
Fast Automatic Skinning Transformations
Alec Jacobson
Ilya Baran
Ladislav Kavan
Jovan Popović
Olga Sorkine

August 8, 2012

ETH Zurich
Disney Research Zurich

ETH Zurich
Adobe Systems, Inc.

ETH Zurich

Real-time performance critical for
interactive design and animation

August 8, 2012 Alec Jacobson 2

2D 3D

Real-time performance critical for
interactive design and animation

August 8, 2012 Alec Jacobson 3

2D 3D

August 8, 2012 Alec Jacobson 4

We want speeds measured in microseconds

80k triangles
20µs per iteration

August 8, 2012 Alec Jacobson 5

We want speeds measured in microseconds

80k triangles
20µs per iteration

This means speed comparable to rendering

August 8, 2012 Alec Jacobson 6
30fps

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 7

place skeleton in shape

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 8

place skeleton in shape compute/paint weights

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 9

place skeleton in shape compute/paint weights deform bones

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 10

place skeleton in shape compute/paint weights deform bones

v0
i =

mX

j=1

wj(vi)Tj

✓
vi

1

◆

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 11

place skeleton in shape compute/paint weights deform bones

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 12

place skeleton in shape compute/paint weights deform bones

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 13

place skeleton in shape compute/paint weights deform bones

Linear Blend Skinning preferred for
real-time performance

August 8, 2012 Alec Jacobson 14

place skeleton in shape compute/paint weights deform bones

15 bones * 3x4 matrix
=

180 degrees of freedom

LBS generalizes to different handle types

August 8, 2012 Alec Jacobson 15

skeletons

v0
i =

mX

j=1

wj(vi)Tj

✓
vi

1

◆

regions

LBS generalizes to different handle types

August 8, 2012 Alec Jacobson 16

skeletons

v0
i =

mX

j=1

wj(vi)Tj

✓
vi

1

◆

regions

LBS generalizes to different handle types

August 8, 2012 Alec Jacobson 17

skeletons

v0
i =

mX

j=1

wj(vi)Tj

✓
vi

1

◆

regions

LBS generalizes to different handle types

August 8, 2012 Alec Jacobson 18

skeletons points

v0
i =

mX

j=1

wj(vi)Tj

✓
vi

1

◆

regions

LBS generalizes to different handle types

August 8, 2012 Alec Jacobson 19

skeletons points

v0
i =

mX

j=1

wj(vi)Tj

✓
vi

1

◆

User specifies subset of parameters,
optimize to find remaining ones

August 8, 2012 Alec Jacobson 20

Full optimization

Mesh vertex positions

User specifies subset of parameters,
optimize to find remaining ones

August 8, 2012 Alec Jacobson 21

Full optimization

Reduced model

Skinning degrees of freedom

User specifies subset of parameters,
optimize to find remaining ones

August 8, 2012 Alec Jacobson 22

Full optimization

Reduced model

Matrix form

User specifies subset of parameters,
optimize to find remaining ones

August 8, 2012 Alec Jacobson 23

Full optimization

Reduced model

Matrix form

Reduced optimization

Enforce user constraints as linear equalities

August 8, 2012 Alec Jacobson 24

User constraints

Reduced optimization

Full

Position only

Unconstrained

Enforce user constraints as linear equalities

August 8, 2012 Alec Jacobson 25

User constraints

Reduced optimization

Full

Position only

Unconstrained

Enforce user constraints as linear equalities

August 8, 2012 Alec Jacobson 26

User constraints

Reduced optimization

Full

Position only

Unconstrained

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 27

Full energies

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 28

Full energies

triangles
Liu et al. 08

“spokes”
Sorkine & Alexa 07

“spokes and rims”
Chao et al. 10

tetrahedra
Chao et al. 10

Global step: Fix , minimize with respect to

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 29

Full energies

V0R

Local step: Fix , minimize with respect to RV0

Local/Global optimization

Global step: large, sparse linear solve

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 30

Full energies

Local step: Fix , minimize with respect to RV0

Local/Global optimization

V0 = A�1b

precompute

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 31

Full energies

Local step: 3x3 SVD for each rotation in R

Local/Global optimization

Global step: large, sparse linear solve V0 = A�1b

Global step: small, dense linear solve

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 32

Full energies

Local step: 3x3 SVD for each rotation in R

Local/Global optimization

T = Ã�1b̃

precompute

Similar to:
[Huang et al. 06]
[Der et al. 06]
[Au et al. 07]
[Hildebrandt et al. 12]

