Smooth Shape-Aware Functions with Controlled Extrema

Alec Jacobson ${ }^{1}$
Tino Weinkauf²
Olga Sorkine ${ }^{1}$
${ }^{1}$ ETH Zurich
${ }^{2}$ MPI Saarbrücken

Real-time deformation relies on smooth, shape-aware functions

input shape + handles

Real-time deformation relies on smooth, shape-aware functions

precompute weight functions

August 9, 2012

Real-time deformation relies on smooth, shape-aware functions

deform handles \rightarrow deform shape

Real-time deformation relies on smooth, shape-aware functions

August 9, 2012

ETH
Eidgenëssische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Real-time deformation relies on smooth, shape-aware functions

Spurious extrema cause distracting artifacts

unconstrained Δ^{2}
[Botsch \& Kobbelt 2004]

O local max
O local min

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

August 9, 2012

Spurious extrema cause distracting artifacts

unconstrained Δ^{2}
[Botsch \& Kobbelt 2004]

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

August 9, 2012

Bounds help, but don't solve problem

bounded Δ^{2}
[Jacobson et al. 2011]

August 9, 2012

Bounds help, but don't solve problem

bounded Δ^{2}
[Jacobson et al. 2011]

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Gets worse with higher-order smoothness

bounded Δ^{4}
[Jacobson et al. 2011]

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Gets worse with higher-order smoothness

bounded Δ^{4}
[Jacobson et al. 2011]

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

196
August 9, 2012

We explicitly prohibit spurious extrema

$\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}$

We explicitly prohibit spurious extrema

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Same functions used for color interpolation

$$
\mathbf{x}_{i}^{\prime}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) T_{j} \mathbf{x}_{i}
$$

Same functions used for color interpolation

$$
\mathbf{c}_{i}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) \mathbf{c}_{j}
$$

Same functions used for color interpolation

unconstrained Δ^{2}
[Finch et al. 2011]

$$
\mathbf{c}_{i}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) \mathbf{c}_{j}
$$

Same functions used for color interpolation

unconstrained Δ^{2}
[Finch et al. 2011]

$$
\mathbf{c}_{i}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) \mathbf{c}_{j}
$$

Same functions used for color interpolation

unconstrained Δ^{2}
[Finch et al. 2011]

$$
\mathbf{c}_{i}=\sum_{j=1}^{H} f_{j}\left(\mathbf{x}_{i}\right) \mathbf{c}_{j}
$$

Want same control when smoothing data

Want same control when smoothing data

Exact, but sharp geodesic

Want same control when smoothing data

Exact, but sharp geodesic

Want same control when smoothing data

Exact, but sharp geodesic

Smooth, but extrema are lost

Want same control when smoothing data

Exact, but sharp geodesic

Smooth and maintain extrema

Ideal discrete problem is intractable

$$
\begin{aligned}
\underset{f}{\arg \min } & E(f) \\
& \text { Interpolation functions: } \\
& E_{L}(f)=\int_{\mathcal{M}}\left\|\nabla^{k} f\right\|^{2} d V, \quad k=2,3, \ldots
\end{aligned}
$$

Ideal discrete problem is intractable

$$
\begin{array}{ll}
\underset{f}{\arg \min } & E(f) \\
& E_{L}(f)=\int_{\mathcal{M}}\left\|\nabla^{k} f\right\|^{2} d V, \quad k=2,3, \ldots \\
& E_{D}(f)=\sum_{i \in \mathcal{M}}\left\|h_{i}-f_{i}\right\|^{2} \\
& E(f)=\gamma_{L} E_{L}(f)+\gamma_{D} E_{D}(f)
\end{array}
$$

Ideal discrete problem is intractable

```
arg min E(f)
    f
```


Ideal discrete problem is intractable

$$
\begin{array}{cl}
\underset{f}{\arg \min } & E(f) \\
\text { s.t. } & f_{\max }=\text { known } \\
& f_{\min }=\text { known }
\end{array}
$$

Ideal discrete problem is intractable

$$
\begin{array}{cl}
\underset{f}{\arg \min } & E(f) \\
\text { s.t. } & f_{\max }=\text { known } \\
& f_{\min }=\text { known } \\
& f_{j}<f_{\max } \\
\text { linear } & f_{j}>f_{\min }
\end{array}
$$

August 9, 2012

Ideal discrete problem is intractable

$\underset{f}{\arg \min }$	$E(f)$
s.t.	$f_{\max }=$ known
	$f_{\min }=$ known
	$f_{j}<f_{\text {max }}$
	$f_{j}>f_{\min }$
	$f_{i}>\min _{j \in \mathcal{N}(i)} f_{j}$
nonlinear	
	$f_{i}<\max _{j \in \mathcal{N}(i)} f_{j}$

August 9, 2012

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Assume we have a feasible solution

$\arg \min E(f)$

$f_{\text {min }}=$ known
"Representative function" U

$$
\begin{aligned}
& u_{j}<u_{\max } \\
& u_{j}>u_{\min } \\
& u_{i}>\min _{j \in \mathcal{N}(i)} u_{j} \\
& u_{i}<\max _{j \in \mathcal{N}(i)} u_{j} \quad \text { interior }
\end{aligned}
$$

Assume we have a feasible solution

"Representative function" U

	$u_{j}<u_{\max }$
	$u_{j}>u_{\min }$
	$u_{i}>\min _{j \in \mathcal{N}(i)} u_{j}$
interior	
	$u_{i}<\max _{j \in \mathcal{N}(i)} u_{j}$

