Fast Automatic Skinning Transformations

Alec Jacobson Ilya Baran Ladislav Kavan Jovan Popović Olga Sorkine

ETH Zurich Disney Research Zurich ETH Zurich Adobe Systems, Inc. ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Real-time performance critical for interactive design and animation

Real-time performance critical for interactive design and animation

We want speeds measured in microseconds

80k triangles 20µs per iteration

We want speeds measured in microseconds

80k triangles 20µs per iteration

This means speed comparable to rendering

place skeleton in shape

August 8, 2012

August 8, 2012

Alec Jacobson

10

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 8, 2012

Alec Jacobson

11

EIDEN Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 8, 2012

Alec Jacobson

12

EIDEN Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 8, 2012

August 8, 2012

 $\mathbf{v}_i' = \sum_{j=1}^m w_j(\mathbf{v}_i) \mathbf{T}_j \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$

Q

August 8, 2012

August 8, 2012

August 8, 2012

Alec Jacobson

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 8, 2012

Alec Jacobson

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Full optimization

Full optimization $\underset{\mathbf{V}'}{\operatorname{arg\,min}} E(\mathbf{V}')$ Reduced model $\mathbf{v}'_{i} = \sum_{j=1}^{m} w_{j}(\mathbf{v}_{i})\mathbf{T}_{j}\begin{pmatrix}\mathbf{v}_{i}\\1\end{pmatrix}$

Skinning degrees of freedom

Full optimization
$$\underset{\mathbf{V}'}{\operatorname{arg\,min}} E(\mathbf{V}')$$
Reduced model $\mathbf{v}'_i = \sum_{j=1}^m w_j(\mathbf{v}_i) \mathbf{T}_j \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$ Matrix form $\mathbf{V}' = \mathbf{MT}$

Enforce user constraints as linear equalities

August 8, 2012

Alec Jacobson

EIDER Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Enforce user constraints as linear equalities

August 8, 2012

Enforce user constraints as linear equalities

August 8, 2012

Full energies

$$E(\mathbf{V}', \mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \|(\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k(\mathbf{v}_i - \mathbf{v}_j)\|^2$$

August 8, 2012

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Local/Global optimization

Global step: Fix ${f R}$, minimize with respect to ${f V}'$

Local step: Fix $\mathbf{V}'_{\!\!\!,}$ minimize with respect to \mathbf{R}

Oigl

August 8, 2012

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Local/Global optimization

precompute

Global step: large, sparse linear solve $\mathbf{V}' = \mathbf{A}^{-1}\mathbf{b}$

Local step: Fix $\mathbf{V}'_{\!\!\!\!}$ minimize with respect to \mathbf{R}

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

August 8, 2012

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Local/Global optimization

Global step: large, sparse linear solve $V' = A^{-1}b$

Local step: 3x3 SVD for each rotation in ${f R}$

🔘 ıgl

August 8, 2012

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

precompute

Local/Global optimization

Global step: small, dense linear solve $\mathbf{T} = \tilde{\mathbf{A}}^{-1} \tilde{\mathbf{b}}$

Local step: 3x3 SVD for each rotation in \mathbf{R}

Substitute
$$\mathbf{V}' = \mathbf{MT}$$

Similar to: [Huang et al. 06] [Der et al. 06] [Au et al. 07] [Hildebrandt et al. 12]

Direct reduction of elastic energies brings speed up and regularization...

Direct reduction of elastic energies brings speed up and regularization...

Full ARAP solution

August 8, 2012

Direct reduction of elastic energies brings speed up and regularization...

Full ARAP solution

Our smooth subspace solution $\mathbf{V}' = \mathbf{M}\mathbf{T}$

August 8, 2012

Alec Jacobson

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Local/Global optimization

Global step: small, dense linear solve $\mathbf{T} = \tilde{\mathbf{A}}^{-1} \tilde{\mathbf{b}}$

Local step: 3x3 SVD for each rotation in ${f R}$

But #rotations ~ full mesh discretization

Substitute $\mathbf{V}' = \mathbf{MT}$

OIGl

August 8, 2012

We reduce any *as-rigid-as-possible* energy

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Local/Global optimization

Global step: small, dense linear solve $\mathbf{T} = ilde{\mathbf{A}}^{-1} ilde{\mathbf{b}}$

Local step: 3x3 SVD for each rotation in \mathbf{R}

Substitute $\mathbf{V}' = \mathbf{MT}$ Cluster \mathcal{E}_k

August 8, 2012

Rotation evaluations may be reduced by clustering in *weight space*

gl

August 8, 2012

Rotation evaluations may be reduced by k-means clustering in *weight space*

Full energies

$$\sum_{k=1} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

weight space

$$\begin{bmatrix} w_1(\mathbf{v}_j) \\ w_2(\mathbf{v}_j) \\ \vdots \\ w_m(\mathbf{v}_j) \end{bmatrix}$$

 $E(\mathbf{V}',\mathbf{R}) = \frac{1}{2}\sum_{i=1}^{n}$

Rotation evaluations may be reduced by clustering in *weight space*

Full energies

$$\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{\prime} \sum_{(i,j)\in\mathcal{E}_{k}} c_{ijk} \| (\mathbf{v}_{i}^{\prime} - \mathbf{v}_{j}^{\prime}) - \mathbf{R}_{k} (\mathbf{v}_{i} - \mathbf{v}_{j}) \|^{2}$$

August 8, 2012

 $E(\mathbf{V}',$

Alec Jacobson

40

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Rotation evaluations may be reduced by clustering in *weight space*

Full energies

$$E(\mathbf{V}', \mathbf{R}) = \frac{1}{2} \sum_{k=1}^{\infty} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