Substitute

Direct reduction of elastic energies
brings speed up and regularization…

August 8, 2012 Alec Jacobson 33

Direct reduction of elastic energies
brings speed up and regularization…

August 8, 2012 Alec Jacobson 34

Full ARAP solution

Direct reduction of elastic energies
brings speed up and regularization…

August 8, 2012 Alec Jacobson 35

Full ARAP solution

Our smooth subspace solution

Local step: 3x3 SVD for each rotation in

Global step: small, dense linear solve

We reduce any as-rigid-as-possible energy

August 8, 2012

But #rotations ~ full mesh discretization

Alec Jacobson 36

Full energies

R

Local/Global optimization

T = Ã�1b̃

Substitute

Global step: small, dense linear solve

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 37

Full energies

R

Local/Global optimization

Substitute

T = Ã�1b̃

Local step: 3x3 SVD for each rotation in
Cluster

Ek

Rotation evaluations may be reduced by
clustering in weight space

August 8, 2012 Alec Jacobson 38

Full energies

triangles
Liu et al. 08

“spokes”
Sorkine & Alexa 07

“spokes and rims”
Chao et al. 10

tetrahedra
Chao et al. 10

Rotation evaluations may be reduced by
k-means clustering in weight space

August 8, 2012 Alec Jacobson 39

Full energies

xj =

2

6664

w1(vj)
w2(vj)

...
wm(vj)

3

7775

weight space

Rotation evaluations may be reduced by
clustering in weight space

August 8, 2012 Alec Jacobson 40

Full energies

r = 2 r = 4 r = 64

Rotation evaluations may be reduced by
clustering in weight space

August 8, 2012 Alec Jacobson 41

Full energies

r = 2 r = 4 r = 64

Global step: small, dense linear solve

We reduce any as-rigid-as-possible energy

August 8, 2012 Alec Jacobson 42

Full energies

R

Local/Global optimization

T = Ã�1b̃

Local step: 3x3 SVD for each rotation in

#rotations ~ #T,
independent of full mesh resolution

Substitute

Cluster

Ek

Real-time automatic degrees of freedom

August 8, 2012 Alec Jacobson 43

Real-time automatic degrees of freedom

August 8, 2012 Alec Jacobson 44

With more and more user constraints
we fall back to standard skinning

August 8, 2012 Alec Jacobson 45

With more and more user constraints
we fall back to standard skinning

August 8, 2012 Alec Jacobson 46

With more and more user constraints
we fall back to standard skinning

August 8, 2012 Alec Jacobson 47

With more and more user constraints
we fall back to standard skinning

August 8, 2012 Alec Jacobson 48

Extra weights would expand subspace…

August 8, 2012 Alec Jacobson 49

Extra weights would expand subspace…

August 8, 2012 Alec Jacobson 50

Extra weights would expand subspace…

August 8, 2012 Alec Jacobson 51

Overlapping b-spline “bumps” in weight space

August 8, 2012 Alec Jacobson 52

farthest point sampling

xj =

2

6664

w1(vj)
w2(vj)

...
wm(vj)

3

7775

weight space

Overlapping b-spline “bumps” in weight space

August 8, 2012 Alec Jacobson 53

b-spline basis parameterized by distance in weight space

in weight space

xj =

2

6664

w1(vj)
w2(vj)

...
wm(vj)

3

7775

weight space

Overlapping b-spline “bumps” in weight space

August 8, 2012 Alec Jacobson 54

b-spline basis parameterized by distance in weight space

in weight space

xj =

2

6664

w1(vj)
w2(vj)

...
wm(vj)

3

7775

weight space

no extra weights

Extra weights expand deformation subspace

August 8, 2012 Alec Jacobson 55

15 extra weights

no extra weights

Extra weights expand deformation subspace

August 8, 2012 Alec Jacobson 56

15 extra weights

Subspace now rich enough for
fast variational modeling

August 8, 2012 Alec Jacobson 57
Full non-linear optimization

[Botsch et al. 2006]

Our reduced method

Subspace now rich enough for
fast variational modeling

August 8, 2012 Alec Jacobson 58
Full non-linear optimization

[Botsch et al. 2006]

