and stores infor-
mation such as its unique ID, node type, and color. Joints store three
calibration offset angles. Splitters store additionally the number of
connected children and relative orientation of its outlets, having been
calibrated once (see Figure 6). Via the unique node ID, additional
information may be associated to nodes and stored in software on
the host computer (e.g. positional hints in Section 4). This memory
facilitates topology detection and on screen visualization, but also
allows a user to resume previously assembled devices. When a pre-
vious configuration is recognized, parameters may be restored so the
user can immediately resume working with zero overhead.

Communication through a wired bus supports angle measurements
at a frequency that is inversely proportional to the number of joints:
from 250Hz with a single joint to 20Hz with 24 joints. All parts
connect electronically using off-the-shelf male-female connectors
with six pins: two for power, two for data and one for topology
detection (and one unused). Inside each joint, components are
connected with flexible wires, shielded in silicon to prevent breakage
when bending or twisting. Mechanical linkage uses an asymmetric
hook-and-lock to prevent faulty or incorrect connection.

Figure 7: Our splitter design is general, supporting many different
branching valences and outward orientations.

Figure 8: Two joints roughly match the proportions of the Mastiff’s
neck (left). We overcome differences in physical and virtual propor-
tions in two ways: 1) stretching the space between the virtual joints
as in the Donkey’s neck (middle) and for more extreme cases like
the Giraffe, 2) inserting physical extension segments.

We equip each node with controllable multi-color LEDs. By default,
they indicate status: powered, initialized, detected within topology.
In software, we replicate LED states in our visualization and activate
LEDs to assist the user: for example, selecting a node on screen
blinks a blue LED on the corresponding physical node.

Topology detection is achieved by passing messages between con-
nected nodes. We use a simple distributed algorithm to visit nodes
in depth-first order. Every joint begins initialization by listening to
broadcasts on the shared bus. The controller emits a “topology pulse”
to the first connected joint. Recursively, when a joint receives the
pulse, it reserves a unique ID and broadcasts it to all other nodes.
After receiving confirmation from the controller, the joint sends
the topology pulse to its children. During the entire process, the
controller forwards messages, containing node types and unique IDs,
to the host computer, which then reconstructs the device on screen.
The topology discovery is triggered every time a node is added or
removed and takes approximately 100ms.

Static parts. The remaining parts in our device have no moveable
pieces aside from small sliding connection locks. The branching of
the virtual character’s skeleton is in general arbitrary both in terms
of valence and geometry. We propose the general concept of a radial
splitter which supports as many outlets as will fit without overlap
at any orientation. Ideally, we would manufacture a splitter with
the same outlets at the same orientation as the given character. But
this is not practically feasible if we wish to support arbitrary input
shapes. Instead we settle on a small but sufficient set of common
arrangements (see Figure 7). Extension segments intensify proprio-
ception by helping overcome the physical-virtual size disparity. To
keep electronics simple, refresh rates high and power consumption
minimal, extension segments are unseen during topology detection.
Finally, plastic endcaps are purely ergonomic.

4 Method

We now discuss algorithmic contributions that unleash our device’s
full potential within the character animation and geometry process-



LOW RES FIGURES

Figure 9: Left to right: As the user adds joint position hints, the virtual device snaps into place within the un-rigged Dino model. This defines
a virtual skeleton form which we may automatically compute skinning weights.

ing pipelines. We support two common use cases. First, we consider
the animation of characters without existing rigs, that is, just a trian-
gle mesh without an associated control skeleton or skinning weights.
With our assistance, the user may use our device to define such a
skeleton and compute weights automatically. Second, we help the
user attach the input device to characters with existing rigs, poten-
tially manually created by a professional animator. In this case, we
match the device’s degrees of freedom to the rig’s and appropri-
ately adjust measured rotations while deforming to ensure intuitive
control.

4.1 Rest pose registration

Standard skeletal deformation defines bone transformations relative
to some rest pose. Thus, to control un-rigged characters we must first
infer such a rest-pose skeleton from the current device configuration.

Our device’s joint angles and topology fully determine a skeletal tree
in space up to a global rigid transformation. However, the distances
between joints of the physical skeleton will—in general—not match
those of the character on screen (see Figure 8). Extension segments
help alleviate this, but their proportions are also fixed.

Hence, we must register the device’s current configuration to the
character by finding appropriate lengths between each pair of neigh-
boring nodes and a global rigid transformation. Thus creating a
virtual device embedded in the on-screen character (Figure 9, left).

This could be achieved manually by dragging handles on the virtual
device and restricting changes to agree with the current measured
angles. As the tree hierarchy propagates changes downstream in the
kinematic chain, this would require many iterations of adjustments.
On the other hand, fully automatic fitting is ill-posed. A good fit
requires heavy assumptions [Baran and Popović 2007] or semantic
knowledge of the model and desired output animation.

We opt for a semi-automatic, variational approach. Given a sparse
set of joint position hints, our optimization continually determines
appropriate values for all bone lengths and the global rigid trans-
formation, incorporating device input and new positional hints in-
teractively. After registration, a skeleton is inferred and skinning
weights computed automatically (e.g. with [Jacobson et al. 2011],
see Figure 9, right), and the user can begin animating directly.

