
14

Digital Three-dimensional Smocking Design

JING REN, AVIV SEGALL, and OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland

We develop an optimization-based method to model smocking, a surface

embroidery technique that provides decorative geometric texturing while

maintaining stretch properties of the fabric. During smocking, multiple

pairs of points on the fabric are stitched together, creating non-manifold

geometric features and visually pleasing textures. Designing smocking pat-

terns is challenging, because the outcome of stitching is unpredictable: The

final texture is often revealed only when the whole smocking process is

completed, necessitating painstaking physical fabrication and time con-

suming trial-and-error experimentation. This motivates us to seek a digital

smocking design method. Straightforward attempts to compute smocked

fabric geometry using surface deformation or cloth simulation methods fail

to produce realistic results, likely due to the intricate structure of the de-

signs, the large number of contacts and high-curvature folds. We instead

formulate smocking as a graph embedding and shape deformation prob-

lem. We extract a coarse graph representing the fabric and the stitching

constraints and then derive the graph structure of the smocked result. We

solve for the three-dimensional embedding of this graph, which in turn

reliably guides the deformation of the high-resolution fabric mesh. Our op-

timization based method is simple, efficient, and flexible, which allows us

to build an interactive system for smocking pattern exploration. To demon-

strate the accuracy of our method, we compare our results to real fabrica-

tions on a large set of smocking patterns.
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1 INTRODUCTION

Smocking is a surface embroidery technique used in textile de-

sign that serves two main purposes: it is highly decorative and

provides ornamentation, and it also has the practical benefit of

allowing a close fit of the garment while maintaining a certain

degree of stretch. Consequently, smocking is an artistic means of

controlling a garment’s fullness, thereby creating more shape for

the wearer [Banner 2022; Durand 1979]. Moreover, smocking can

act as reinforcement and insulation, padding over areas such as

shoulders and chest to add durability to the garment [Toplis 2021].
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Fig. 1. We model smocking, a decorative geometric cloth texturing

technique, where pairs of points are stitched together to form a pleated

pattern. Here we show examples of smocked sleeves produced using our

method, where the volumetric smocked textures create natural folds. The

geometry of the smocked fabric computed with our method based on

the input pattern closely matches the physically fabricated counterpart

(photos in grey).

Garments made with this technique are called smock-frocks or

smocks.

Smocking can be roughly categorized into two styles according

to the embroidering process: English smocking, where the pleating

and stitching are done sequentially, and Canadian smocking, where

the stitching generates the pleating simultaneously. In traditional

English smocking, the fabric is first folded into close and uniform

pleats, and then the gath-

ered threads are used as a

guide to embroider rows of

stitches through the pleats.

The stitches remain visible

and play the main decorative

role, akin to standard two-

dimensional (2D) embroidery,

whereas the pleating serves

mainly to create a thicker base

medium and generate folds

when transitioning between smocked and non-smocked parts of

the fabric. The final appearance of an English smocking pattern

is predictable, since the pleats are pre-folded and the embroidery

patterns are determined by the alignment of stitches. In Canadian

smocking, the fabric is pleated by stitching it locally, connecting

or “pinching” pairs of points in a special pattern. The stitches are

invisible in the final result, and the decorative, geometric texture
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Fig. 2. The smocking process. A smocking pattern (a) consists of stitching lines (the polylines in black). Each stitching line needs to be contracted into a

point by gathering and sewing together its nodes ((b) and (c)). Sewing all stitching lines reveals the final geometric texture (d). All pieces of fabric are shown

in scale; note that smocking shrinks the starting piece of cloth significantly, since multiple points are pinched together.

is formed by the pleats themselves. The final appearance of a

Canadian smocking pattern is much harder to predict based on

the given stitch pattern; the geometric texture is often revealed

only when the whole smocking process is completed, making its

design a challenging trial-and-error process [Efrat et al. 2016].

In this work, we therefore focus on Canadian smocking, with the

goal of creating a digital framework for design and preview, where

users can explore and experiment with various stitching patterns

and visualize the smocking results without having to sew them

physically (Figure 1). We investigate a mathematical formalization

of the smocking problem and design an automatic and efficient al-

gorithm to compute smocked fabric geometry based on input pat-

terns. Surprisingly, approaching smocking modeling in a straight-

forward way as a constrained surface deformation or cloth simula-

tion problem generally fails to satisfy all point-to-point stitching

constraints and deliver faithful results, likely due to the intricate,

essentially non-manifold structure of the design, the very large

number of contacts, and the high-curvature folds. We instead for-

mulate smocking as a graph embedding optimization problem that

guides the cloth deformation. We extract a coarse graph represent-

ing the fabric and the stitching constraints and then derive the

graph structure of the smocked result. We solve for the 3D embed-

ding of this graph, which in turn reliably guides the deformation

of the high-resolution fabric mesh. To demonstrate the accuracy

of our method, we compare our results to real fabrications on a

variety of smocking patterns.

Contributions. In this work we propose (1) the first formalization

of smocking design as a graph embedding and shape deformation

problem and (2) an efficient algorithm to compute the smocked

fabric geometry from a given pattern, enabling (3) an interactive

tool for designing smocking patterns.

2 RELATED WORK

Smocking. The word smock comes from the Anglo-Saxon word

smocc, the name of an outer sack-like garment, later called smock

frock, which was worn over a farmer’s other clothes to protect

them from getting soiled [Durand 1979; Spufford and Mee 2017;

Toplis 2021]. We refer the interested readers to a recent book, The

Hidden History of the Smock Frock [Toplis 2021], for details.

Existing research on smocking is related to adult education

[Bauer and Elsey 1992], psychology [Elbyaly and Elfeky 2022], or

bedroom decorations marketing [Joseph et al. 2011]. Efrat et al.

