Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction
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Abstract rst compute camera poses and then estimate per-view depth
maps by nding corresponding pixels between views and
Point sets generated by image-based 3D reconstruction techtriangulating depth14]. All pixels are then projected into
nigues are often much noisier than those obtained using3D space to obtain a point cloud, from which a surface mesh
active techniques like laser scanning. Therefore, they posds extracted using point cloud meshing techniques [2].

greater challenges to the subsequent surface reconstruction  aq jjjustrated in Figure 1 (a) (c), a downside of image-
(meshing) stage. We present a simple and effective methofl,ge g methods is that they are prone to producing outliers
for removing noise and outliers from such point sets. OUr 54 nojise in the depth maps due to matching ambiguities or
algorithm uses the input images and corresponding depthjn,ge imperfections (lens distortion, sensor noise, etc.). The
maps to remove pixels which are geometrically or photo- e iting point clouds are thus often noisy, and even state-
metrically inconsistent with the colored surface implied by ¢ the_art meshing methods often fail to produce reasonable
the input. This allows standard surface reconstruction meth- o jts. Typically, the meshes computed from such noisy
ods (such as Poisson surface reconstruction) to perform 1ess, i ¢iouds either miss many details (when a lot of regular-
smoothing and thus achieve higher quality surfaces with iz 461, is applied) or reconstruct wrong geometry such as
more features. Our algorithm is ef cient, easy to implement, yiqtrhing blobs. A common remedy to reduce outliers in
and robust to varying amounts of noise. We demonstrate them,qe_hased methods is, similarly to the surface reconstruc-
bene ts of our algorithm in combination W'th, a variety of tion, to use strong smoothing or regularization in the depth
state-of-the-art depth and surface reconstruction methods. computation, but this inevitably destroys ne details and is
also costly to compute as it typically comes down to solving
large global optimization problems.

We take a different approach in this paper. Starting from
Acquiring the 3D geometry of real-world objects is a long many, high resolution input images of the scene, we com-
standing topic in computer vision and graphics research, withpute per-view depth maps using a depth estimation method
many practical applications, ranging from scanning small of choice, but preferably one with little to no regulariza-
objects up to modeling complete cities. Consequently, theretion (such as1]) to reconstruct as much detail as possible.
is an abundance of 3D reconstruction techniques, which canOur main idea is then to detect and remove noisy points
be roughly classi ed into active techniqueq felying on and outliers from each per-view point cloud by checking if
illuminating the scene (e.g. by lasers or structured light), and points are consistent with the surface implied by the other
passive techniques that analyze a multitude of images of thanput views. Not only do we evaluate geometric consistency,
scene and are thus referred to as multi-view stereo or phobut also consider photometric consistency between the in-
togrammetry methods:f]. The latter, image-based methods put views, which improves the robustness of the method
have a number of bene ts compared to active techniquesand is typically not possible for active techniques such as
One main advantage is that the capture process is simpléaser scanning. As shown in Figure 1 (d) (e), merging the
and cheap, only requiring standard imaging hardware like denoised point clouds from all views retains full coverage
consumer digital cameras. Additionally, image-based meth-of the captured scene while being more compact and less
ods provide color information of the scene and offer high noisy. This renders the subsequent surface reconstruction
resolution scanning thanks to the advances in image sensortess demanding, allowing common techniques to produce
A popular approach to image-based 3D reconstruction is tofavorable surface meshes with a high degree of detail.

1. Introduction



(a) one input image (b) point cloud (c) meshing of(b) (d) our ltered point cloud  (e) meshing of(d)

Figure 1. From a set of images of a sc€ag multi-view stereo methods such &3 §an reconstruct a dense 3D point clgi), which

however often suffers from noise and outliers. This leads to disturbing artifacts when used in subsequent surface reconstruction (meshing)
methods such ag{] (c). We propose a simple and ef cient Itering method that produces clean point cl@)disat allow for a favorable

surface reconstructiofe).