Assuming a topology is detected, let the current device configu-
ration be represented by a list of non-root node positions X =
{x1,x2, . . . ,xn} for xi ∈ R3 and a global rotation Q0 ∈ SO(3)
and translation x0 ∈ R3 associated with the root.

The position of each non-root node i may be written recursively
using forward kinematics as

xi = xj + Qj

 0
0
si

 , (2)

with Qj = RiQk if k is the parent of j, and si ∈ R is the length of
the edge between node i and its parent j. If we let pi be the origin
of the parent of a non-root node i, so that if node j is the parent of
node i then pi = xj , then we may rewrite explicitly that

xi = siQ0v̂i + pi, (3)

where v̂i is the directional unit-vector, determined — up to rotation
by Q0 — via Equation (1) by the angles read from the device.

Energy formulation. The lengths S = {s1, s2, . . . , sn}, global
rotation Q0 and global translation x0 span node positions X exactly
maintaining the relative orientations of the device. To find the best
values, we solve the following non-linear optimization problem:

argmin
S,Q0,x0,X

wuserEuser(X) + wregEreg(S) + wdragEdrag(S,x0,X),

(4)

subject to xi = siQ0v̂i + pi, ∀i ∈ {1, . . . , n}, (5)
si > 0, ∀i ∈ {1, . . . , n}, (6)

where the scalar weights wuser, wreg, and wdrag balance energy terms.
Though X is fully determined by the other variables via linear equal-
ity constraints (5), we simplify the description (and implementation)
by treating all S, x0, Q0 and X as variables. We delegate our solver
to eliminate degrees of freedom and enforce hard constraints.

The user may specify a desired location ui for any node i. Generally
speaking, the current measured angles will prohibit exactly satisfying
an arbitrary constellation of such constraints. Therefore, we attempt
to achieve each location in a least-squares sense:

Euser(X) =
∑

i if ∃ui

‖xi − ui‖2. (7)

With only a few user-specified hints, our problem is under-
determined, e.g. a single constraint only, or a straight chain with
user constraints at either end. To ensure a reasonable skeleton, we
punish unnaturally large differences between adjacent lengths:

Ereg(S) =
∑
{e,f}∈E

‖se − sf‖2, (8)

where E is the set of pairs {e, f} where the edges incident on nodes
e and f share a common node: that is, edges e and f are neighbors
in the edge-dual graph of the skeletal tree. This energy term is also
recognizable as a graph Laplacian regularization defined over the
edge-dual graph.

The last energy term discourages numerical drift and instability in
under-determined situations. This is important for realizing tempo-



LOW RES FIGURES

Figure 10: We help the user match an assembled device to an existing rig of the Knight. Matching updates in real-time (dashed green) while
the user positions the virtual device near the rig skeleton. Once close, we bind the device to the rig and the user starts animating immediately.

rally smooth response. Therefore, we punish changes over time:

Edrag(x0,X,S) = Ex
drag(x0,X) + Es

drag(S) (9)

=

n∑
i=0

‖xi − x̄i‖2 +

n∑
i=1

‖si − s̄i‖2, (10)

where x̄i and s̄i are the position and incident edge length of node i
from the previous frame respectively. Intuitively, this term amounts
to introducing drag during the optimization. Our optimization frame
rate is fast enough that no lag is noticeable, yet the term is significant
enough to eliminate instabilities due to the problem being otherwise
invariant to global rotation and scale in under-determined scenarios.

Finally, the constant lower bound constraints (6) ensure that lengths
stay positive, otherwise edges between nodes could flip backwards.

Implementation. We solve our constrained optimization problem
with a block coordinate descent (a.k.a. alternating optimization) in
the style of [Sorkine and Alexa 2007]. If Q0 and x0 are fixed, then
the problem reduces to a quadratic program (QP). We optimize for
S and X using an open source active set QP solver [Jacobson et al.
2013]. If S and X are fixed, then the only non-constant energy
terms are Euser and Ex

drag. Minimizing these with respect to the
rigid transformation represented by Q0 and x0 is a variant of the
classic shape matching problem solved by a 3 × 3 singular value
decomposition [Kabsch 1976].

As both steps do not increase our energy we may alternate until
convergence. In practice, convergence takes a few iterations with a
warm start and a single iteration (small dense QP solve and 3× 3
SVD) takes less than one microsecond, so we simply apply a fixed
number of iterations per frame (conservatively 100).

Our interface allows adding new positional constraints on the fly by
dragging out from a virtual node’s center with the mouse. To further
facilitate user-interaction, the target position ui is the unprojection
of the mouse’s coordinates at a depth between the first two hits on
the model along the viewing ray. This simple feature greatly reduces
the number of necessary viewpoint changes, allowing the user to
focus on tuning the angles of the device.

Finally, we note that the weighting parameters w∗ are unimportant
in so far as wuser is comparatively large: our examples use wuser = 1,
wreg = 0.001, and wdrag = 0.0001.

4.2 Attaching to an existing rig

If we have only a 3D model as input, the previous algorithm helps
embed the device’s skeleton inside the shape. In other situations, a
complete skeletal rig, consisting of a model, internal skeleton and
weights may already be available.

