## Fast Automatic Skinning Transformations

Alec Jacobson
Ilya Baran
Ladislav Kavan
Jovan Popović
Olga Sorkine

ETH Zurich<br>Disney Research Zurich<br>ETH Zurich Adobe Systems, Inc.<br>ETH Zurich

## Real-time performance critical for interactive design and animation



# Real-time performance critical for interactive design and animation 



## We want speeds measured in microseconds

80k triangles
$20 \mu \mathrm{~s}$ per iteration

## We want speeds measured in microseconds

80k triangles
$20 \mu \mathrm{~s}$ per iteration

## This means speed comparable to rendering



## Linear Blend Skinning preferred for real-time performance


place skeleton in shape

## Linear Blend Skinning preferred for real-time performance



## Linear Blend Skinning preferred for real-time performance



## Linear Blend Skinning preferred for real-time performance



## ETH

## Linear Blend Skinning preferred for real-time performance



## LBS generalizes to different handle types

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}
$$



## LBS generalizes to different handle types

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}
$$



August 8, 2012

## LBS generalizes to different handle types



## LBS generalizes to different handle types



## LBS generalizes to different handle types



Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

# User specifies subset of parameters, optimize to find remaining ones 

Full optimization


## User specifies subset of parameters, optimize to find remaining ones

Full optimization

$$
\underset{\mathbf{V}^{\prime}}{\arg \min } E\left(\mathbf{V}^{\prime}\right)
$$

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}
$$

Skinning degrees of freedom

## User specifies subset of parameters, optimize to find remaining ones

Full optimization

Matrix form

$$
\underset{\mathbf{V}^{\prime}}{\arg \min } E\left(\mathbf{V}^{\prime}\right)
$$

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}
$$

Reduced model

$$
\mathbf{V}^{\prime}=\mathbf{M T}
$$

## User specifies subset of parameters, optimize to find remaining ones

Full optimization

$$
\underset{\mathbf{V}^{\prime}}{\arg \min } E\left(\mathbf{V}^{\prime}\right)
$$

Reduced model

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}
$$

Matrix form
Reduced optimization

$$
\begin{gathered}
\mathbf{V}^{\prime}=\mathbf{M T} \\
\underset{\mathbf{T}}{\arg \min } E(\mathbf{M T})
\end{gathered}
$$

196

## Enforce user constraints as linear equalities

Reduced optimization

$$
\underset{\mathbf{T}}{\arg \min } E(\mathbf{M T})
$$

User constraints


## Enforce user constraints as linear equalities

Reduced optimization

$$
\underset{\mathbf{T}}{\arg \min } E(\mathbf{M T})
$$

User constraints


Full
Position only
Unconstrained

## Enforce user constraints as linear equalities

Reduced optimization

$$
\underset{\mathbf{T}}{\arg \min } E(\mathbf{M T})
$$

User constraints


Full
Position only
Unconstrained

We reduce any as-rigid-as-possible energy
Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \boldsymbol{\varepsilon}_{\boldsymbol{k}}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

triangles
Liu et al. 08

tetrahedra
Chao et al. 10

"spokes"
Sorkine \& Alexa 07

"spokes and rims" Chao et al. 10

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Loca//Global optimization

Global step: Fix $\mathbf{R}$, minimize with respect to $\mathbf{V}^{\prime}$
Local step: Fix $\mathbf{V}^{\prime}$, minimize with respect to $\mathbf{R}$

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Loca//Global optimization

$\square$precompute

Global step: large, sparse linear solve $\mathbf{V}^{\prime}=\mathbf{A}^{-1} \mathbf{b}$
Local step: Fix $\mathbf{V}^{\prime}$, minimize with respect to $\mathbf{R}$

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Local/Global optimization

Global step: large, sparse linear solve $\mathbf{V}^{\prime}=\mathbf{A}^{-1} \mathbf{b}$
Local step: 3x3 SVD for each rotation in $\mathbf{R}$

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Local/Global optimization

precompute
Global step: small, dense linear solve $\mathbf{T}=\tilde{\mathbf{A}}^{-1} \mathbf{b}$
Local step: 3x3 SVD for each rotation in $\mathbf{R}$

Substitute
$\mathbf{V}^{\prime}=\mathbf{M T}$
Similar to:
[Huang et al. 06]
[Der et al. 06]
[Au et al. 07]
[Hildebrandt et al. 12]