Our method is simple to implement and easy to paral-the computed point cloud. However, as shown in Section 4,
lelize, while effective in removing noise and outliers in point these approaches still often leave a signi cant amount of
clouds. As shown in Section 4, it can handle varying amounts noise and outliers in the nal reconstructions, necessitat-
and types of noise produced by several multi-view stereoing additional outlier removal steps to render the point sets
methods §, 9, 21, 45] and tangibly improves the results of suitable for later surface reconstruction. Among a few such
various surface reconstruction techniqu&s3] 20, 39 that attempts, Shan et al3{] reconstruct dense depth maps from
are subsequently applied. Our method works with virtually sparse point clouds and use them to remove points that are in
any image-based technique that reconstructs scene geometisigni cant visibility con ict and to augment the input point
in the form of depth maps and any surface reconstructioncloud. However, they treat each view separately when den-
method based on point sets. We thus believe that our methodsifying the sparse depth maps and they need to modify the
is a versatile tool bridging the two steps of image-based 3D standard Poisson surface reconstruction method. Similarly,
reconstruction and facilitating the standard work ow. We a free space constraint was used to clean up depth maps in
demonstrate the bene ts of our method on a variety of dense[29] and [27].

and high-resolution multi-view datasets. While the above techniques are presented as part of depth
reconstruction methods, there exist more dedicated point
2. Related work cloud denoising and outlier removal techniques. Sun et

al. [37] propose a point cloud denoising method imposing

Active 3D acquisition techniques, such as laser scanningsparsity of the solution viag minimization. The method op-
and structured light approaches, have been predominantlyimizes both point normals and positions with the piecewise
used in professional domains, as they provide high accuracysmoothness assumption, thereby preserving sharp features.
albeit requiring specialized and expensive equipment. DueRusu et al. $1] present a point cloud re nement method
to their limitations (e.g. the size of scannable objects) andwith the application of indoor environment mapping. They
the restricted environment and illumination conditions, pas-propose an outlier removal technique based on statistical
sive image-based techniques have also been developed arghalysis of input points. Both methods consider the point
deployed widely. However, such image-based multi-view positions only and do not consider further information like
stereo methods are much more susceptible to produce noisgolor or scanner positions. Rusu et al.'s method explicitely
depth estimates due to image imperfections, triangulationassumes laser scanning as the point input souraeeivet
inaccuracy, depth quantization, as well as outliers due toal. [43] use accurate foreground segmentation of a dense im-
matching ambiguities and non-diffuse surfaces. For theseage set to re ne the bounding volume of the object, resulting
reasons, image-based 3D reconstruction pipelines performin a detailed visual hull that is subsequently used to Iter
denoising and outlier removal at virtually every step of the outliers from the point cloud. However, the visual hull does
pipeline, as outlined below. not Iter points in concavities and may not be tight enough.

Most multi-view stereo methods re ne the reconstructed  Since geometry acquisition inevitably includes measure-
depth maps, and often this is integrated into the depth esment noise at varying degrees, many surface reconstruction
timation stage and formulated as a (global) optimization methods provide some form of smoothing mechanisms to
problem [L2, 45]. Furukawa et al. 0] use a Iter based  deal with the acquisition noise and to adapt to the varying
on quality and visibility measures for merging points while quality of the acquired point clouds. A family of methods
handling errors and variations in reconstruction quality. Tola uses moving least-squares (MLS) to resample the input point
et al. [38] use a robust descriptor for large-scale multi-view cloud to a potentially smoother and more uniform point set
stereo matching in order to reduce the amount of outliers inby projecting points onto a locally tted smooth surface



represented by a low-degree polynomigl13]. Instead of In general, there have been many ltering approaches for
computing local projections, implicit moving least-squares image-based reconstruction pipelinési2, 24, 36, 40, 44],
(IMLS) methods 5] allow to reconstruct an implicit rep-  but the combination of ideas proposed in this paper has not
resentation of the surface. Although IMLS becomes more been considered before.