The modularity of our device allows the user to construct a device
that closely matches all or part of an existing rig’s skeleton. To
control such a rig, we need a mapping from the device’s degrees

Figure 11: We match to a skeletal rig without a precise spatial
alignment (left). Propagating the device’s relative rotations down
the rig’s kinematic chain produces unintuitive results (top right).
Twisting the pink joint does not twist its matched bone; rather rotates
about an axis parallel to the joint’s initial orientation. Matters are
worse further down the chain. Our adjustment fixes this (bottom).

of freedom to the rig’s. We take advantage of the fast rest-pose
registration to help determine this mapping. First, the user guides the
virtual device near the rig’s skeleton. Meanwhile, we automatically
determine a mapping between each rig bone and a device bone (see
Figure 10). We cast this as a minimal matching problem over the
complete bipartite graph between the sets of bones in the rig skeleton
and those of the device. Each graph edge is given a cost cij set to the
Hausdorff distance between the line segment of bone i of the device
and the line segment of bone j in the rig. The optimal matching is
found via the Hungarian method [Kuhn 1955]. Once combinatorially
matched, the positional alignment may be iteratively refined with the
rest-pose registration procedure, this time replacing user constraints
with the locations of matched joint locations in the rig.

If rig bones and the virtual device perfectly overlap in space, then it
would be sufficient to deform the rig directly using bone transforma-
tions determined by the device’s kinematic chain. To support both
exact and casual interactions, we assume that the bones are closely
but not perfectly aligned. If bone lengths and joint positions dif-
fer, then directly using transformations from the device’s kinematic
chain will effectively tear rig bone’s apart at joints and rotate about
the device’s virtual joint locations rather than the rig joints. Slightly
better would be to propagate bone rotations measured on the device
down the rig’s kinematic chain. This maintains centers of rotation at
rig joints, but the three Euler angles read from the device’s joints are
relative to the reference frames of the device’s bones rather than the
respective bones in the rig. For example, twisting a joint would spin
the rig’s bone about an axis parallel to the device’s virtual bone axis
rather than rig bone’s axis (see Figure 11).

Instead, we precompute the minimal rotation Wij that transforms
the rest vector of the device’s ith bone to that of its matched bone
j in the rig. Using this rotation as a change of basis, we apply the
measured rotation Ri from bone i on the device to matched bone



LOW RES FIGURES

j on the rig as WijRiW
T
ij . This aligns the device’s Euler angle

parameterization of joint rotations to the rig bones’ reference frames
before applying forward kinematics. The same procedure can be
used to rebind to a previous keyframe pose. This allows the user to
start posing from any previous configuration, not just the rest pose.

5 User studies

It is difficult to measure performance in terms of 3D character ar-
ticulation directly. In the end what makes for a good animation or
pose is not easily captured in a single metric such as task completion
time or joint angle error. However, we do know that mouse- and
keyboard-based UIs remain the most prevalent in character articula-
tion systems. Therefore, we design two experiments that allow us to
compare the effect of our input device on user performance directly
to that of mouse and keyboard based UIs.

Targeting with two degrees of freedom. As a baseline experi-
ment we briefly compared keyboard, mouse and our device in a 2.5D
target acquisition task. This is a useful, controlled comparison as it
removes the complexity and idiosyncrasies of a full 3D task.

We detail our experimental design and
analysis in Appedix B. In terms of task
completion time, the keyboard is the
slowest (mean = 4.99s, standard devi-
ation = 0.3s), followed by the mouse
(4.31s, 0.4s) and our device (3.77s,
0.235s). Inset shows means with 95%
confidence intervals. These results show
a clear advantage of our device over the
keyboard and conservatively equal per-
formance to the mouse. This is particu-
larly interesting as the task has only two

degrees of freedom and thus is well-suited for the mouse. This
provides further evidence that there is a benefit to direct, physical
control of 3D objects, as often theorized in the tangible UI litera-
ture.

3D articulation. Following our baseline results, we excluded the
keyboard from further experiments and now directly compare the
mouse and our device. We compared the effect of an assembled
device against that of a mouse-based UI in a complex character
posing task, requiring precise control of many degrees of freedom.
While still reasonably controlled, this experiment simulates the
reality of character articulation and therefore allows us to draw
conclusions about the actual usability in similar applications.

We asked subjects to replicate a series of predefined poses. Subjects
will attempt to register the yellow Dino (see Figure 12) on top of
the target pose rendered in red. We compare our device against a
mouse-based UI for skeletal deformation identical to MAYA’s. We
compare to a forward kinematics mouse interface rather than inverse
kinematics in order to measure fine-grained full character posing,
not just end-effector placement. Requiring additional parameters,
inverse kinematics would also make the experiment less controlled.
In both conditions, the Dino was rigged with the same skeleton con-
taining seven articulated bones. The sequence of poses was identical
per condition. The presentation of interface order was counterbal-
anced. Excluding the creative element of posing, this experiment
is not a perfect simulation of the animation process, but it does
measure some aspects of posing: spatial thinking, 3D manipulation
and impact of input device on accuracy and task completion time.