[2016] propose a digital design tool for smocking, where users can

tile predefined unit smocking patterns and then print them on fab-

ric. Their system does not visualize the result: The smocking itself

needs to be completed manually by sewing the physical fabric. The

authors note that the complexity of smocking makes it difficult to

automate and that predicting the smocking result of a given pat-

tern is challenging.

Lind [2019] explores the design of colorful jacquard woven pat-

terns that serve as templates for the smocking stitches, such that

the woven pattern shapes the fabric. The jacquard patterns are cus-

tomized for different smocking patterns. During the design and

experimentation, the patterned fabrics have to be produced on a

jacquard machine and then smocked manually in each design it-

eration. Kim [2020] emulates smocking in a step-by-step manner

in a commercial virtual clothing software [CLO 2023], manually

creating each stitch by simulating a tacking and folding step. On-

line creators post similar manual techniques to model smocking

details in digital garments [CLO 2020]. In contrast, our method is

fully automatic and efficiently simulates the entire smocked shape.

Physically based cloth simulation. Following the pioneering work

of Terzopoulos et al. [1987], different elastic models have been

studied for representing cloth dynamics, including finite element

methods [Baraff and Witkin 1998; Narain et al. 2012], mass-spring

systems [Choi and Ko 2002; Liu et al. 2013], and yarn-level cloth

simulation [Cirio et al. 2014; Kaldor et al. 2010]. To accurately

model folding or wrinkling of cloth, different collision handling

techniques have been proposed [Bridson et al. 2005; Li et al. 2021;

Tang et al. 2018; Wang 2021]. Chen et al. [2021] propose a new

model based on thin shells to model fine-scale wrinkling. How-

ever, general-purpose cloth simulators struggle with the smock-

ing task, because the pleats are mainly formed by stitches, whose

pinching effect is challenging to capture by simulated wrinkles

from cloth dynamics alone (see Figure 6 for an example). FoldS-

ketch [Li et al. 2018] is a dedicated inverse modeling system for

folds and pleats, where the user sketches the desired folds on the

draped 3D garment, and the algorithm adjusts the sewing pat-

tern to reproduce them. While very effective for pleats and gath-

ers that extend along one-dimensional curved paths, this system is

not suitable for sketching smocked pleats, which are arranged in a

two-dimensional pattern with many occlusions and overlaps. The

smocked appearance is not entirely independent of the fabric type,

but the dominant factor that governs the geometry and the regu-

larity of the pleats is the structural stitching pattern, as opposed

to the cloth parameters. In this work, we focus on the geometric

formulation of smocking and assume the fabric to be roughly in-

extensible [Goldenthal et al. 2007].

Shape deformation. Instead of dynamically simulating cloth,

smocking can be seen as an end state of a draping process that
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can be computed via surface deformation with positional con-

straints [Sorkine and Botsch 2009]. Among the many surface defor-

mation methods, as-rigid-as-possible deformation (arap) [Sorkine

and Alexa 2007] models least-squares isometric deformations,

which can be used as a stand-in for inextensible cloth. Deforma-

tion methods generally do not consider self collisions and contacts

and do not do well on the smocking task when applied directly

(Figure 5). In our approach, we encapsulate the contacts, i.e., the

sewing constraints, in the smocked graph structure, which guides

the subsequent fine-grained deformation to a feasible and faithful

configuration.

Digital design. The subject of our work fits into digital design—

algorithms and systems that assist users in creating digital arti-

facts before physically fabricating them. Recent examples in this

space include origami [Dudte et al. 2016], kirigami [Castle et al.

2014, 2016; Jiang et al. 2020], knittable meshes [Wu et al. 2019], 3D

weaving [Ren et al. 2021], and quilting [Carlson et al. 2015; Igarashi

and Mitani 2015; Leake et al. 2021], among many others. Here we

focus on kirigami and quilting, which are more closely related to

smocking.

Kirigami is a generalized origami technique where cutting out

holes is allowed. It is often employed for regular tessellation pat-

terns, similar to Canadian smocking, which are visually appealing

and/or achieve particular mechanical behaviors [An et al. 2020;

Wang et al. 2017]. Castle et al. [2014, 2016] explore rules for cut-

ting and folding kirigami, while Jiang et al. [2020] investigate the

inverse problem of designing a kirigami pattern such that the de-

ployed result is similar to a given 3D shape. The main difference

between kirigami and smocking is the material: Kirigami uses pa-

per, which can neither stretch nor shear. In contrast, smocking is

intended for woven fabric, where a certain degree of shearing is

possible even if the warp and weft yarns are inextensible. Fabric

has a much richer set of degrees of freedom when deforming, so

that smocking geometry is smoother and generally more varied

compared to kirigami.

Leake et al. [2021] formalize the foundation paper piecing pro-

cess, which is popular for constructing textile patchwork quilts

based on printed patterns. This work encodes the pattern geom-

etry via a dual hypergraph and investigates whether a given pat-

tern is valid, i.e., pieceable. The challenge is to solve for the order of

placing the fabric pieces to meet the constraints posed by known ge-

ometry. In contrast, the challenge of formulating smocking is that

the final 3D geometry is unknown before the fabrication process

is completed. We therefore need to build a graph that can capture

the unknown structure information.

3 PRELIMINARIES

Canadian smocking consists of the following steps: (1) preparing a

smocking pattern by drawing a grid and designing stitching lines

on a piece of fabric and (2) gathering all grid vertices of one stitch-

ing line and sewing them together. The sewing is repeated for all

stitching lines. Optionally, one can (3) fold the pleats formed dur-

ing the stitching in a nicer way and iron the smocked pattern if

necessary. See also Figure 2 and the accompanying video. In Sec-

tion 3.1, we formalize each step, and in Sections 3.2 and 3.3 we

discuss conceivable straightforward approaches.

3.1 Notation and Problem Formulation

A classic smocking pattern consists of a piece of fabric with a 2D

grid drawn on top of it and a set of stitching lines, each containing

a list of grid nodes. A pleat is formed when the nodes of one stitch-

ing line are gathered and stitched together into a single point. In

practice, a stitching line is annotated by a set of connected line seg-

ments to visually separate different stitching lines from each other.

