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place skeleton in shape compute/paint weights deform bones 

15 bones * 3x4 matrix  
= 

180 degrees of freedom 
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Mesh vertex positions 



# 

User specifies subset of parameters, 
optimize to find remaining ones 

August 8, 2012 Alec Jacobson 21 

Full optimization 

Reduced model 

Skinning degrees of freedom 



# 

User specifies subset of parameters, 
optimize to find remaining ones 

August 8, 2012 Alec Jacobson 22 

Full optimization 

Reduced model 

Matrix form 



# 

User specifies subset of parameters, 
optimize to find remaining ones 

August 8, 2012 Alec Jacobson 23 

Full optimization 
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Full energies 

triangles 
Liu et al. 08 

“spokes” 
Sorkine & Alexa 07 

 

“spokes and rims” 
Chao et al. 10 

tetrahedra 
Chao et al. 10 
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Full energies 

Local step: Fix    , minimize with respect to RV0

Local/Global optimization 

V0 = A�1b

precompute 



# 

We reduce any as-rigid-as-possible energy 

August 8, 2012 Alec Jacobson 31 

Full energies 

Local step: 3x3 SVD for each rotation in  R

Local/Global optimization 

Global step: large, sparse linear solve V0 = A�1b
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Global step: small, dense linear solve 

We reduce any as-rigid-as-possible energy 

August 8, 2012 Alec Jacobson 32 

Full energies 

Local step: 3x3 SVD for each rotation in  R

Local/Global optimization 

T = Ã�1b̃

precompute 

Similar to: 
[Huang et al. 06] 
[Der et al. 06] 
[Au et al. 07] 
[Hildebrandt et al. 12] 

Substitute 
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Full ARAP solution 

Our smooth subspace solution 
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Global step: small, dense linear solve 

We reduce any as-rigid-as-possible energy 
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Full energies 

R

Local/Global optimization 

T = Ã�1b̃

Substitute 
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Global step: small, dense linear solve 

We reduce any as-rigid-as-possible energy 
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Full energies 

R

Local/Global optimization 

Substitute 

T = Ã�1b̃

Local step: 3x3 SVD for each rotation in  
Cluster 

Ek
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Full energies 

triangles 
Liu et al. 08 

“spokes” 
Sorkine & Alexa 07 

“spokes and rims” 
Chao et al. 10 

tetrahedra 
Chao et al. 10 
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Global step: small, dense linear solve 

We reduce any as-rigid-as-possible energy 
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Full energies 

R

Local/Global optimization 

T = Ã�1b̃

Local step: 3x3 SVD for each rotation in  

#rotations ~ #T, 
independent of full mesh resolution 

Substitute 

Cluster 

Ek
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farthest point sampling 
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fast variational modeling 
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Full non-linear optimization 

[Botsch et al. 2006] 
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Final algorithm is simple and FAST 
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Precomputation per shape+rig 
 - Compute any additional weights 
 - Construct, prefactor system matrices 

Precomputation when switching constraint type 
 - Re-factor global step system 

~30 iterations 
 global: #weights by #weights linear solve 
 local: #rotations SVDs   

For a 50K triangle mesh: 
12 seconds 

2.7 seconds 
  

6 milliseconds 

22 microseconds 
 

[McAdams et al. 2011] 
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Demo 

Lightning FAST automatic skinning transformations 
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make flexible control easy 
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From Cartoon Animation by Preston Blair  
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Each innovation takes advantage of input skinning rig 
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Future work and discussion 

●  Alternative additional weights: sparsity? 
●  Joint limits, balance, etc. 
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