For this experiment we recruited from our university 11 participants
(6 male, 5 female), ages 23 to 38. All participants reported inter-
mediate to no experience with modeling tools like MAYA. None

Figure 12: On screen stimuli for 3D pose reproduction user study.

Figure 13: Two typical posing sessions show the mouse (blue) and
our device (green) decreasing pose distance from 100% to minimal
values at completion (yellow dots). We take the maximum of the two
minima as a baseline (dashed black) and compute integrals under
both curves up to the time they reach this distance. This value is
then normalized to define the amount of work necessary.

had previous experience with our device. Learning from [Yoshizaki
et al. 2011], we refrained from imposing a hard cutoff time, instead
instructing subjects to decide when they are “close enough or no
longer making efficient progress”.

To quantify performance we use three metrics: time to completion,
accuracy and amount of work necessary to reach a “close enough”
pose. The last, being an atypical metric, deserves some elaboration.
When posing 3D characters, it is often important to quickly get a
rough configuration, for example to communicate an idea to team
members. To capture this crucial period in the creative process, we
analyze our data in terms of work. In order to define a meaningful
and fair measure we look at the integral distance for each interface up
to the same small distance: the maximum of the minimal distances
across the two interfaces. Then we normalize with respect to the time
to reach this point in order to compare across users (see Figure 13).

Distance is measured as the sum of absolute angles of the small-
est rotation aligning each bone’s frame orientation in the target to
the subject’s pose. This is easily computed when representing ori-
entations as unit quaternions. With the target and subject’s frame
orientation qt and qs respectively, our metric is

d(qt,qs) = 2 cos−1(|Re(qtq
∗
s)|) (11)

where d(qt,qs) ∈ [0, π]. Distances are then normalized across
poses and we report measures in terms of percentage of distance



LOW RES FIGURES

Figure 14: Our 3D pose replication user study shows no significant
difference between MAYA-clone mouse interface and our device in
terms of speed and long-run accuracy. But our device is significantly
better in terms of work needed to reach an acceptable distance.

Figure 15: A user may bind a small device to a subset of a rig
and then layer animations for multiple subsets. The same parts—in
different arrangements—first animate the body of the Scorpion, the
tail, claws, and each pair of legs.

between initial pose and target pose. For each pose, distance starts
at 100% and decrease as the subject makes progress toward (but
typically not perfectly reaching) 0%.

Of our results (summarized in Figure 14), the most immediate is
the dramatic variability in total posing time across subjects (from
15 to 90 minutes). However, within subjects total posing times
are similar. The mouse has (mean=4.66m, SD=3.4m) and for our
device (mean=5.08m, SD=3.2m). A Student’s t-test reveals that no
significant difference between these means (p = 0.768).

Next we consider absolute distance to the target pose at task comple-
tion. Again we see no significant difference (p = 0.465) between
mouse and our device. The the mouse has (mean=20%, SD=10.3)
and our device (mean=23.0%, SD=8.2%).

Finally, regarding the amount of work, we see a significant differ-
ence (p = 0.008) between the two conditions. The work for the
mouse has (mean=64.8%, SD=9.5%) and our device (mean=51.9%,
SD=11.0%). Visualizing distances for each interface as a function
of time illustrates this pattern (see Figure 13). Our device typically
makes very fast initial progress, achieving a close enough pose and
then slows down. The mouse by comparison makes steady but slow
progress.

6 Applications

We manufactured a kit of 20
joints, nine splitters, four exten-
sion segments, 14 endcaps, and
a controller (inset). We demon-
strate the effectiveness of as-
sembled device instances in dif-
ferent contexts and with differ-
ent characters.

Figure 16: Our design generalizes to customized splitters like this
hand. The friction control of the 14 attached joints allows the device
to remain in pose as the user poses the Chimpanzee Hand.

Figure 17: A device with three bending joints (left, user’s hands
omitted) raises and points the leg of a 2D character (middle), ani-
mating all joints simultaneously (right).

Figure 18: Our device is also useful for non-skeletal deformation
paradigms like handle-based variational modeling.

The main application of our device is the interactive posing and
animation of 3D characters. Figure 22 highlights some poses created
with our device. These include the humanoid characters such as
the Knight or the Dino and non-humanoid characters such as the
Crocodile, Ostrich, Frog and the Swedish Lamp. It is noteworthy
that some of these characters (Scorpion and Swedish Lamp) are
rigged using external software making use of our skeleton matching
procedure and the others use our rest-pose registration.

For very complex topologies it is often easier to layer animations
recorded for different parts separately, rather than control all de-
grees of freedom simultaneously. Figure 15 shows the creation of
a layered animation of the Scorpion, (re-)using only a small subset
of parts. Mouse interfaces easily allow layering animations up the
forward kinematics tree as changes will propagate down the tree.
Exploiting human proprioception, our device takes advantage of the
full hierarchy allowing layering both orders on the kinematic tree.

We purposefully design a general radial splitter that supports many
branching cardinalities and orientations (see Figure 7). However,
our firmware and algorithms support custom non-radial splitters
for special purposes (see Appedix A). For example, we 3D printed



LOW RES FIGURES

Figure 19: A user interacts with an elastic simulation of the Basset Hound in real time using a single joint to control the dog’s neck.