robust to noise and also preserves sharp features when using

robust statistics{(], it still does not handle outliers very 3. Denoising and outlier removal

well. Similarly, the parameterization-free projection operator . ) . . _

[29] results in a resampled point cloud by means of point pro- Our denoising algorithm removes inconsistent points from a

jections, but onto a multivariate median, being more robust S&t f input depth mapfD; j i = 1;::;Ng by analyzing their
to noise and able to detect outliers. By taking into account 980metric and photometric consistency with other views.
the point density, the method was extended to deal with
sharp featureslf] and a high level of non-uniformityl[/].
This last work led to a class of methods very relevant to To determine the geometric consistency, each 3D gwoint
our method, callegoint consolidationThese methods in-  originating from a depth map has to be examined against
clude multiple stages of point cloud processing, from merg-all other depth maps. For this purpose, we measure how far
ing points to denoising, decimating, and redistributing them p is from the true surface by estimating and examining the
such that they become more suitable for later surface resigned distance gf to the surface entailed by the input depth
construction {7]. The recent work of Wu et al4[] further maps. Since the actual surface is yet to be known and the
completes the missing parts of a scanned object by utiliz-estimation of signed distances at@lvould be expensive,
ing point skeleton estimation. Our method also proposes towe utilize several steps of ef cient approximation, which
facilitate the surface reconstruction, but exploits the informa-were inspired by range image integration methods.
tion available exclusively to the image-based reconstruction The depth maps are rst trivially tessellated and back-
work ows, namely, color information and 3D camera poses, projected to represent triangulated range surfaces, as illus-
which purely geometry-based methods usually do not havetrated in Figure 2(a) and (b). lll-shaped triangles having an
access to. angle less than a thresholtl (in our implementation) are
Streaming surface reconstruction using wavela 4l- rer_n_oved to _permit opening concavities over erth disconti-
lows for fast processing of large point clouds but is only re- Nuities. We intend to compute the average distance of each
silient to a low amount of noise. The popular Poisson surface POINtP 10 the range surfaces. However, computing the dis-
reconstruction technique §] estimates a smoothed indicator {2nc€ from a 3D pointto a number of meshes may potentially

function of a surface by minimizing the distance between the require bu'iIding spat'ial a'lccelerat.ion .structures a'nd multiple
smoothed gradient of the unknown indicator function and the PCINt-to-triangle projections, which is computationally ex-
smoothed surface normal vector eld implied by the oriented PENSive. Further, as we deal with noisy surfaces, we need to
points. This renders the method resilient to noise, but at the@SsSure that the dlstaqce estimation 'S, robust enqugh.

cost of overly smooth reconstructions. In a recent extension, nstéad of computing the exact point-mesh distance, we

the energy functional includes a screening term, such that theb@lculate the distance along the viewing ray from the camera
in uence of the original point positions can be adaptad][ centerv; to pointp. This still requires to intersect the ray

Still, noisy point clouds require low screening, resulting in With the triangulated range surface, but since the range sur-
smooth reconstructions and losing detailed features. Similari@C€ IS Simply the back-projection of the depth niapthe

restrictions apply to other methods, that explicitly model a INtersection can be ef ciently calculated by projectipgo
smoothness assumption [ 1 the image space @;. Then the vertices of the 2D triangle

o in the tessellated depth map into whighvas projected cor-
~ Our method implicitly uses a surface represented by the ogn4n 1o the vertices of the intersected triangle in 3D. The
input depth maps when examining each point, similarly t0 4oy at the intersection point is interpolated barycentrically
range image integration methods such gsif] and the o0 the three vertices. We approximate the signed distance
more recent KinectFusior?{]. While most existing meth- di(p) betweerp and the range surface of depth niapby

ods use a volumetric representation to cache the implicity,q_gistance betweemand the intersection point ramera
function in 3D space, our algorithm operates directly in im- space, i.e.

age space, avoiding premature explicit discretization and dp) = z(p) z )
large memory usage. We use a photo-consistency criterion '

in our lter, which was rst proposed in the space-carving wherez is the depth Z-coordinate) ofp and z(p) is the
literature p3]. Despite that, color information has rarely interpolated depth at the intersection.

been used for surface reconstruction or outlier removal, ex- When considering the distancemto a range surfacB;,

cept for semantic analysis; sed for details. We use color  a negative distancd, implies thatp lies behind the range
information in conjunction with the input point geometry. surface and could not have been observed from this view.