The overview of the smocking process is illustrated in Figure 2.

Definition 3.1. A smocking pattern P = (G,L) is a piece of fab-

ric, represented by a graph G = (V,E) with verticesV and edges

E, annotated with a set of stitching lines L = {�i }. A stitching line

� is a subset of vertices inV that are to be stitched together.

Fig. 3. A smocking pattern P.

Figure 3 shows a simple

smocking pattern, represented

by a grid, where we denote the

vertices as V = {v0,0, . . . ,

vi, j , . . . ,vn,m }. Then we can

read the annotated stitching

lines L = {�i } as �1 = (v0,1,

v1,2), �2 = (v1,1, v2,0), �3 =
(v3,2, v4,1), �4 = (v4,0, v5,1), �5 = (v6,1, v7,2), . . . . In practice, a

smocking pattern is obtained by tiling a unit smocking pattern

regularly on the fabric. We delineate the unit smocking pattern

by a pink rectangle, and the stitching lines of the unit pattern are

marked in red. Note that we include the diagonals of the grid quads

into the graph edges E, since they play a role in the subsequent

graph embedding.

During the smocking process, the vertices belonging to the same

stitching line (e.g.,v0,1 andv1,2) are gathered and stitched together.

A stitching line can consist of multiple line segments, in which

case more than two points need to be stitched at the same time

(see Figure 2(a) for such an example). Our goal is to compute the

Fig. 4. Finer discretization P̃.

smocking design, i.e., the 3D

geometric texture shape result-

ing from any given smocking

pattern. For this purpose, we use

a higher-resolution representa-

tion of the fabric, P̃ = (G̃,L),

where G̃ = (Ṽ, Ẽ) and V ⊂ Ṽ ,

see Figure 4.

Definition 3.2. The smocking design from a pattern P is a mesh

M̃ = (X̃, G̃) embedded in 3D, where X̃ ∈ R | Ṽ |×3 stores the 3D

positions xp of all nodes vp ∈ Ṽ and satisfies xp = xq , ∀vp ,vq ∈
�i , ∀�i ∈ L. We can extract a non-manifold mesh representation

M′ from M̃ by removing the duplicated vertices and updating the

topology of G̃ accordingly.

The above definition seems to imply that the smocking design

can be computed using shape deformation or cloth simulation, but

these approaches fall short.

3.2 Shape Deformation using arap

We can cast the smocking design computation as a shape defor-

mation problem and easily adapt as-rigid-as-possible deformation
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Fig. 5. Straightforward application of arap deformation [Sorkine and

Alexa 2007] to the smocking pattern shown in Figure 2 fails to recover the

expected smocked geometry (a). The value of ϵ stands for the maximum

allowed distance between stitched nodes; when ϵ = 0, the deformed mesh

stays planar. In (b) we show the result of gradually decreasing ϵ from half

of the initial length to 0. Our method successfully computes the smocking

design (c), closely matching its physical fabrication (d).

(arap) [Sorkine and Alexa 2007] to obtain X̃,

min
X̃∈R|Ṽ |×3

∑
i

min
Ri ∈SO (3)

∑
j ∈N (i )

wi j
���
(
xi − xj

)
− Ri

(
x̄i − x̄j

)���
2

2
,

s.t.
��� xp − xq

���2
= ϵ, ∀(vp ,vq ) ∈ �k , ∀�k ∈ L,

(1)

where x̄i denotes the known starting position of vertex xi in the

flat fabric piece,N (i ) is the one-ring neighborhood of the ith node

in G̃, and wi j are the cotangent weights [Meyer et al. 2003]. The

arap energy encourages the edges in G̃ to stay rigid and main-

tain their length. The deformation occurs due to stitching, which

is modeled via the constraints. For two nodes in the same stitching

line, we allow ϵ distance in the deformed state; ϵ can either be set

to the thickness of the fabric or zero for simplicity.

We note that the constraints in Equation (1) are nonlinear

and non-convex for ϵ � 0, so we simplify the constraints by

linearization. In Figure 5, we show the smocking design results of

arap obtained using three different settings for the same pattern

illustrated in Figure 2(a). (i) When ϵ = 0, we get planar positional

constraints xp = xq . Since the initial mesh is planar, the arap de-

formation does not manage to get out of the planar configuration

and produces a planar self-intersecting mesh (Figure 5(a), left).

(ii) Softening the stitching constraints by setting ϵ to a small

non-zero value allows the optimization to find a non-planar

local minimum, but the result is irregularly wrinkled (Figure 5(a),

right), likely because the stitching constraints overpower the

optimization, not letting the surface relax. (iii) In Figure 5(b) we

attempt a progressive strategy, where we iteratively reduce ϵ from

half of the initial length of the stitching lines to 0. The result is

better but still not sufficiently regular.

3.3 Cloth Simulation

Computing the smocking design can naturally be formulated as

a cloth simulation problem. We use a popular simulator, cloth,

implemented in Blender [2023], which uses the point-based dy-

namics of a mass spring system [Bridson et al. 2002] and incor-

porates contacts and friction. To simulate smocking, we add vir-

tual linear springs of rest length 0, connecting each pair of nodes

in each stitching line. In Figure 6, we show the simulated result

of the pattern in Figure 2 over iterations. We observe a similar ef-

fect as with arap: As the sewing lines become shorter, the textile

Fig. 6. Simulated smocking design using Blender [2023]. We report the av-

erage length in centimeters ēk of all sewing lines after k iterations, where

k = 25, 50, 75 (converged), for a smocking pattern of size 50 cm × 70 cm.

The stitching lines have initial length of 5.5 cm and are expected to reach

zero length after stitching.

becomes bunched up in an irregular fashion, because the simulator

is not aware of the high-level regularity of the smocking pattern.