Figure 20: If the user is unsatisfied with the limited control in the
back of the Elephant in Figure 1, she may quickly insert a joint along
the spine to increase flexibility.

a hand shaped splitter used to create a fine-grained pose of the
Chimpanzee Hand (see Figure 16).

Our device is not only suitable for 3D tasks, but by ignoring twist
measurements also functions for 2D cartoon animation control. Fig-
ure 17 shows a user animating a one-legged 2D character. Our
device allows for the simultaneous manipulation of multiple joints.
Such simultaneous control is impossible with a mouse interface.

Figure 19 illustrates a particularly playful example. Here our device
directs the Dog, who is governed by a dynamic elastic simulation,
Our device may also provide input for non-skeletal deformation
systems. A chain of joints manipulates the Shark in Figure 18,
driving a handle-based deformation method [Sorkine and Alexa
2007]. Only the first and last joints are mapped to handles. The
middle joint, while its measurements are ignored, acts implicitly via
the kinematics chain, helping to manage distances.

The modularity of our device allows users to perfect and refine their
working device to match the complexity of the desired articulation.
In Figure 20, the user adds an additional joint to the device used
in Figure 1. Our registration and binding algorithms reduce the
effort required to make changes in the skeletal hierarchy and resume
articulation.

Limitations and future work. In future work, we would like to
optimize the design and performance of our device, arriving at
smaller faster, and cheaper parts. Professional character rigs may
contain hundreds of bones, spanning many levels in the skeletal hi-
erarchy. Our device’s size and power consumption become practical
limitations when binding to such large rigs, though partial binding
is possible at any level of a rig’s hierarchy (see Figure 15). We
plan to construct isolated twisting or bending joints, which would
reduce the overall size in situations where certain degrees of freedom
are semantically unnecessary (e.g. in Figures 16 and 17 ). Despite
the aforementioned issues, we are working on a possible ball-and-

Figure 21: Rigged with two joints controlling each arm (left), the
Beast’s hands make contact virtually despite lack of contact in the
device (middle). Similarly, making contact between end effectors of
the device does not correspond to the same contact virtually.

socket joint which would overcome gimbal locking and allow tracing
rotational geodesics.

Our device accurately reports relative orientations but has no sense
of its absolute location or orientation. It would be interesting to
combine our system with a rigid tracking system [Held et al. 2012].
Though our registration algorithm helps overcome physical-virtual
disparities, certain semantic relationships do not carry over such
as contact and collisions (see Figure 21). Perhaps haptic feedback
could be useful to overcome this, though motors would encumber
design and increase costs. Finally, our precise measurements would
complement an augmented reality environment such as [Ando et al.
2002].

7 Conclusion

Tangible manipulation of arbitrary topology skeletons proves to
be a powerful interface for posing, animation and modeling. Our
complementary rest-pose registration and rig attachment algorithms
lower the barrier of entry for 3D articulation tasks. The accuracy
achieved by first-time users optimistically opens the door to building
an expert skill set around tangible manipulation devices such as ours
for character animation.

Our device is one step toward greater immersion and tangibility
in the context of posing, designing and animating deformable 3D
shapes. As displays make advances toward convincing autostere-
oscopy and 3D printing becomes more commonplace, we see po-
tentially large impact from tangible input devices for virtual 3D
content. To this end, we attach the complete hardware blueprints
(OpenHardware) and accompanying source code in the hopes of
fostering future research in this direction.



LOW RES FIGURES

Acknowledgements

We are indebted to Ladislav Kavan for illuminating discussions
and to Gilles Caprari (gctronic.com) for providing electronic and
engineering support. We are grateful for the hours spent by our user
study participants. We thank Marco Attene for making MESHFIX
open source and Olga Diamanti, Romain Prévost, Christian Schüler,
Kenshi Takayama and Emily Whiting for proofreading. This work
was supported in part by the ERC grant iModel (StG-2012-306877),
by an SNF award 200021 137879 and the Intel Doctoral Fellowship.
The Knight was initially created using Cosmic Blobs R© software
developed by Dassault Systemes SolidWorks Corp.

References

ANDO, Y., TAKAHASHI, S., AND SHIBAYAMA, E. 2002. A 3D
animation system with superimposing cg on a physical armature.
Proc. APCHI.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H. 2012.
Fabricating articulated characters from skinned meshes. ACM
Trans. Graph. 31, 4.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and anima-
tion of 3D characters. ACM Trans. Graph. 26, 3, 72:1–72:8.

BARAN, I., VLASIC, D., GRINSPUN, E., AND POPOVIĆ, J. 2009.
Semantic deformation transfer. ACM Trans. Graph. 28, 3.

BARNES, C., JACOBS, D. E., SANDERS, J., GOLDMAN, D. B.,
RUSINKIEWICZ, S., FINKELSTEIN, A., AND AGRAWALA, M.
2008. Video puppetry: a performative interface for cutout anima-
tion. ACM Trans. Graph. 27, 5, 124.

BHARAJ, G., THORMÄHLEN, T., SEIDEL, H.-P., AND THEOBALT,
C. 2012. Automatically rigging multi-component characters.
Comput. Graph. Forum 30, 2.