3.1. Geometric consistency



Figure 2. Our point denoising pipeline: An object is captured from different views, with camera posjtioesulting in several depth maps
D;. The depth maps are triangulated (a) and represent range surfaces in 3D space (b). For epétopoadach depth map, intersection
pointsp; with all other depth maps are calculated (c). (We do not display the fth depth map here frompvbiginates.) Color, depth and
weight values are available at the triangle vertices and can be interpolated for the intersection point. The signed distancesanehtreen
intersection pointg; (green lines in (d)) are approximated. Only range images for whidbes not lie too far behind the surface (gray area
in (d)) are considered further. A weighted average of the signed distd(pess calculated together with a photo-consistency meag(pg
and visibility measure(p) (e). All three values are used to decide whetnsehould be discarded (f).

Therefore, we discard suah in computing the weighted  w;(p) > 0. Although more sophisticated normal estimation
average. Allowing for a certain error margin, we de ne an in- could be used, we found this method to be fast and suf cient
dicator function that speci es whether a point lies no farther for our purposes.

than a certain distance behind the surface: Depth maps from opposite sides of the object do only
) overlap in small regions, usually at grazing angles, which

1S(dh) = 1 it s < d ) makes these observations unreliable without contributing

0 otherwise. much to the overall distance estimate. To signi cantly de-

crease computation time, we do not consider depth maps
whose viewing direction; differs too much from the view-

ing directionv; under whichp was observed, by limiting the
angle between both viewing directions. Keeping only depth

A large positive distance; implies thatp could have been
seen from this view but is far away from the actually ob-
served range surface. To limit the in uence of these outliers
we truncate the signed distandeto s if d; > s, butstill i : i
include it in the corr?putation ofn:the Weightéd average since it maps for an angle smaller thal , i.e. Vivi > 0, yields
-aHY good results in our implementation.

has been seen from this view and makes the average compu- \ye nally compute the signed distanceto the surface
tation more robust against cases wherean outlier (instead ¢ 5 weighted average over all range surfaces:
of a depth valud;(p)). In cases where no intersection ex-
ists, e.g.,D4 in Figure 2, the range surface is not further d(p) = 1 & 15(di(p)) wi(p) minfdi(p);sg:  (4)
considered for the distance calculation for w(p) 7

Additionally, to re ect greater uncertainty when a point | practice, the weighty; is calculated only at vertices of the
p from the range imagB; has been observed at a grazing range image and interpolated in the same manner as for the

angle to the surface, we introduce the weight signed distance in Equation 1. The normalization faaigy)
TP Vi is the summation of all weightsv(p) = &; 1S(di(p)) wi(p).
wi(p) = n(p) ko VK 3) Note thatp itself and its weight are included in the average,

with the distance 00 to the range surface it originates from,
wheren(p) is the point normal gb. The weightw; measures  since we want to compute the distance to an averaged surface
the similarity between the viewing directign v; and the from all depth maps.
normal directiom atp and thus becomes small in absolute
value at a grazing angle. Point normals are calculated usin
principal component analysis of their image-space neigh-In addition to the geometric consistency, the consistency
bors [L6] and are oriented towards the camera center, henceof colors of intersection points, as well as the visibility of

g3.2. Photometric consistency



p are calculated. In contrast to the averaging of distances,

where outliers are truncated, we only want to consider range

surfaces that lie close to the poimtas only they provide

reliable color estimates. To this end, we de ne a second

indicator function that is similar to the rst, but now encodes

whether a point is closer to the range surface than the distanceigure 3. On the left we show a close-up of a denoised point cloud

s for both positive and negative directions: withtg=s and ty< d< 0. On the right we use ty< d< tq and
( . setty= 0:5 s to keep the interval size the same and the comparison
1P (dh) = 1 if s<d<s ) fair. The amount of noise is visibly reduced in the rst approach.
S 0  otherwise.
We use the same for both indicator functions. 4. Results