As a comparison, our result shown in Figure 5(c) achieves regular

and realistic smocking with zero-length sewing lines. See Figure 9

for more examples.

3.4 Observations and Challenges

Through our experiments, we have discovered that while it is pos-

sible to find many smocking designs that meet the criteria out-

lined in Definition 3.2, the definition itself falls short of adequately

describing the desired voluminous and regular geometric texture

preferred by artists. In practice, a smocking pattern is usually ob-

tained by evenly tiling a unit pattern onto the fabric. As a result,

one would anticipate achieving regular pleats with visually repet-

itive and consistent patterns. Prior knowledge of regularity is cru-

cial, as the absence of such knowledge causes both state-of-the-art

shape deformation methods and cloth simulators to struggle with

avoiding visually unpleasant or degenerated local minima. At the

same time, formulating regularity in smocking is quite challenging,

given that the geometry remains unknown until the fabrication

process is completed. Additionally, imposing 3D geometry priors

on a 2D input pattern is nontrivial.

4 METHOD

The experiments above reveal that to model smocking, we need to

somehow impose a global regular structure on the fabric, because

the deformation energies that are based on purely local differen-

tial properties have abundant local minima that lack symmetry

and yield undesirable results. To tackle this challenge, we solve

the smocking design problem in two steps: We consider the input

smocking pattern P, defined on a coarse representation of the fab-

ric (see Section 3.1) and optimize its 3D graph embedding. We then

apply arap, guided by the computed 3D embedding, on a finer rep-

resentation of the fabric, P̃, to compute the final smocking design.

In the following, we explain our method in detail.

4.1 Smocked Graph Extraction

We define the smocked graph from the input smocking pattern P =
(G = (V,E) ,L = {�i }) to represent the non-manifold structure of

the resulting smocking design. We first categorize the vertices v ∈
V and edges e ∈ E as follows.

Definition 4.1. A vertex v ∈ V in a smocking pattern P is

called an underlay vertex if it belongs to a stitching line, i.e., ∃�i ∈
L s.t. v ∈ �i , and it is called a pleat vertex otherwise.

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 7. Left : For the smocking pattern P, we color the underlay nodes

(respectively, pleat nodes) in green (respectively, blue), and the underlay

edges (respectively, pleat edges) in pink (respectively, yellow). The stitch-

ing lines and the degenerated edges are colored in green. Right : We show

the corresponding smocked graph S.

Definition 4.2. An edge e ∈ E in a smocking pattern P is called a

degenerated edge if its two endpoints belong to the same stitching

line, an underlay edge if its two endpoints belong to two different

stitching lines, and a pleat edge otherwise.

For example, in Figure 7 we construct the smocked graph S =
(VS ,ES ) from pattern P by fusing all underlay vertices sharing

the same stitching line into one, deleting degenerated edges and

removing edges that become duplicate as a result of the fusing of

underlay vertices. An example of such duplicate edges is marked

with “=” in Figure 7 (left); they correspond to a single edge in the

smocked graph.

The smocked graph S is a subgraph of P that encodes the struc-

ture of the final smocked design; the vertices and edges ofS inherit

the pleat/underlay attributes (the colors in Figure 7) from P. We

denote the set of underlay (pleat) nodes in S asVu (Vp ), and the

set of underlay (pleat) edges in S as Eu (Ep ). We have

VS = Vu ∪Vp , ES = Eu ∪ Ep . (2)

Note each vertex in Vu represents a single stitching line in P;

therefore, |Vu | = |L|. We also define two important subgraphs

of S:

Definition 4.3. The subgraph of the smocked graphS induced by

the underlay edges is termed the underlay graph, denoted as Su . It

contains all underlay edges Eu and their incident underlay vertices

Vu . The subgraph of S induced by the pleat edges is termed the

pleat graph, denoted Sp . It contains all pleat edges Ep and their

incident vertices, including all pleat vertices Vp and incident un-

derlay vertices.

We can see that S = Su ∪Sp . Figure 8 provides an intuition for

the smocked graph: We color the smocking pattern by height after

smocking, where yellow corresponds to large height where a pleat

pops up (encoded by the pleat graph Sp ) and pink signifies the

underlay with low height that forms the base layer of the smocked

design (encoded by the underlay graph Su ).

4.2 Smocked Graph Embedding

The smocked graph is a distilled abstract representation of the

smocking pattern, with the stitching constraints already satisfied.

Our goal is to find a proper embedding of the smocked graphS, i.e.,

assign a 3D position for each vertex v ∈ VS , such that the embed-

ded smocked graph forms a realistic 3D structure. We formulate

Fig. 8. Inspired by Lind [2019], we color the smocking pattern w.r.t. height

after smocking: Yellow highlights the regions that form the pleats, while

pink highlights the regions that are almost hidden in the smocked result

and form the underlay layer that supports the pleats.

this graph embedding problem as an optimization and design ap-

propriate energies and constraints.

4.2.1 Embedding Distance Constraint. We observe that the

nodes in the smocked graph S are constrained by the underlying

fabric and cannot move completely freely in space. For example,

consider two vertices in the underlay graph v�i
,v�j

∈ Vu (which

originated from stitching lines �i and �j in P) with embedded 3D

coordinates x�i
and x�j

, respectively. Denote by d (· , ·) the geo-

desic distance on the fabric between two vertices, which is approx-

imately equal to their Euclidean distance on the flat fabric. The

Euclidean distance between the embedded underlay vertices is con-

strained by

���x�i
− x�j

���2
≤ min

vp ∈�i , vq ∈�j

d (vp ,vq ), (3)

i.e., the shortest geodesic distance on the fabric among any pair of

stitching vertices on �i and �j . For simplicity of exposition, here

we assume the fabric cannot stretch.

Fig. 10. The di, j constraint.