CALÌ, J., CALIAN, D. A., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3d-printing of non-
assembly, articulated models. ACM Trans. Graph. 31, 6.

CELSYS, INC., 2013. QUMARION. http://www.clip-studio.com.

CHEN, J., IZADI, S., AND FITZGIBBON, A. 2012. Kinetre: An-
imating the world with the human body. In Proc. UIST, ACM
Press, New York, New York, USA, 435.

DONTCHEVA, M., YNGVE, G., AND POPOVIĆ, Z. 2003. Layered
acting for character animation. ACM Trans. Graph. 22 (July).

ESPOSITO, C., PALEY, W. B., AND ONG, J. 1995. Of mice and
monkeys: a specialized input device for virtual body animation.
In Proc. I3D.

FENG, T.-C., GUNAWARDANE, P., DAVIS, J., AND JIANG, B.
2008. Motion capture data retrieval using an artist’s doll. In Proc.
ICPR, 1–4.

HELD, R., GUPTA, A., CURLESS, B., AND AGRAWALA, M. 2012.
3d puppetry: A kinect-based interface for 3d animation. In Proc.
UIST, ACM, New York, NY, USA, 423–434.

ISHIGAKI, S., WHITE, T., ZORDAN, V. B., AND LIU, C. K.
2009. Performance-based control interface for character ani-
mation. ACM Trans. Graph. 28, 3.

ISHII, H., AND ULLMER, B. 1997. Tangible bits: Towards seamless
interfaces between people, bits and atoms. In Proc. CHI.

JACOB, R. J. K., SIBERT, L. E., MCFARLANE, D. C., AND
MULLEN, JR., M. P. 1994. Integrality and separability of input
devices. ACM Trans. Comput.-Hum. Interact. 1, 1 (Mar.), 3–26.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O. 2011.
Bounded biharmonic weights for real-time deformation. ACM
Trans. Graph. 30, 4, 78:1–78:8.

JACOBSON, A., PANOZZO, D., ET AL., 2013. libigl: A simple C++
geometry processing library. http://igl.ethz.ch/projects/libigl/.

JOHNSON, M. P., WILSON, A., BLUMBERG, B., KLINE, C., AND
BOBICK, A. 1999. Sympathetic interfaces. In Proc. CHI.

KABSCH, W. 1976. A solution of the best rotation to relate two sets
of vectors. Acta Crystallographica, 32, 922.

KNEP, B., HAYES, C., SAYRE, R., AND WILLIAMS, T. 1995.
Dinosaur input device. In Proc. CHI, 304–309.

KUHN, H. W. 1955. The hungarian method for the assignment
problem. Naval research logistics quarterly 2, 1-2, 83–97.

LIN, J., IGARASHI, T., MITANI, J., LIAO, M., AND HE, Y. 2012.
A sketching interface for sitting pose design in the virtual envi-
ronment. IEEE TVCG 18, 11, 1979–1991.

MELEXIS SYS., 2013. MLX90316 DataSheet.

OIKONOMIDIS, I., KYRIAZIS, N., AND ARGYROS, A. A. 2012.
Tracking the Articulated Motion of Two Strongly Interacting
Hands. In IEEE CVPR.

OORE, S., TERZOPOULOS, D., AND HINTON, G. 2002. A desktop
input device and interface for interactive 3D character animation.
In Proc. Graphics Interface, 133–140.

RAFFLE, H. S., PARKES, A. J., AND ISHII, H. 2004. Topobo:
a constructive assembly system with kinetic memory. In Proc.
CHI.

ROMERO, J., KJELLSTROM, H., AND KRAGIC, D. 2010. Hands in
action: real-time 3D reconstruction of hands in interaction with
objects. In IEEE ICRA, 458–463.

SEOL, Y., O’SULLIVAN, C., AND LEE, J. 2013. Creature features:
online motion puppetry for non-human characters. In Proc. SCA.

SHIM, B. 2010. Best student project prize talk: The wonder hospital.
SIGGRAPH Computer Animation Festival.

SHIRATORI, T., MAHLER, M., TREZEVANT, W., AND HODGINS,
J. K. 2013. Expressing animated performances through pup-
peteering. In 3DUI, IEEE, 59–66.

SHNEIDERMAN, B. 1997. Direct manipulation for comprehensible,
predictable and controllable user interfaces. In Proc. IUI, 33–39.

SHOEMAKE, K. 1992. Arcball: A user interface for specifying
three-dimensional orientation using a mouse. In Proc. CGI.

SHOTTON, J., SHARP, T., KIPMAN, A., FITZGIBBON, A., FINOC-
CHIO, M., BLAKE, A., COOK, M., AND MOORE, R. 2013.
Real-time human pose recognition in parts from single depth
images. Commun. ACM 56, 1.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible surface
modeling. In Proc. SGP, 109–116.

SRIDHAR, S., OULASVIRTA, A., AND THEOBALT, C. 2013. Inter-
active markerless articulated hand motion tracking using rgb and
depth data. In Proc. ICCV.