The visibility is obtained by simply counting the depth
maps that fall into this margin and thus contribute to the In this section, we validate our denoising and outlier removal
color consistency calculation: algorithm on several multi-view image datasets. Since our
_ 8 P/ ) method is designed to work with existing multi-view depth
v(p) = al I (ci(p)); ) and surface reconstruction methods, we provide results with
a selection of such methods. For all depth and surface re-
constructions presented in our paper, we hand-picked the
dparameters S0 as to achieve the best possible results. For our
own method, we used xed parameters for all results. The
value ofs should be chosen according to the scale of the

which gives us an estimate of the number of depth maps in
which p is visible.

The photometric consistency is measured by the standar
deviation of the color distribution:

p(p) = i é |E(di(p)) kci(p) k? ) scene, SO We_set ittt of the depth range (e.g., the length
v(p) of the bounding box along theaxis); we sets = 0:1s.
1 o 1P (g _ 2 172 The visibility parametet, is set to be7:5% of the number
v(p)2 a| s (di(p) ci(p) ' of input depth maps. For the photo-consistency threshold,

we always set, = 0:2. To ease reproducibility, the supple-
mentary material accompanying this paper includes noisy
input point clouds, our denoised point clouds, as well as the
3.3. Point ltering parameters used for the meshing.

wherec; denotes the (interpolated) color value at the inter-
section ofp and the range surface BX.

The last step is to decide whettgshould be kept based on _ _ _
its geometric and photometric consistency. We retain a pointResults for different depth reconstruction algorithms.

if it satis es all of the following three conditions: Figure 4 shows the reconstructed surfaces from several
datasets recently released bgcér et al. {1 3]. These datasets
tg < d(p) < O; PP)<tp; VP>t (8)  feature a very dense sampling of the scene in terms of views
wheretq < s, t,, andty, are thresholds for distance, pho- per baseline and also offer a high spatial resolution, poten-
tometric consistency, and visibility, respectively. tially allowing to reconstruct a high degree of detail, but also

While s inuences the possible thickness of recon- challenging the computational ef ciency of reconstruction
structed features of the objet§, decides how much de- methods. We used four different dense multi-view depth
viation from the surface we allow and thus controls the level reconstruction algorithms with different algorithmic prin-
of removed noise. A small value &f reduces the number of  ciples, levels of regularization, and noise and outlier char-
retained points signi cantly and results in smoother mesh acteristics. While Fuhrmann et alyE) [9] and Zhang et
reconstructions from the lItered point clouds. If the input al. (ACTS) [45] use sophisticated global regularization, Kim
depth maps are already sparse, a higher value should bet al. (FD) [21] use local regularization only, and our im-
chosen. In practice, choositgas a xed ratio ofs (e.g. plementation of the plane-sweep algorithmg)([6] uses no
tg = 0:1 s in all our examples) and only adjustisgto the regularization at all. We used screened Poisson surface re-
object scale works well. construction gsR [20] for surface reconstruction as it is

The choice of keeping only points with a negative signed very resilient to input noise and also widely used. Each pair
distance to the surface (rst condition of Equation 8) is of images in Figure 4 shows the results without and with our
based on the observation that most of the noise appears ordenoising algorithm.
the outside of the surface, which can be attributed to the ~ We used about 200 input views for all depth reconstruc-
image-based capturing process. The simple trick of retainingtion methods. Fomve we used the level-2 depth maps (4
points only on the inside removes most of such noise. Figuredownsampling) as advised in the paper and the software doc-
3 shows the effects of doing so. umentation. The FD method proposes a simplistic outlier
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Figure 4. Meshes and point clouds (showmupperandlower triangles, respectively) obtained on dense multi-view datasé}aifing
various depth estimation methods: Multi-view environmeantg) [9], light eld depth reconstructionufFp) [21], dense depth reconstruction
from video @ACTS) [45], and the plane-sweep algorithrrg) [6]. The point clouds were meshed using the screened Poisson surface
reconstructiongsR [20] without our denoising methoddft in each pair) and after our denoisimight in each pair). We hand-tuned all
parameters of the depth estimation methodsrsrito achieve the best possible results. We also show the reseiivs [11] in the last
column as reference. Please see the supplementary material for a more extensive presentation of these results.

