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Source Conformal Isometric

Fig. 17. Our method can be used to deform tetrahedral meshes, minimizing
a conformal energy (middle) or the exponential symmetric Dirichlet isomet-
ric energy (right). The cubes have 48K (top) and 350K (bottom) tetrahedra,
and our algorithm took 5 and 80 seconds, respectively. We picked 4 edges
of the cube (shown as cylinders) and manipulated them. The right image in
each pair shows the interior of the deformed cube.

Table IV. Comparison of mesh improvement.

Name Init. Dihed. BD AMIPS Our Method

Duck (10,163) (16,148) (19.6,161.5) (19, 138.16)
Elephant (8,167) (16,148) (13.7,161.3) (20.2,141.2)
Elephant2 (15,157) (18,147) (19,150) ( 23.1,142.3)
Hand (9,162) (16,148) (18,156) (21.1, 143.3)
Max (21,151) (14,153) (27.2,137.3) (29,141.5)
Rocker (10,163) (16,148) (21.6,148.7) (22.8,139.4)
Skull (0.8,178) (14,153) (21.1,147.6) (17.4,157.8)
Dragon (31,140) (28,139) (27.8,139.37) (31.8, 137.6)

Comparison of mesh improvement achieved by running [Aigerman and Lipman 2013]
(BD) and [Fu et al. 2015] (AMIPS). In each entry in the table we show the minimal and
maximal dihedral angle, where the second column shows the initial values. As can be seen,
in all cases except for the Skull dataset, our method outperforms the competing methods.
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APPENDIX

A. SOLVING EQ. (21)

In order to solve Eq. (21), we write it in matrix form, and in terms
of the coordinates x. Then Eq. (21) is transformed into

min
x
‖Ax− b‖2 (41)

where the structure of A and b in the 2D case is as follows. Assum-
ing a set of orthogonal frames per element are prescribed, we let
Dx,Dy be the FE gradient matrices of the mesh w.r.t. the frames.
Additionally, we define four diagonal matrices, Wij for i, j = 1, 2,
where the diagonal of Wij holds the (i, j) entries of all of the
weights Wf . In other words, Wij = diag({Wf (i, j)}f ). Sim-
ilarly, we define Rij to be the column vector holding the (i, j)
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entries of all of the Rf

A = WD =

W11 0 W12 0
W21 0 W22 0

0 W11 0 W12

0 W21 0 W22


Dx 0
Dy 0
0 Dx
0 Dy

 (42)

b =

R11

R21

R12

R22

 (43)

This can be readily solved by any least squares minimization
algorithm.

B. SECTION 3 PROOFS

B.1 Lemma 3.1

Lemma 3.1 Let J = USJV
> be the Singular Value Decomposition

of J. Then,

D(J) = D(SJ) (44)

∇JD(J) = U∇SJ
D(SJ)V> (45)

PROOF. Eq. (44) is immediate from the definition in Eq. (1). As
for Eq. (45), we use the formula for the derivative of the singular
values (see [Giles 2008])

∇JD(SJ) = U∇SJ
D(SJ)V> (46)

B.2 Local step, general construction: proof of Eq.
(39)

For a rotation invariant D(J) that is separably strictly convex in
singular values, Eq. (38) can be satisfied by setting (SΛ)i such that:

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0 (47)

In particular, in the case of a true isometric distortion measure, (38)
is satisfied by setting the local step as the closest rotation Λ = UV>.

This can be seen from the fact that every partial func-
tion of D(σ) is strictly convex on R>0, and therefore has
a single minimum, (SΛ)i. Hence, for every σi < (SΛ)i,
∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) < 0, and for every σi > (SΛ)i,
∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) > 0. This is also true for (SJ −
SΛ)i and so Eq. (39) is satisfied.

B.3 Conformal energy local step derivation

Let D(J) = tr(J>J)

det(J)2/d
. D(J) is rotation invariant and can be written

as D(σ) =
∑d

i=1 σ
2
i

σ1...σd
. By differentiating the distortion measure w.r.t.

the singular values in the 2D case, we find that

(∇SJ
D(SJ))1 =

1

σ2

− σ2

σ2
1

,

and similarly, (∇SJ
D(SJ))2 = 1

σ1
− σ1

σ2
2

. Assuming J is not a
similarity already, then, since σ1 > σ2 > 0, the first entry is
negative, while the second is positive. By choosing σ1 > (SΛ)i >
(σ2), this holds true for (SJ − SΛ)i and so Eq. (38) is satisfied.

For the 3D case,

(∇SJ
D(SJ))i =

−2σi+1σi+2(σ2
i+1 + σ2

i+2 − 2σ2
i )

(3σiσi+1σi+2)5/3
,

where the index i cycles from 1 to 3 (i.e., σ4 = σ1). This is

zero only for σi =

√
σ2
i+1+σ2

i+2

2
, and so (∇SJ

D(SJ))1 < 0,

(∇SJ
D(SJ))3 > 0. We note that σ̄ =

√
σ2
1+σ2

3
2

satisfies σ3 < σ̄ <

σ1. Therefore, by choosing SΛ = σ̄UV>, we get (SJ − SΛ)1 < 0,
(SJ − SΛ)3 > 0, and by construction, same as the proof for Eq.
(39), we get that the sign of (SJ − SΛ)2 is equal to the sign of
(∇SJ

D(SJ))2.

C. CONNECTION WITH NEWTON’S METHOD

We show that our proxy can be written in a ”Newton” form. Min-
imizing the proxy energy (21), generated with our algorithm for a
rotation invariant D(J), provides a search direction that satisfies:

dk = pk − xk−1 = −L−1
w g, (48)

where Lw is the l.h.s. of Eq. (42) and g is the gradient of the energy
at the given point. We note that, the Lw matrix is dependent on the
weights, and thus changes at every iteration. Replacing it with the
Hessian of the energy is exactly Newton’s method, while replacing
it with a constant Laplacian L is the approach of [Kovalsky et al.
2016]. The latter coincides with our approach and the original lo-
cal/global approach of [Liu et al. 2008] only when used to minimize
the ARAP energy. To see that (48) holds, note that the matching
gradient condition (12) for our proxy distortion implies:

∇Jf
D(Jf ) = Wk

f

>
Wk

f (Jf − Λf ), (49)

where Wk
f are per-face matrix weights satisfying Eq. (12). Using

the chain rule we get the energy gradient as a function of the vertices;
in the notation of Eq. (42):

g = D>W>WD(J− Λ), (50)

where J are the vectorized Jacobians, and Λ = b is the same as in
Eq. (43).