# Direct reduction of elastic energies brings speed up and regularization... 

## Direct reduction of elastic energies brings speed up and regularization...

Full ARAP solution

# Direct reduction of elastic energies brings speed up and regularization... 

Full ARAP solution

Our smooth subspace solution $\mathbf{V}^{\prime}=\mathbf{M T}$

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Local/Global optimization

Global step: small, dense linear solve $\mathbf{T}=\tilde{\mathbf{A}}^{-1} \tilde{\mathbf{b}}$
Substitute
$\mathbf{V}^{\prime}=\mathbf{M T}$
Local step: 3x3 SVD for each rotation in $\mathbf{R}$
But \#rotations ~ full mesh discretization

## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Local/Global optimization

Global step: small, dense linear solve $\mathbf{T}=\tilde{\mathbf{A}}^{-1} \tilde{\mathbf{b}}$
Local step: 3x3 SVD for each rotation in $\mathbf{R}$
Substitute
$\mathbf{V}^{\prime}=\mathbf{M T}$
Cluster
$\mathcal{E}_{k}$

## Rotation evaluations may be reduced by clustering in weight space

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

triangles
Liu et al. 08

tetrahedra
Chao et al. 10

"spokes"
Sorkine \& Alexa 07
 Chao et al. 10

Rotation evaluations may be reduced by k -means clustering in weight space
Full energies $E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$
weight space
$\mathbf{x}_{j}=\left[\begin{array}{c}w_{1}\left(\mathbf{v}_{j}\right) \\ w_{2}\left(\mathbf{v}_{j}\right) \\ \vdots \\ w_{m}\left(\mathbf{v}_{j}\right)\end{array}\right]$

August 8, 2012

Rotation evaluations may be reduced by clustering in weight space
Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \varepsilon_{i}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$


Rotation evaluations may be reduced by clustering in weight space
Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$


## We reduce any as-rigid-as-possible energy

Full energies $\quad E\left(\mathbf{V}^{\prime}, \mathbf{R}\right)=\frac{1}{2} \sum_{k=1}^{r} \sum_{(i, j) \in \mathcal{E}_{k}} c_{i j k}\left\|\left(\mathbf{v}_{i}^{\prime}-\mathbf{v}_{j}^{\prime}\right)-\mathbf{R}_{k}\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right)\right\|^{2}$

## Local/Global optimization

Global step: small, dense linear solve $\mathbf{T}=\tilde{\mathbf{A}}^{-1} \tilde{\mathbf{b}}$
Local step: 3×3 SVD for each rotation in $\mathbf{R}$

## \#rotations ~ \#T,

Substitute
$\mathbf{V}^{\prime}=\mathbf{M T}$
Cluster
$\mathcal{E}_{k}$ independent of full mesh resolution

Real-time automatic degrees of freedom


Real-time automatic degrees of freedom


# With more and more user constraints we fall back to standard skinning 



# With more and more user constraints we fall back to standard skinning 



# With more and more user constraints we fall back to standard skinning 



# With more and more user constraints we fall back to standard skinning 



## Extra weights would expand subspace...

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}
$$

$$
\mathbf{V}^{\prime}=\mathbf{M T}
$$

## Extra weights would expand subspace...

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}+\sum_{k=1}^{m_{\text {oxtra }}} w_{k}\left(\mathbf{v}_{i}\right) \mathbf{T}_{k}\binom{\mathbf{v}_{i}}{1}
$$

$$
\mathbf{V}^{\prime}=\mathbf{M T}
$$

## Extra weights would expand subspace...

$$
\mathbf{v}_{i}^{\prime}=\sum_{j=1}^{m} w_{j}\left(\mathbf{v}_{i}\right) \mathbf{T}_{j}\binom{\mathbf{v}_{i}}{1}+\sum_{k=1}^{m_{\text {oxtra }}} w_{k}\left(\mathbf{v}_{i}\right) \mathbf{T}_{k}\binom{\mathbf{v}_{i}}{1}
$$

$$
\mathbf{V}^{\prime}=\mathbf{M} \mathbf{T}+\mathbf{M}_{\mathrm{extra}} \mathbf{T}_{\mathrm{extra}}
$$

## Overlapping b-spline "bumps" in weight space

 Eidgenössische Technische Hochschule Züric
Swiss Federal Institute of Technology Zurich