For example, in Figure 10 we can

see that the constraint for the pair

of stitching lines is di, j = 1. If the

embedded positions for the two cor-

responding underlay nodes had a

distance larger than 1, and assum-

ing infinite stiffness, then the fabric

would tear.

We can compute such an embedding distance constraint, denoted

as ‖xi − xj ‖2 ≤ di, j , for any pair of vertices (vi ,vj ) ∈ VS × VS .

We have dj,i = di, j and

di, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

min
vr ∈�vi , vq ∈�vj

d
(
vr ,vq

)
, if vi ,vj ∈ Vu ,

min
vr ∈�vi

d
(
vr ,vj

)
, if vi ∈ Vu , vj ∈ Vp ,

d
(
vi ,vj

)
, if vi ,vj ∈ Vp ,

(4)

where �vi denotes the stitching line in P that corresponds to the

underlay node vi in the smocked graphVS .

Ideally, we wish to find a valid embedding of the smocked

graph such that all vertex pairs satisfy the embedding distance

constraints. Intuitively, it means that if we physically pin the ver-

tices of the pattern annotated on real fabric to their embedding

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 9. For different smocking patterns (top row), we show the computed smocking designs’ front side (middle row) and back side (bottom row).

coordinates, then there is no risk of the fabric tearing. Note that

such a valid embedding always exists, since we can simply put all

vertices in one point, and all constraints are satisfied in this trivial

solution.

4.2.2 Maximizing Embedding Energy. While the distance con-

straints determine the search space of valid embeddings, we need

an objective function to find a desirable embedding and avoid the

trivial solution where all nodes get assigned the same location. We

wish to encourage all nodes to stay as far from each other as pos-

sible. Let xi ∈ R3 be the embedded position of vertex vi ∈ VS ,

and X the stacking of all these positions. We can formulate the

following optimization problem for the embedding of S:

max
X∈R|VS |×3

∑
∀i�j

‖xi − xj ‖2

s.t. ‖xi − xj ‖2 ≤ di, j ∀i � j .

(5)

Despite the simple formulation, this is a difficult, non-convex prob-

lem with 1
2n(n − 1) hard non-convex inequality constraints de-

fined on every pair of n = ��VS �� vertices in the smocked graph.

4.2.3 Simpler Formulation as Graph Embedding. Our solution is

to relax the optimization problem in Equation (5) into an easier to

solve form, where the inequality constraints are replaced by a sig-

nificantly smaller set of (possibly soft) equality constraints, leading

to a classical graph embedding problem. For simplicity, here we as-

sume the smocking pattern P is such that the underlay graph Su ,

as well as the pleat graph Sp , is non-empty and has exactly one

single connected component. We discuss other cases in Section 4.4.

Moreover, we are particularly interested in well-constrained smock-

ing patterns that produce pleasant patterns when fabricated. These

patterns have balanced and structured underlay region, such that

the pleats are constrained to be regular. See Section 5 for further

discussion.

We observe that the pleats that form the geometric textures

are constrained by the underlay (see Figure 8), while the underlay

graph encodes the overall structural information and determines

the final appearance. The distance bounds in Equation (4) hint that

the local geometry around the stitching lines gets significantly

changed by smocking, since they are pinched together. The under-

lay nodes are heavily constrained by each other and determine the

overall smocking structure. However, the pleat nodes have more

freedom to move in 3D, since they are not stitched to any other

points on the fabric, and they are expected to form the volumetric

3D textures. This inspires us to split the embedding problem into

two sub-problems: the embedding of the underlay and the pleat

graphs in two separate steps, where the embedding of the under-

lay is employed to constrain the embedding of the pleat nodes.

4.2.4 Embedding the Underlay Graph. We first try to find the

embedding Xu for the underlay graphSu = (Vu ,Eu ). We observe

that for a well-constrained smocking pattern, the underlay graph is

planar (see the pink subgraph in Figure 7 (right)) and therefore can

be embedded in 2D. The maximizing embedding energy encour-

ages large distances between nodes, while the distance constraints

bound them by di, j , so we propose to find the 2D embedding of

the underlay graph by relaxing Equation (5) as

min
X∈R|Vu |×2

∑
(vi ,vj )∈Eu

(���xi − xj
���2
− di, j

)2
. (6)

The relaxation is justified by the fact that in reality the distance

constraints are not as stringent, as even the stiffest fabric can

stretch a bit. Instead of considering every pair of underlay nodes,

here we only consider the adjacent ones. Recall that the distance

constraint di, j is derived from the smocking pattern P, which rep-

resents a flat fabric, a connected 2-manifold. Thus it is reasonable

to only consider the constraints in local neighborhoods; the con-

straints beyond 1-ring neighbors should fall in line due to the met-

ric structure and therefore can be ignored. See Appendix A for

more detailed discussions.

4.2.5 Embedding the Pleat Graph. We find the 3D embedding

Xp for the pleat nodes Vp in the pleat graph Sp using a similar

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 11. Grid-free smocking design. (a) We combine two smocking patterns of different scales. It is challenging to design a single regular grid to accommodate

all stitching lines simultaneously. (b) Instead of constructing a new grid, we compute a Delaunay triangulation conditioned on the input stitching lines,

which gives us the underlay graph. (c) We then sample pleat nodes w.r.t. the input stitching lines (green dots) and add connectivity between the pleat and

the underlay nodes via local Delaunay triangulation (see the dashed lines for some examples), which gives us the pleat graph. (d) We can then embed the

smocked graph and solve for the smocking design. (e) Physical fabrication of the pattern in (a).

formulation:

min
X∈R|Vp |×3

∑
(vi ,vj )∈Ep

(���xi − xj
���2
− di, j

)2
, (7)

where we want to stretch each pleat edge to its upper bound di, j

to maximally spread the overall embedding. Recall that some of

the pleat edges in Ep connect a pleat node and an underlay node.