ltering step which we disabled when applying our lter (to removing features. To demonstrate our method’s robustness
not Iter twice), but we keep it enabled for the baseline re- to noise, we reconstructed scene depth using#pemethod
sults.ACTS required the input images to be at the resolution that only performs local regularization, and also a simple
of about 720p HD. Since the resulting point clouds often plane-sweepingr9) algorithm withno regularization. The
contained multi-million points, we had to decimate some resulting point clouds show an extreme amount of noise, but
input point clouds so thatsrcan run with the available also capture a lot of details. As can be seen, our method is
memory (64 GB on our machine). In such cases, which only able to remove most of the noise and allows the subsequent
happened with un ltered point clouds, we downsampled the surface reconstruction to yield favorable meshes with many
input images using bicubic interpolation un#isr could details preserved. A similar observation can be made for
process them while keeping the number of views the sameAcTs which results in less noise due to the global regulariza-
Note that we did not have to downsample the images for ourtion but still produces too many outliers to make meshing
denoised results, allowing us to use the full input resolution.feasible from un Itered point clouds.

As a comparison we also show resultsroafvs which

As can be seen in Figure 4, the resultavofe exhibit :
) . . does not produce dense depth maps, but densi es sparse
outliers that are more structured and consistent across views

. : : points. While yielding reasonable results in general, dense
hence forming areas with densely clustered points. Thus . S . h
o . . . depth methods in combination with our denoising often pro-
it is generally more dif cult for a denoising algorithm to

. : . duce more favorable meshes with more details revealed.
detect them as ouliers or noise, often leaving them as fea-

tures. However, our method measures the photometric con-

sistency as well, rendering it easier to detect such outliersResults for different meshing algorithms. As shown in

than solely with geometric consistency. Without removal of Figure 4,p,srRhandles noisy input very well, but at the price
these outliers, we had to use a higher amount of smoothingof increased smoothing and less accurate feature localiza-
to remove the clutter, which was often impossible without tion, which sometimes results in missing features. Without
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Figure 5. Comparison between our algorithm and the smoothing
of PSRwith varying amount of screening. Leftmost: mesh recon-
structed from our denoised point cloud with a large screening
weight pw= 4 and 5 samples per node (spn). To the right: meshes
reconstructed from the noisy point cloud for different screening
weights. We had to use very low screening due to the noisy input
and use 20 spn to achieve smoother results. Without our denoising,
the resulting meshes are either too noisy or lack detail.

Rusu et al. [31] RIMLS [30] WLOP [17] EAR[18] Ours

Figure 7. Comparison of our denoising method with other outlier
removal, resampling, or smoothing methods. Top: Filtered point
clouds, bottom: corresponding meshes computed wssrRyOur
result exhibits the most detail and least amount of artifacts.

very smooth, clean point clouds, however, lacking detailed
features. Edge-aware resampling of Huang etla &lso
presents very smooth results and while succeeding at remov-
ing noise, both methods left a signi cant amount of outliers.
We also tried the more recent work of Wu et alZ], but
since our input point clouds do not include missing parts, the
effect was negligible. RobustiLs of Gztireli et al. 3(] pro-
duces a relatively sparse point cloud and suffers from many
outliers. Rusu et al.'s1] outlier removal method successful
removes outliers, but did not handle noisy points. Also none
Figure 6. The rst column shows an input point cloud (top) and our of these methods uses color information to remove the noise
denoising result (bottom). The remaining columns compare meshesy, outliers, whereas our method handles such noisy point

reconstructed using different surface reconstruction techniques. Theclouds using the information that is available for image-base

mes_hes computed_ from the denoised points always exhibit moretechniques, but that is ignored by methods that only process
details and less artifacts.

oriented point clouds.