117

 $T (\mathbf{x} \mathbf{r} \mathbf{l} \mathbf{m})$

Alec Jacobson

1 \

 $\times 112$

We reduce any *as-rigid-as-possible* energy

Full energies

$$E(\mathbf{V}',\mathbf{R}) = \frac{1}{2} \sum_{k=1}^{r} \sum_{(i,j)\in\mathcal{E}_k} c_{ijk} \| (\mathbf{v}'_i - \mathbf{v}'_j) - \mathbf{R}_k (\mathbf{v}_i - \mathbf{v}_j) \|^2$$

Local/Global optimization

Global step: small, dense linear solve $\mathbf{T} = \tilde{\mathbf{A}}^{-1}\tilde{\mathbf{b}}$

Local step: 3x3 SVD for each rotation in ${f R}$

#rotations ~ #T,
independent of full mesh resolution

Substitute $\mathbf{V}' = \mathbf{MT}$ Cluster \mathcal{E}_k

August 8, 2012

Real-time automatic degrees of freedom

Real-time automatic degrees of freedom

Extra weights would expand subspace...

$$\mathbf{v}_i' = \sum_{j=1}^m w_j(\mathbf{v}_i) \mathbf{T}_j \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$$

 $\mathbf{V}'=\mathbf{MT}$

Extra weights would expand subspace...

$$\mathbf{v}_{i}' = \sum_{j=1}^{m} w_{j}(\mathbf{v}_{i}) \mathbf{T}_{j} \begin{pmatrix} \mathbf{v}_{i} \\ 1 \end{pmatrix} + \sum_{k=1}^{m_{\text{extra}}} w_{k}(\mathbf{v}_{i}) \mathbf{T}_{k} \begin{pmatrix} \mathbf{v}_{i} \\ 1 \end{pmatrix}$$

 $\mathbf{V}'=\mathbf{MT}$

August 8, 2012

Extra weights would expand subspace...

$$\mathbf{v}_{i}' = \sum_{j=1}^{m} w_{j}(\mathbf{v}_{i}) \mathbf{T}_{j} \begin{pmatrix} \mathbf{v}_{i} \\ 1 \end{pmatrix} + \sum_{k=1}^{m_{\text{extra}}} w_{k}(\mathbf{v}_{i}) \mathbf{T}_{k} \begin{pmatrix} \mathbf{v}_{i} \\ 1 \end{pmatrix}$$

$\mathbf{V}' = \mathbf{M}\mathbf{T} + \mathbf{M}_{\mathrm{extra}}\mathbf{T}_{\mathrm{extra}}$

August 8, 2012

Overlapping b-spline "bumps" in weight space

farthest point sampling

August 8, 2012

Overlapping b-spline "bumps" in weight space

b-spline basis parameterized by distance in weight space

🔘 ıgl

August 8, 2012

Alec Jacobson

53

Overlapping b-spline "bumps" in weight space

b-spline basis parameterized by distance in weight space

Extra weights expand deformation subspace

q

August 8, 2012

Extra weights expand deformation subspace

no extra weights

15 extra weights

August 8, 2012

Full non-linear optimization [Botsch et al. 2006]

Our reduced method

Full non-linear optimization [Botsch et al. 2006]

Our reduced method

Full non-linear optimization [Botsch et al. 2006]

Our reduced method

Final algorithm is simple and FAST

Precomputation per shape+rig

- Compute any additional weights
- Construct, prefactor system matrices

For a 50K triangle mesh: 12 seconds

2.7 seconds

Final algorithm is simple and FAST

Precomputation per shape+rig

- Compute any additional weights
- Construct, prefactor system matrices

12 seconds 2.7 seconds

For a 50K triangle mesh:

Precomputation when switching constraint type- Re-factor global step system6 milliseconds

Final algorithm is simple and FAST

Precomputation per shape+rig

- Compute any additional weights
- Construct, prefactor system matrices

12 seconds 2.7 seconds

For a 50K triangle mesh:

Precomputation when switching constraint type- Re-factor global step system6 milliseconds

~30 iterations 22 microseconds global: #weights by #weights linear solve local: #rotations SVDs [McAdams et al. 2011]

Lightning FAST automatic skinning transformations

August 8, 2012

q

From Cartoon Animation by Preston Blair

August 8, 2012

Our reduction preserves nature of different energies, at no extra cost

August 8, 2012

Our reduction preserves nature of different energies, at no extra cost

August 8, 2012

Alec Jacobson

72

Simple drag-only interface for point handles

Simple drag-only interface for point handles

Simple drag-only interface for point handles

• Substitute $\mathbf{V}' = \mathbf{MT}$ to reduce DOFs

- Substitute $\mathbf{V}' = \mathbf{MT}$ to reduce DOFs
- Cluster rotations to reduce energy eval.

- Substitute $\mathbf{V}' = \mathbf{MT}$ to reduce DOFs
- Cluster rotations to reduce energy eval.
- Additional weights to expand subspace

- Substitute $\mathbf{V}' = \mathbf{MT}$ to reduce DOFs
- Cluster rotations to reduce energy eval.
- Additional weights to expand subspace

Each innovation takes advantage of input skinning rig

Future work and discussion

- Alternative additional weights: sparsity?
- Joint limits, balance, etc.

Acknowledgements

We are grateful to Peter Schröder, Emily Whiting, and Maurizio Nitti.

We thank Eftychios Sifakis for his open source fast 3×3 SVD code.

This work was supported in part by an SNF award 200021_137879 and by a gift from Adobe Systems.

Fast Automatic Skinning Transformations http://igl.ethz.ch/projects/fast

Alec Jacobson (jacobson@inf.ethz.ch), Ilya Baran, Ladislav Kavan, Jovan Popović, Olga Sorkine