For these edges, the underlay nodes are fixed to the previously

solved positions Xu , and only the positions of the pleat nodes are

involved in the optimization step in Equation (7). The pleat vertices

are initialized with the same height to help break the symmetry

ambiguity.

4.3 Smocking Design from Embedded Smocked Graph

Having solved for the embedding Xu ∪ Xp of the smocked graph

S, we immediately deduce the geometry of the coarse smocking

pattern P: All vertices in a stitching line �i have the same location

as the embedded position in Xu of the respective underlay vertex

v�i
, and all remaining (pleat) vertices in P have their locations in

Xp , corresponding to the vertices in the pleat graph. To compute

the smocking design in finer resolution, we run arap on the high-

resolution smocking pattern P̃, constraining the positions of the

vertices of P to their embedded locations. Figure 9 shows further

results on several interesting smocking patterns.

4.4 Generalizations: Non-regular Smocking Patterns

4.4.1 Grid-free Smocking Design. We can further generalize our

algorithm to more challenging cases where the stitching lines are

distributed non-uniformly, making it hard to extract a regular grid

to abstract the smocking pattern. In this case, we can construct a

graph from the input stitching lines based on Delaunay triangu-

lation [Delaunay et al. 1934; Lee and Schachter 1980] and use it

to compute the smocking design as before. See Figure 11 for an

overview and Algorithm 1 in Appendix C for further details.

Fig. 12. Honeycomb grid.

4.4.2 Honeycomb Grid.

Our formulation does not

depend on the exact shape

of the grid; we just need to

construct the graph G of

the grid, so we can easily

apply our algorithm to dif-

ferent types of grids. See

Fig. 13. For a smocking pattern that does not have any pleat nodes (except

some free boundary nodes) as shown in (a), our algorithm can still produce

a reasonable result, but the geometric texture features are less pleasing,

since no constraints on the pleats are considered during the optimization.

An easy fix is to insert additional pleat nodes (colored blue) and pleat edges

(dashed lines), leading to a more regular and realistic result.

Figure 12 for an example, where the smocking pattern is defined

on a hexagonal grid, and the unit pattern (in red) is tiled in a cyclic

fashion.

4.4.3 Empty Pleat Graph. It is unlikely to have an empty under-

lay graph, unless the set of stitching lines is empty (Vu = ∅), or

the smocking pattern P is not coarse enough, such that the under-

lay nodes are not connected to each other (Eu = ∅), which can be

easily fixed by making P coarser (e.g., removing the grid lines that

do not contain stitching points or using Delaunay triangulation,

as discussed in Section 4.4.1, to find Eu ). However, it is possible to

have stitching lines so densely defined that the pleat node set is

empty (see Figure 13). In this case, we can insert additional pleat

nodes to the smocking pattern and then apply our algorithm.

5 WELL-CONSTRAINED SMOCKING PATTERN

Most online tutorials discuss how to smock a pre-designed pattern

without providing any heuristics on how to design a good pattern

that leads to satisfactory textures in the first place. Here we discuss

some observations made during our experiments. In general, the

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 14. We compare P2, an under-constrained smocking pattern, to P1, a

well-constrained pattern. M̃i visualizes our modeling result of Pi .

Fig. 15. We compare P4, an over-constrained smocking pattern to P3, a

well-constrained pattern. M̃i visualizes our modeling result of Pi .

stitching lines of a good smocking pattern should yield an under-

lay graph that is well constrained: If the underlay graph is under-

constrained, then it means that the smocked result is “loose,” and

its underlay nodes have excess freedom to move in the 2D plane

during the embedding, which makes the pleats on top of them less

deterministic. However, if the underlay graph is overconstrained,

then it means we added too many equality constraints to some

underlay nodes, making it impossible to embed the whole under-

lay graph in 2D. Embedding in 3D would introduce more degrees

of freedom and make it harder to obtain regular, visually pleasing

textures.

Underconstrained underlay. In Figure 14, we show two patterns

P1 and P2, where we increase the width of the middle grid cells

in P2 from 1 to 2. We now consider the embedding distance con-

straints (defined in Equation (4)) between the three stitching lines.

For P1, we have d1,2 = 1,d2,3 = 1,d1,3 =
√

2. We can embed these

three underlay nodes in 2D, forming a right triangle, and we call

this underlay graph well constrained, since none of the underlay

nodes can move locally (only rigid motion of the embedding as a

whole is possible). However, the underlay graph of P2 is undercon-

strained. Specifically, we have d1,2 = 1, d2,3 = 1, and d1,3 =
√

5.

According to triangle inequality, ‖x1 − x3‖ ≤ d1,2 + d2,3 = 2 <√
5 = d1,3. In other words, d1,3 can be removed from Equation (5),

since this inequality can never be violated. Therefore, during the

embedding of the underlay graph, we would only considerd1,2 and

d2,3, which allows the underlay nodes of �1, �3 to move around the

node of �2.

Overconstrained underlay. P4 in Figure 15 shows an example of

an overconstrained underlay graph. The underlay node that cor-

responds to �1 (colored in orange) is connected to 10 underlay

nodes with maximum embedding distance 1 or
√

2. One can check

that, when all the 10 neighboring underlay nodes are coplanar, it

is impossible to embed the underlay node of �1 on the same plane

such that the maximum embedding distance is reached. In this

case, the underlay graph is overconstrained, and the embedding

of the underlay by our method cannot achieve zero energy as de-

fined in Equation (6). As a comparison, P3 shows a similar but

well-constrained pattern.

Fig. 16. We compare the smocking designs of two similar smocking pat-

terns, where the top pattern has an extra stitching point on the longest

stitching line compared to the bottom pattern.

Note that our optimization-based formulation works in both

cases and produces reasonable smocked results, as shown in

Figures 14 and 15. We observe that usually the well-constrained

smocking patterns can produce more regular and visually pleasant

textures. Based on these observations, we independently designed

the patterns in Figure 9 (2th, 5th), Figure 12, Figure 16 (top), and

Figure 17 (bottom).