Point cloud PSR [20] SSD [5] FSSR[4]

strong smoothing, the reconstructed surface is rough andcomparison to ground truth data.  To assess the results
includes substantial amount of clutter; see Figure 5 for the more quantitatively, we measured the bias of the recon-
results of varying>srparameters. We typically used a higher - structed meshes from ground truth results. Figure 8 shows
screening term for our denoised results and a very low to nothe errors of reconstructetRAGON meshes taken from Fig-
screening term for noisy input point clouds. ure 4. We evaluate the accuracy and completeness of each

While psRis very resilient to noise, other surface recon- mesh according to the metrics used in the Middlebury multi-
struction methods tend to respect input points more. In suchyiew stereo benchmarlf]. The meshes are color-coded
cases, our method can be even more valuable. Figure 6 showgith green indicating no error and where blue and red denot-
the meshing results of noisy input and our denoised pointing negative (surfaces placed inside the ground truth) and
clouds using a range of widely used surface reconstructionpositive errors, respectively. We observe that meshes result-
techniques. The effect of our method is consistent acrossing from our denoising algorithm consistently mark higher
different meshing techniques. scores for all depth reconstruction methods.

Comparison against other denoisers. In Figure 7, we Performance analysis. Figure 9 summarizes the perfor-

compare our method with other point cloud denonising, mance of our algorithm, where accuracy and completeness
smoothing, or resampling methods. The point cloud con-errors as well as the runtime were measured with varying
solidation methodwWLoP) of Huang et al. [7] results in number of input depth maps. It takes about 30 seconds to



case ofO(NM) will not be reached, as we do not compare
depth maps from opposite sides of an object.

Limitations. As we rely on the redundancy of points and
need to calculate intersections with a range surface formed by
the depth maps, our method might fail for very sparse input,
e.g., very sparse depth maps (such as those reprojected from
a sparse point cloud), or for a low number of depth maps.
Also when the input images are taken under vastly different
lighting situations, the photo-consistency calculation might
be inaccurate. To mitigate this problem we can choose a
higher photo-consistency threshold, which however reduces

Figure 8. Quantitative evaluation of tllRAGON meshes using  the ef ciency of the ltering.

different depth reconstruction methods areRmeshing. The top

and bottom rows show the results without and with our denoising :

algorithm, respectively. We measured errors in terms of accuracy5' Conclusions

(in wc_)rld units; the lower, t_he better) and completeness (in percent;\y/e presented an ef cient, simple, and robust algorithm for

the higher, the better), using an accuracy threshold of 90%, and 30ise and outlier removal from the often extremely noisy

completeness threshold of 0.1 world units. point sets generated by image-based 3D reconstruction tech-
niques. Our method reduces the amount of erroneous and
extraneous points in the input, which signi cantly improves
the reconstruction quality while reducing the computational
and storage overhead. We demonstrated the bene ts of our
method in conjunction with a variety of existing depth esti-
mation and surface reconstruction techniques and thus be-
lieve that we presented a practical and useful tool for virtually
any image-based 3D reconstruction work ow.

Classic multi-view reconstruction methods often perform
costly optimizations for smoothing and regularizing the re-
sults, which removes a signi cant amount of detail present in

Figure 9. The run-time and output quality of our method with the scanned scene. With our method, simple reconstruction

varying numbers of input depth maps calculated ortReGoN techniques without much (or any) smoothing, efg.[],

dataset for theFp method. can be used to create over-redundant points. As shown in
the experiments, our method is able to reduce these large

process 20 depth maps at 192080 resolution, about 5  and noisy point clouds so that meshing becomes feasible and
minutes for 100, and 20 minutes for 200 depth maps, usingOften even pl’OdUCES more accurate surface reconstructions
our simple,OPENMP-based parallel implementation on a that preserve many details. We hence hope that our method
3.2GHz 12-core Intel CPU. As can be seen in the graph,0opens up the door to fundamentally novel basic approaches
with more than 200 depth maps as input, the output quality for image-based 3D reconstruction.

does not change much while the runtime increases further.
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