Our reduced method

Subspace now rich enough for
fast variational modeling

August 8, 2012 Alec Jacobson 59
Full non-linear optimization

[Botsch et al. 2006]

Our reduced method

Subspace now rich enough for
fast variational modeling

August 8, 2012 Alec Jacobson 60
Full non-linear optimization

[Botsch et al. 2006]

Our reduced method

Subspace now rich enough for
fast variational modeling

August 8, 2012 Alec Jacobson 61
Full non-linear optimization

[Botsch et al. 2006]

Our reduced method

Subspace now rich enough for
fast variational modeling

August 8, 2012 Alec Jacobson 62
Full non-linear optimization

[Botsch et al. 2006]

Our reduced method

Final algorithm is simple and FAST

August 8, 2012 Alec Jacobson 63

Precomputation per shape+rig
 - Compute any additional weights
 - Construct, prefactor system matrices

For a 50K triangle mesh:
12 seconds

2.7 seconds

Final algorithm is simple and FAST

August 8, 2012 Alec Jacobson 64

Precomputation per shape+rig
 - Compute any additional weights
 - Construct, prefactor system matrices

Precomputation when switching constraint type
 - Re-factor global step system

For a 50K triangle mesh:
12 seconds

2.7 seconds

6 milliseconds

Final algorithm is simple and FAST

August 8, 2012 Alec Jacobson 65

Precomputation per shape+rig
 - Compute any additional weights
 - Construct, prefactor system matrices

Precomputation when switching constraint type
 - Re-factor global step system

~30 iterations
 global: #weights by #weights linear solve
 local: #rotations SVDs

For a 50K triangle mesh:
12 seconds

2.7 seconds

6 milliseconds

22 microseconds

[McAdams et al. 2011]

August 8, 2012 Alec Jacobson 66

Demo

Lightning FAST automatic skinning transformations

Extra weights and disjoint skeletons
make flexible control easy

August 8, 2012 Alec Jacobson 67

From Cartoon Animation by Preston Blair

Extra weights and disjoint skeletons
make flexible control easy

August 8, 2012 Alec Jacobson 68

Extra weights and disjoint skeletons
make flexible control easy

August 8, 2012 Alec Jacobson 69

Extra weights and disjoint skeletons
make flexible control easy

August 8, 2012 Alec Jacobson 70

Our reduction preserves nature of
different energies, at no extra cost

August 8, 2012 Alec Jacobson 71

Surface ARAP Volumetric ARAP

V0
surf = MsurfT V0

vol

= M
vol

T

Our reduction preserves nature of
different energies, at no extra cost

August 8, 2012 Alec Jacobson 72

Surface ARAP Volumetric ARAP

V0
surf = MsurfT V0

vol

= M
vol

T

Simple drag-only interface for point handles

August 8, 2012 Alec Jacobson 73

Simple drag-only interface for point handles

August 8, 2012 Alec Jacobson 74

Simple drag-only interface for point handles

August 8, 2012 Alec Jacobson 75

Skinning rig enables FAST deformation

●  Substitute to reduce DOFs

August 8, 2012 Alec Jacobson 76

Skinning rig enables FAST deformation

●  Substitute to reduce DOFs
●  Cluster rotations to reduce energy eval.

August 8, 2012 Alec Jacobson 77

Skinning rig enables FAST deformation

●  Substitute to reduce DOFs
●  Cluster rotations to reduce energy eval.
●  Additional weights to expand subspace

August 8, 2012 Alec Jacobson 78

Skinning rig enables FAST deformation

●  Substitute to reduce DOFs
●  Cluster rotations to reduce energy eval.
●  Additional weights to expand subspace

August 8, 2012 Alec Jacobson 79

Each innovation takes advantage of input skinning rig

Future work and discussion

●  Alternative additional weights: sparsity?
●  Joint limits, balance, etc.

August 8, 2012 Alec Jacobson 80

Acknowledgements

We are grateful to Peter Schröder, Emily Whiting,
and Maurizio Nitti.

We thank Eftychios Sifakis for his open source fast
3×3 SVD code.

This work was supported in part by an SNF award
200021_137879 and by a gift from Adobe Systems.

August 8, 2012 Alec Jacobson 81

Fast Automatic Skinning Transformations
http://igl.ethz.ch/projects/fast
Alec Jacobson (jacobson@inf.ethz.ch),
Ilya Baran, Ladislav Kavan, Jovan Popović, Olga Sorkine