6 RESULTS

We demonstrate that our algorithm can produce faithful results

that match physical fabrication for different types of smocking pat-

terns, as can be seen in the figures throughout the article and in the

accompanying video. We also provide an interactive UI for smock-

ing pattern exploration. The full implementation can be found at

https://github.com/llorz/SmockingDesign.

6.1 Smocking Design

Folded smocking design. During the experiments, we observe

that there are roughly two different styles of designing stitching

lines. The first is conflicting stitching lines, where if extended, pairs

of stitching lines would intersect with each other; such stitching

lines create concave features after stitching (see, e.g., Figure 18).

The second kind is parallel stitching lines, where after stitching,

the in-between fabric is folded flatly, leading to less voluminous

textures (see Figure 17). Our method can handle both cases.

Local modification. Our method is intuitive and predictable with

respect to local changes of the unit smocking pattern. As shown

in Figure 16, when we modify a stitching line, the final smocking

design does not change drastically. Instead, the final results differ

locally, as intuitively expected.

Irregular grids. Our method is not limited to uniform square

grids. We can handle hexagonal grids (Figure 12), radial grids

(Figure 18), combinations of grids (Figure 11) and other irregular

grids (see Section 6.2).

Long stitching lines. Computing smocking designs with long

stitching lines can be quite challenging. Stitching lines that stretch

across multiple grid cells, as in Figure 19(a), (b), and (d), can poten-

tially create large protruding features and allow the pleat nodes to

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 17. Folded design. Our method can handle parallel stitching lines, which lead to folded pleats and sharper, less voluminous textures.

Fig. 18. Radial grids. We show the smocked shapes from regular (left) and radial (right) grids for the braid (top) and leaf (bottom) patterns.

have more freedom to move during optimization. Stitching lines

that connect multiple nodes in a single grid cell, as in Figures 19(c)

and 16, can lead to complicated texture in a small region, which is

difficult to model in general. Our method can produce reasonable

and visually pleasing results in both cases.

6.2 Interactive UI

We integrate our method into Blender as an add-on with an in-

teractive interface that allows users to design and modify smock-

ing patterns, as well as visualize the computed smocking designs.

Efrat et al. [2016] also provide a UI for smocking pattern design

that allows users to tile five known patterns with different spac-

ing or rotation. The tiled smocking pattern needs to be printed out

for fabrication to see the resulting smocking design. In compari-

son, our UI is more flexible, it supports mesh-level modifications

(see Figure 20) and allows the user to design stylish patterns by

drawing stitching lines freely. Our method can also be used to ex-

plore variations of existing patterns. For example, in Figure 21 we

show smocking designs with modified grids using our UI. Since

the smocking design computation and visualization are integrated

into the UI, it becomes much easier and more efficient for casual

users to explore different patterns. To stress this point: It can take

a few hours to smock a piece of physical fabric, including drawing

grids, annotating stitching lines, and sewing every single stitching

line with pleating and knotting of the threads. In contrast, our al-

gorithm demonstrates the computed smocking design in seconds.

As a proof of concept, we prototype smocked sleeve designs, as

shown in Figure 1, by computing the smocking designs with extra

margins, which leads to natural folds on the boundary. We then

deform the smocked shape w.r.t. a hand model using the “bend”

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 19. Long stitching lines. We show examples of long stitching lines that cross multiple grid cells ((a), (b), and (d)) and connect many nodes in a small

region (c). Note that the unit smocking pattern in (a) contains two separate stitching lines.

Fig. 20. We use our UI to edit different smocking patterns to decorate letters, including editing operators of cutting and warping grids, removing and adding

stitching lines. We show the edited smocking pattern in the top row and the corresponding smocked results in the bottom row. Note that different smocking

patterns shrink the fabric in different ratios.

Fig. 21. Irregular grids. (a) We increase the space inside the braid pattern, as highlighted in green. (b) We mix the arrow and the leaf patterns, with the

gap in-between highlighted in green. ((c) and (d)) We non-linearly deform the box pattern (adjacent unit patterns are colored in different colors for better

visualization).

ACM Transactions on Graphics, Vol. 43, No. 2, Article 14. Publication date: January 2024.
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Fig. 22. Comparison to the commercial software [MarvelousDesigner

2023].

Fig. 23. Using Marvelous Designer to simulate the pattern in Figure 19 (c)

with particle distance dp set to 20 mm (left) and 8 mm (right).

function in Blender. These preliminary results suggest that our al-

gorithm can be potentially used for digital garment design. See

Appendix B and the supplementary video for a more detailed ex-

position of the functionalities of our UI.

6.3 Comparison to Baselines

In Figure 6 and the supplementary material, we show comparisons

to the cloth simulator of the open source software Blender [Foun-

dation and Community 2023]. In this section, we provide addi-

tional comparisons to the state-of-the-art cloth simulators, Arc-

Sim [Narain et al. 2012] and C-IPC [Li et al. 2021], and the commer-

cial software [MarvelousDesigner 2023], which is closed source.

For all the comparisons to baselines, we use the fabric in the same

resolution as ours. In particular, for ArcSim and C-IPC we addi-

tionally provide the non-planar initial configuration for the fabric,

where all stitching points are offset out of the fabric plane in the

same direction (see Figure 25(e)). If starting from a planar config-

uration, then ArcSim gets stuck in the first iteration, and C-IPC

produces a cluttered result with irregular pleats.

Comparison to Marvelous Designer [2023]. To prepare the input

for the commercial software Marvelous Designer (MD), each

stitching line in the fabric needs to be specified using the “tack”

tool, which adds extra complexity for smocking simulation in MD.

In Figure 22, we report the best result obtained from this software,

where we experimented with different parameters such as stiffness,

damping, pressure, sewing distance, and so on. Please see the sup-

plementary materials for full simulations with different parameter

settings. We observe that the “solidify” function, which is designed

to maintain the desired draping state per pattern unit, is the key

factor in helping Marvelous Designer achieve the expected box-

like geometric features. However, the simulated smocking details

Fig. 24. Results of ArcSim. We provide two examples of using [Narain et al.

