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Produce high-quality surfaces 
Via energy minimization 
Or solving Partial Differential Equations 

Motivation 

Laplacian energy Laplacian gradient energy 

Biharmonic equation Triharmonic equation 



Motivation 
Obtain different boundary conditions 

Region 

Curve 

Point 



Motivation 
Higher-order equations on mesh (i.e. piecewise 

linear elements) 
!  Dealing with higher-order derivatives not 

straightforward 



Previous work 
Simple domains, analytic boundaries  

[Bloor and Wilson 1990] 
Model shaped minimization of curvature variation energy 

[Moreton and Séquin 1992] 
Interpolate curve networks, local quadratic fits and finite differences 

 [Welch and Witkin 1994]    
Uniform-weight discrete Laplacian  

[Taubin 1995] 
Cotangent-weight discrete Laplacian 

 [Pinkall and Polthier 1993], 
 [Wardetzky et al. 2007], 

 [Reuter et al. 2009] 
Wilmore flow, using FEM with aux variables 

!  Position and co-normal specification on boundary 
[Clarenz et al. 2004] 

Linear systems for k-harmonic equations 
!  Uses discretized Laplacian operator 

 [Botsch and Kobbelt 04] 



Previous work 
Simple domains, analytic boundaries  

[Bloor and Wilson 1990] 
Model shaped minimization of curvature variation energy 

[Moreton and Séquin 1992] 
Interpolate curve networks, local quadratic fits and finite differences 

 [Welch and Witkin 1994]    
Uniform-weight discrete Laplacian  

[Taubin 1995] 
Cotangent-weight discrete Laplacian 

 [Pinkall and Polthier 1993], 
 [Wardetzky et al. 2007], 

 [Reuter et al. 2009] 
Wilmore flow, using FEM with aux variables 

!  Position and co-normal specification on boundary 
[Clarenz et al. 2004] 

Linear systems for k-harmonic equations 
!  Uses discretized Laplacian operator 

 [Botsch and Kobbelt 04] 



Standard Finite Element Method 
Requires at least C1 elements for fourth order 

!  Can’t use standard triangle meshes 
High order surfaces exist, (e.g. Argyris triangle)  

!  Require many extra degrees of freedom 
!  Not popular due to complexity 

Low order, C0, workarounds  
!  E.g. mixed elements  



Discrete Geometric Discretization 
Derive mesh analog of geometric quantity 

E.g. Laplace-Beltrami operator integrated 
over vertex area 
!  Re-expressed using only first-order 

derivatives 
!  Use average value as energy of vertex area 

Used often in geometric modeling 
!  No obvious way to connect to continuous 

case 



Mixed Elements 
Introduce additional 

variable to convert high 
order problem to low 
order 

! 



Use Langrange multipliers to enforce constraint 

Constraint structure also makes certain boundary types 
easier 

Mixed Elements 
Introduce additional 

variable to convert high 
order problem to low 
order 

! 



Our original higher order problem 

Introduce an additional variable 

Two second order problems 
!  Can use just linear elements 

Curve 
!  Fixed boundary curve 
!  Specified tangents: 

Mixed Elements 



Discretize with piecewise linear approximations for 
variables 

Mixed Elements 

Discrete Laplacian Mass matrix 



Discretize with piecewise linear approximations for 
variables 

Mixed Elements 

Discrete Laplacian Mass matrix 



Matrix form, curve boundary conditions 

Diagonalized, lumped mass matrices eliminate 
auxiliary variable 

Mixed Elements 

Discrete Laplacian Mass matrix Neumann matrix 

Where                     and 



Curve 
!  Fixed boundary curve 
!  Specified tangents:  

Point 
!  Single fixed points on 

surface 

Boundary Conditions 



Boundary Conditions 
Region 

!  Fixed part of mesh outside solved region 



Use Lagrangian to enforce region condition 

Discretize with piecewise linear approximations for 
variables 

May also eliminate aux. variable 

Mixed Elements 

Discrete Laplacian 

Mass matrix 



Boundary Conditions 

Difference in right-hand side 
Curve conditions don’t require lumped mass 

matrix 
!  But we use it in practice, for speed and numerical 

accuracy 
Equivalent to [Botsch and Kobbelt, 2004] 

!  Specified tangents ! parameter for continuity control  

Region: Curve: 



Boundary Conditions 
Region 

!  Fixed part of mesh outside solved region 



Boundary Conditions 
Convert high order problem to low order problem 

Use Langrange multipliers to enforce constraint 
! 



Convert high order problem to low order problem 

Use Langrange multipliers to enforce constraint 

Notice similarity to Lagrangian for biharmonic 

Boundary Conditions 

! 



Discretization, formulation works the same way 

Eliminate auxiliary variables 
!  Leaving system with only  

Mixed Elements 

Discrete Laplacian 

Mass matrix 

where 



Curve 
!  Fixed boundary curve 
!  Specified tangents and curvatures:        ,  

Leads to singular systems 

Boundary Conditions 



Boundary Conditions 
Curve ! Region 

!  Fixed boundary curve and 
one ring into interior 

!  Specified curvatures:  



Experimental Results 
Tested convergence of our systems 
Randomly generated domains of varying 

irregularity 
!  One vertex placed randomly in each square of grid 
!  Parameter controlled variation from regular 

Connected using Triangle Library  
!  Control minimal interior angles 



Specify boundary conditions using analytic target 
functions:  
!  Try to reproduce original function by solving system: 

Measure error between analytic target and our 
mixed FEM approximation 

Experimental Results 



Experimental Results 
Nearly optimal convergence for biharmonic 



Experimental Results 
Boundary conditions perform differently for 

triharmonic 



Applications 
Filling in holes: Laplacian energy 

input 
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Applications 
Filling in holes: Laplacian gradient energy 

input region 
constraint 

manipulating curvature  
controls 



Applications 

Specifying tangents in 
Laplacian energy 
around regions 



Applications 



Applications 
Biharmonic Triharmonic 



Summary 
Technique for discretizing energies or PDEs 

!  Reduce to low order by introducing variables 
!  Use constraints to enforce region boundary conditions 
!  Lump mass matrix 

Convergence for fourth- and sixth-order PDEs 



Summary 
Technique for discretizing energies or PDEs 

!  Reduce to low order by introducing variables 
!  Use constraints to enforce region boundary conditions 
!  Lump mass matrix 

Convergence for fourth- and sixth-order PDEs 
Future work 

!  Improve convergence of triharmonic solution 
!  Explore using non-flat metric 
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