## Overlapping b-spline "bumps" in weight space

in weight space

$\mathbf{x}_{j}=\left[\begin{array}{c}w_{1}\left(\mathbf{v}_{j}\right) \\ w_{2}\left(\mathbf{v}_{j}\right) \\ \vdots \\ w_{m}\left(\mathbf{v}_{j}\right)\end{array}\right]$
b-spline basis parameterized by distance in weight space

## Overlapping b-spline "bumps" in weight space

in weight space

weight space
$\mathbf{x}_{j}=\left[\begin{array}{c}w_{1}\left(\mathbf{v}_{j}\right) \\ w_{2}\left(\mathbf{v}_{j}\right) \\ \vdots \\ w_{m}\left(\mathbf{v}_{j}\right)\end{array}\right]$
b-spline basis parameterized by distance in weight space

## Extra weights expand deformation subspace


no extra weights


15 extra weights

## Extra weights expand deformation subspace


no extra weights
15 extra weights

Subspace now rich enough for fast variational modeling


Full non-linear optimization [Botsch et al. 2006]


Our reduced method

Subspace now rich enough for fast variational modeling


Full non-linear optimization

Subspace now rich enough for fast variational modeling


Full non-linear optimization

## Final algorithm is simple and FAST

Precomputation per shape+rig

- Compute any additional weights
- Construct, prefactor system matrices

For a 50K triangle mesh:
12 seconds
2.7 seconds

## Final algorithm is simple and FAST

Precomputation per shape+rig

- Compute any additional weights
- Construct, prefactor system matrices

For a 50K triangle mesh:

Precomputation when switching constraint type

- Re-factor global step system

6 milliseconds

## Final algorithm is simple and FAST

Precomputation per shape+rig

- Compute any additional weights
- Construct, prefactor system matrices

For a 50K triangle mesh:

Precomputation when switching constraint type

- Re-factor global step system

6 milliseconds
~30 iterations
22 microseconds
global: \#weights by \#weights linear solve local: \#rotations SVDs
[McAdams et al. 2011]
196

## Lightning FAST automatic skinning transformations

## Extra weights and disjoint skeletons make flexible control easy



From Cartoon Animation by Preston Blair

Extra weights and disjoint skeletons make flexible control easy


Extra weights and disjoint skeletons make flexible control easy


Extra weights and disjoint skeletons make flexible control easy


## Our reduction preserves nature of different energies, at no extra cost

Surface ARAP
Volumetric ARAP

$$
\mathbf{V}_{\text {surf }}^{\prime}=\mathbf{M}_{\text {surf }} T \quad \mathbf{V}_{\mathrm{vol}}^{\prime}=\mathbf{M}_{\mathrm{vol}} T
$$

## Our reduction preserves nature of different energies, at no extra cost

Surface ARAP

$\mathbf{V}_{\text {surf }}^{\prime}=\mathbf{M}_{\text {surf }} T$

Volumetric ARAP


$$
\mathbf{V}_{\mathrm{vol}}^{\prime}=\mathbf{M}_{\mathrm{vol}} T
$$

## Simple drag-only interface for point handles



## Simple drag-only interface for point handles

## Simple drag-only interface for point handles



## Skinning rig enables FAST deformation

Substitute $\mathbf{V}^{\prime}=\mathbf{M T}$ to reduce DOFs

## Skinning rig enables FAST deformation

Substitute $\mathbf{V}^{\prime}=$ MT to reduce DOFs Cluster rotations to reduce energy eval.

## Skinning rig enables FAST deformation

- Substitute $\mathbf{V}^{\prime}=$ MT to reduce DOFs
- Cluster rotations to reduce energy eval.
- Additional weights to expand subspace


## Skinning rig enables FAST deformation

- Substitute $\mathbf{V}^{\prime}=$ MT to reduce DOFs
- Cluster rotations to reduce energy eval.
- Additional weights to expand subspace

Each innovation takes advantage of input skinning rig

## Future work and discussion

- Alternative additional weights: sparsity? Joint limits, balance, etc.


## Acknowledgements

We are grateful to Peter Schröder, Emily Whiting, and Maurizio Nitti.

We thank Eftychios Sifakis for his open source fast $3 \times 3$ SVD code.

This work was supported in part by an SNF award 200021_137879 and by a gift from Adobe Systems.

# Fast Automatic Skinning Transformations http://igl.ethz.ch/projects/fast 

Alec Jacobson (jacobson@inf.ethz.ch),
Ilya Baran, Ladislav Kavan, Jovan Popović, Olga Sorkine