SUMNER, R., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM Trans. Graph. 23, 3, 399–405.

http://www.gctronic.com
http://www.google.com/search?q=A+3D+animation+system+with+superimposing+cg+on+a+physical+armature
http://www.google.com/search?q=A+3D+animation+system+with+superimposing+cg+on+a+physical+armature
http://www.google.com/search?q=Fabricating+articulated+characters+from+skinned+meshes
http://www.google.com/search?q=Automatic+rigging+and+animation+of+3D+characters
http://www.google.com/search?q=Automatic+rigging+and+animation+of+3D+characters
http://www.google.com/search?q=Semantic+deformation+transfer
http://www.google.com/search?q=Video+puppetry:+a+performative+interface+for+cutout+animation.
http://www.google.com/search?q=Video+puppetry:+a+performative+interface+for+cutout+animation.
http://www.google.com/search?q=Automatically+rigging+multi-component+characters
http://www.google.com/search?q=3d-printing+of+non-assembly,+articulated+models
http://www.google.com/search?q=3d-printing+of+non-assembly,+articulated+models
http://www.google.com/search?q=QUMARION
http://www.google.com/search?q=Kinetre:+Animating+the+world+with+the+human+body
http://www.google.com/search?q=Kinetre:+Animating+the+world+with+the+human+body
http://www.google.com/search?q=Layered+acting+for+character+animation
http://www.google.com/search?q=Layered+acting+for+character+animation
http://www.google.com/search?q=Of+mice+and+monkeys:+a+specialized+input+device+for+virtual+body+animation
http://www.google.com/search?q=Of+mice+and+monkeys:+a+specialized+input+device+for+virtual+body+animation
http://www.google.com/search?q=Motion+capture+data+retrieval+using+an+artist's+doll
http://www.google.com/search?q=3d+puppetry:+A+kinect-based+interface+for+3d+animation
http://www.google.com/search?q=Performance-based+control+interface+for+character+animation
http://www.google.com/search?q=Performance-based+control+interface+for+character+animation
http://www.google.com/search?q=Tangible+bits:+Towards+seamless+interfaces+between+people,+bits+and+atoms
http://www.google.com/search?q=Tangible+bits:+Towards+seamless+interfaces+between+people,+bits+and+atoms
http://www.google.com/search?q=Integrality+and+separability+of+input+devices
http://www.google.com/search?q=Integrality+and+separability+of+input+devices
http://www.google.com/search?q=Bounded+biharmonic+weights+for+real-time+deformation
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=Sympathetic+interfaces
http://www.google.com/search?q=A+solution+of+the+best+rotation+to+relate+two+sets+of+vectors
http://www.google.com/search?q=A+solution+of+the+best+rotation+to+relate+two+sets+of+vectors
http://www.google.com/search?q=Dinosaur+input+device
http://www.google.com/search?q=The+hungarian+method+for+the+assignment+problem
http://www.google.com/search?q=The+hungarian+method+for+the+assignment+problem
http://www.google.com/search?q=A+sketching+interface+for+sitting+pose+design+in+the+virtual+environment
http://www.google.com/search?q=A+sketching+interface+for+sitting+pose+design+in+the+virtual+environment
http://www.google.com/search?q=MLX90316+DataSheet
http://www.google.com/search?q=Tracking+the+Articulated+Motion+of+Two+Strongly+Interacting+Hands
http://www.google.com/search?q=Tracking+the+Articulated+Motion+of+Two+Strongly+Interacting+Hands
http://www.google.com/search?q=A+desktop+input+device+and+interface+for+interactive+3D+character+animation
http://www.google.com/search?q=A+desktop+input+device+and+interface+for+interactive+3D+character+animation
http://www.google.com/search?q=Topobo:+a+constructive+assembly+system+with+kinetic+memory
http://www.google.com/search?q=Topobo:+a+constructive+assembly+system+with+kinetic+memory
http://www.google.com/search?q=Hands+in+action:+real-time+3D+reconstruction+of+hands+in+interaction+with+objects
http://www.google.com/search?q=Hands+in+action:+real-time+3D+reconstruction+of+hands+in+interaction+with+objects
http://www.google.com/search?q=Hands+in+action:+real-time+3D+reconstruction+of+hands+in+interaction+with+objects
http://www.google.com/search?q=Creature+features:+online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Creature+features:+online+motion+puppetry+for+non-human+characters
http://www.google.com/search?q=Best+student+project+prize+talk:+The+wonder+hospital
http://www.google.com/search?q=Expressing+animated+performances+through+puppeteering.
http://www.google.com/search?q=Expressing+animated+performances+through+puppeteering.
http://www.google.com/search?q=Direct+manipulation+for+comprehensible,+predictable+and+controllable+user+interfaces
http://www.google.com/search?q=Direct+manipulation+for+comprehensible,+predictable+and+controllable+user+interfaces
http://www.google.com/search?q=Arcball:+A+user+interface+for+specifying+three-dimensional+orientation+using+a+mouse
http://www.google.com/search?q=Arcball:+A+user+interface+for+specifying+three-dimensional+orientation+using+a+mouse
http://www.google.com/search?q=Real-time+human+pose+recognition+in+parts+from+single+depth+images
http://www.google.com/search?q=Real-time+human+pose+recognition+in+parts+from+single+depth+images
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=As-rigid-as-possible+surface+modeling
http://www.google.com/search?q=Interactive+markerless+articulated+hand+motion+tracking+using+rgb+and+depth+data
http://www.google.com/search?q=Interactive+markerless+articulated+hand+motion+tracking+using+rgb+and+depth+data
http://www.google.com/search?q=Interactive+markerless+articulated+hand+motion+tracking+using+rgb+and+depth+data
http://www.google.com/search?q=Deformation+transfer+for+triangle+meshes
http://www.google.com/search?q=Deformation+transfer+for+triangle+meshes