Copy "monotonicity" of representative

$$
\begin{array}{cl}
\underset{f}{\arg \min } & E(f) \\
\text { s.t. } & f_{\max }=\text { known } \\
& f_{\min }=\text { known } \\
& \left(f_{i}-f_{j}\right)\left(u_{i}-u_{j}\right)>0 \quad \text { linear } \quad \forall(i, j) \in \mathcal{E} \\
& \\
& \\
& \\
& \\
& \\
\text { At least one edge in either } \\
\text { direction per vertex }
\end{array}
$$

Rewrite as conic optimization

Conic

Optimize with MOSEK

We always have harmonic representative

$$
\underset{u}{\arg \min } \frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d V
$$

We always have harmonic representative

$$
\begin{aligned}
\underset{u}{\arg \min } & \frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d V \\
\text { s.t. } & u_{\max }=1
\end{aligned}
$$

We always have harmonic representative

$$
\begin{array}{cc}
\underset{u}{\arg \min } & \frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d V \\
\text { s.t. } & u_{\max }=1 \\
\text { s.t. } & u_{\min }=0
\end{array}
$$

We always have harmonic representative

$$
\begin{array}{cl}
\underset{u}{\arg \min } & \frac{1}{2} \int_{\Omega}\|\nabla u\|^{2} d V \\
\text { s.t. } & u_{\max }=1 \\
\text { s.t. } & u_{\min }=0
\end{array}
$$

Works well when no input function exists

Data energy may fight harmonic representative

Data energy may fight harmonic representative

Anisotropic input data

Data energy may fight harmonic representative

Anisotropic input data
Harmonic representative

Data energy may fight harmonic representative

Anisotropic input data
Harmonic representative

Data energy may fight harmonic representative

Anisotropic input data

If data exists, copy topology, too

Anisotropic input data

[Weinkauf et al. 2010] representative

If data exists, copy topology, too

Anisotropic input data

Final algorithm is simple and efficient

- Data smoothing: topology-aware representative
- Morse-smale + linear solve ~milliseconds

Final algorithm is simple and efficient

- Data smoothing: topology-aware representative
- Morse-smale + linear solve ~milliseconds
- Interpolation: harmonic representative
- Linear solve ~milliseconds

Final algorithm is simple and efficient

- Data smoothing: topology-aware representative
- Morse-smale + linear solve ~milliseconds
- Interpolation: harmonic representative
- Linear solve ~milliseconds

Conic optimization

- 2D ~milliseconds, 3D ~seconds

Final algorithm is simple and efficient

- Data smoothing: topology-aware representative
- Morse-smale + linear solve ~milliseconds
- Interpolation: harmonic representative
- Linear solve ~milliseconds
- Conic optimization
- 2D ~milliseconds, 3D ~seconds

Interpolation: functions are precomputed

We preserve troublesome appendages

We preserve troublesome appendages

We preserve troublesome appendages

Our weights attach appendages to body

Extrema glue appendages to far-away handles

[Botsch \& Kobbelt 2004, Jacobson et al. 2011]

Extrema glue appendages to far-away handles

[Botsch \& Kobbelt 2004, Jacobson et al. 2011]

Our weights attach appendages to body

Our method

Our weights attach appendages to body

Our method

Extrema distort small features

Extrema distort small features

Extrema distort small features

Bounded Δ^{2} [Jacobson et al. 2011]

weight of middle point

"Monotonicity" helps preserve small features

Bounded Δ^{2} [Jacobson et al. 2011]

Our Δ^{2}

Spurious extrema are unstable, may "flip"

slightly larger region

Spurious extrema are unstable, may "flip"

slightly larger region

Spurious extrema are unstable, may "flip"

Unconstrained Δ^{3} [Botsch \& Kobbelt, 2004]

Spurious extrema are unstable, may "flip"

Unconstrained Δ^{3} [Botsch \& Kobbelt, 2004]

Spurious extrema are unstable, may "flip"

Unconstrained Δ^{3} [Botsch \& Kobbelt, 2004]

Spurious extrema are unstable, may "flip"

Bounded Δ^{3}

Spurious extrema are unstable, may "flip"

Bounded Δ^{3}

Lack of extrema leads to more stability

Our Δ^{3}

Lack of extrema leads to more stability

Our Δ^{3}

Even control continuity at extrema

Original

Even control continuity at extrema

Original

Direct extension of [Botsch \& Kobbelt 2004]

Even control continuity at extrema

Original

[Botsch \& Kobbelt 2004] + data term

Even control continuity at extrema

Original

Our method without data term

Even control continuity at extrema

Original

Our method with data term

Reproduces results of Weinkauf et al. 2010...

Original noisy data

Reproduces results of Weinkauf et al. 2010...

Original noisy data

August 9, 2012

Reproduces results of Weinkauf et al. 2010...

Original noisy data

igl Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Reproduces results of Weinkauf et al. 2010...

Original noisy data

igl Eidgenéssische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

... but 1000 times faster

30K vertices
5 seconds per solve

... but 1000 times faster

30K vertices
5 seconds per solve

but 1000 times faster

30K vertices
5 seconds per solve

Conclusion: Important to control extrema

- Copy "monotonicity" of harmonic functions
Reduces search-space, but optimization is tractable

Future work and discussion

- Larger, but still tractable subspace?
- Consider all valid harmonic functions?

Future work and discussion

- Larger, but still tractable subspace?
- Consider all valid harmonic functions?

Continuous formulation?

Acknowledgements

We thank Kenshi Takayama for his valuable feedback. This work was supported in part by an SNF award 200021_137879 and by a gift from Adobe Systems.

Smooth Shape-Aware Functions with Controlled Extrema

MATLAB Demo:

http://igl.ethz.ch/projects/monotonic/

Alec Jacobson (jacobson@inf.ethz.ch)
Tino Weinkauf
Olga Sorkine