LOW RES FIGURES

Figure 22: We test our device on a wide range characters with skeletons of varying topological and geometric complexity. Each pair of rows
is a virtual character and paired device. The leftmost column for each pair shows the device and character at their rest or bind states. The
other two columns show poses.



LOW RES FIGURES

TAGLIASACCHI, A., ALHASHIM, I., OLSON, M., AND ZHANG, H.
2012. Mean curvature skeletons. Comput. Graph. Forum 31, 5.

WANG, R. Y., AND POPOVIĆ, J. 2009. Real-time hand-tracking
with a color glove. ACM Trans. Graph. 28, 3, 63:1–63:8.

WELLER, M. P., DO, E. Y.-L., AND GROSS, M. D. 2008. Posey:
instrumenting a poseable hub and strut construction toy. In Proc.
TEI, 39–46.

YOSHIZAKI, W., SUGIURA, Y., CHIOU, A. C., HASHIMOTO,
S., INAMI, M., IGARASHI, T., AKAZAWA, Y., KAWACHI, K.,
KAGAMI, S., AND MOCHIMARU, M. 2011. An actuated physical
puppet as an input device for controlling a digital manikin. In
Proc. CHI, 637–646.

A Non-radial splitters

Equation (5) does not apply to non-radial splitters (e.g. the hand
splitter in Figure 16). For a non-radial splitter node i we introduce
auxiliary origins aij at the outlets corresponding to each child j. By
placing these origins accordingly, we may redefine pj = aij so that
xj = sj v̂i + aij . We can express each aij in terms of a scaling
term and the original splitter origin xi:

aij = tijûij + xi, (12)

where tij and ûij are analogous to si and v̂i. That is, ûij is fixed
and indicates the direction of the offset origin and tij accounts for
the stretch. Differently from before, we now must change all the
scaling factors associated with the splitter uniformly. This can be
modeled by additional linear equality constraints:

tij/t̄ij = tik/t̄ik, ∀j 6= k, (13)

where t̄ij are the normalized (default) scales of each origin offset.
Since the ratio tij/tik is fixed, each constraint is linear in in tij and
tik. Similarly to the other constraints, they are not affected by Q0

and only show up during the QP solve.

B Design of targeting user study

We asked 18 subjects (14 male, 4 female) to aim the cannon of a
virtual tank using mouse, keyboard and a single joint of our device
(see inset). The subjects, again from our university.

For the keyboard, subjects con-
trol the cannon’s pitch and yaw
angles in small increments us-
ing the up, down, left and right
keys. For the mouse, the ab-
solute (x, y) coordinates of the
hidden cursor map linearly to
these angles, respectively. For
our device, the first twist an-
gle turns left and right and the
bending part controls pitch of
the cannon. Bullets fire using
a foot pedal for all conditions.
Repeated attempts are allowed until a hit, and a new target appears
at a random location. Presentation order of the conditions is coun-
terbalanced in a Latin-Square design. Each user is asked to hit a
total of 50 targets per input device in blocks of 10, allowing for rest
periods between blocks.

A two-way repeated measures ANOVA with the interface and the
block id as independent variables reveals a main effect for blocks
and a slight decrease in mean task completion time, indicating

a mild learning effect. However, post-hoc analysis yielded no
significant differences in speed between blocks (all p > 0.05).
In terms of the interface used, the mean task completion time
for keyboard was the slowest (mean= 4.99s, standard deviation
= 0.3), followed by the mouse (4.31s, 0.4s) and our device (3.77s,
0.235s). A main effect for the interface on task completion time
exists (F(2,34) = 22.8, p < 0.001) and pairwise comparisons show
significance between keyboard and mouse (p = 0.002) and be-
tween keyboard and device (p < 0.001). While our device scores
slightly better than the mouse, the difference is not strictly significant
(p = 0.1).

http://www.google.com/search?q=Mean+curvature+skeletons
http://www.google.com/search?q=Real-time+hand-tracking+with+a+color+glove
http://www.google.com/search?q=Real-time+hand-tracking+with+a+color+glove
http://www.google.com/search?q=Posey:+instrumenting+a+poseable+hub+and+strut+construction+toy
http://www.google.com/search?q=Posey:+instrumenting+a+poseable+hub+and+strut+construction+toy
http://www.google.com/search?q=An+actuated+physical+puppet+as+an+input+device+for+controlling+a+digital+manikin
http://www.google.com/search?q=An+actuated+physical+puppet+as+an+input+device+for+controlling+a+digital+manikin