2012], starting from initial configurations with offsets to break the symme-

try. It takes 3 min and 5 min to obtain the results for the arrow and box

pattern, respectively. Without a geometric prior, the simulated pleats are

not voluminous and do not realistically reflect the physical fabrications.

in Marvelous Designer are less regular and do not match the phys-

ically fabricated result as well as our approach does. In Figure 23

we show the results of Marvelous Designer on a much more com-

plicated pattern, depicted in Figure 19(c), containing long stitch-

ing lines. With the “solidify” function and high-enough resolu-

tion, Marvelous Designer struggles to produce meaningful results,

while our method produces a faithful preview of the fine details of

the smocking results.

Comparison to ArcSim. ArcSim [Narain et al. 2012] is a pow-

erful method for simulating fine features, such as wrinkles and

creases for cloth deformations. We adapt the more advanced im-

plementation1 of ArcSim [Sperl et al. 2020] for smocking, where

the to-be-stitched vertex pairs are specified using the “glue” con-

straints. In Figure 24 we show the best results we attained in con-

sultation with the authors of the method. We ran the simulation

from the initial configuration where all stitching points are offset.

We experimented with the parameters of repulsion thickness, col-

lision stiffness and different fabric materials. We also disabled the

“remeshing” option to preserve the glue constraints. We can see

that the shrinking ratio of the smocked fabric is more accurate

than Blender and Marvelous Designer. However, the lack of vol-

ume and realism in the simulated pleats suggests that this method

may not be suitable for use as a direct preview tool for artists de-

signing smocking patterns.

Comparison to C-IPC. Co-dimensional incremental potential

contact (C-IPC) [Li et al. 2021] is a current state-of-the-art method

for cloth simulation that can model thickness and handle collision

and frictional contact. To run C-IPC,2 we rescale the smocking

pattern to its intended dimensions in centimeters and offset all

stitching points to guide the simulation. In Figure 25, we show

the best attained results on four examples in consultation with the

authors of the method. We experimented with various values of

bending, stretching, stitching force, timestep size, offset value, and

so on. We also tried using both the static solver and the dynamic

solver with various timesteps. When using the dynamic solver, we

found that using a large timestep (e.g., dt = 10 s) can achieve much

less wrinkled and more realistic results than the default timestep

(dt = 0.01 s). The dynamic solver without collision handling is

much more efficient than the static solver. However, finding a

1https://git.ista.ac.at/gsperl/ARCSim-HYLC
2https://github.com/ipc-sim/Codim-IPC
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Fig. 25. Comparison to C-IPC. We show four smocked results ((a)–(d)) using C-IPC [Li et al. 2021], where all stitching points in the initial configuration are

offset along the z-axis, as shown in (e), to obtain more regular results. In comparison, our method provides a more realistic preview of the smocked fabric in

a much shorter time, which allows the artists to iterate the smocking design interactively. For example, for the pattern of (d), it takes our method 22 seconds,

while C-IPC takes 21 minutes.

Table 1. Different Solutions to (Pre-)visualize a Smocking Pattern

Properties \ Solutions Fabric. Blender MD ArcSim C-IPC Ours

Easy to prepare input? ✘ �✔ ✘ �✔ �✔ ✔

Easy to use (fabricate)? ✘ �✔ �✔ ✘ ✘ ✔

Are the pleats accurate? ✔ ✘ ✘ ✘ �✔ ✔

Fabric shrinks realistically? ✔ ✘ ✘ �✔ �✔ ✔

Efficient for preview? ✘ �✔ �✔ �✔ �✔ ✔

MD stands for Marvelous Designer, and “fabric.” stands for manual physical
fabrication.

suitable equilibrium state for the dynamic solver is challenging.

For example, running the dynamic solver until convergence, where

the change of the vertex positions is smaller than a threshold while

setting the vertex velocity to zero at each iteration, leads to a clut-

tered configuration. The best intermediate results are similar to the

ones shown in Figure 25, where the static solver is used. Overall, C-

IPC achieves better and more realistic results than the other base-

lines. However, the whole fabric gets sheared, and the geometric

shape of the pleats is not as accurate as in our method. For example,

as highlighted in Figure 25, the transition regions between the box

shapes are wrong in example (b) and the bumps along the edges

of the diamond shapes are unnatural in example (c). The method

takes minutes to execute. Moreover, expertise in cloth simulation

is needed to tune the parameters to obtain reasonable results, as

the default values did not work out of the box.

Summary. In comparison, our method is much simpler to use,

requiring no domain knowledge, and it is more efficient for pre-

viewing purposes, taking only a few seconds. This enables inter-

active design iterations for artists. See Table 1 for a comparison

summary.

6.4 Ablation Study and Justifications

Geometric appearance. In this work, we aim to preview the

shape of a smocked pattern solely based on its geometric fea-

tures, disregarding the impact of different fabric materials. Indeed,

the final outcome of smocking can be influenced by the type of

Fig. 26. Fabricating the ARROW pattern using different fabric materials

including canvas, polyester (crisp, thin), polyester (soft, thick), and satin,

from left to right respectively.

fabric used, which may possess varying levels of stretchiness. How-

ever, as evidenced by the multitude of examples available online,

the geometric appearance of a smocked pattern remains very sim-

ilar regardless of the fabric used, including our experiments with

canvas, satin, and polyester (see Figure 26), as well as numerous

examples found on YouTube and Pinterest featuring silk, leather,

wool, cotton, lace, denim fabrics, and so on. It is, in fact, the stitch

structure, not so much the specific material, that ultimately deter-

mines the geometric structure of the pattern. Therefore, it is rea-

sonable to model the geometric appearance for preview purposes

and delegate the material-dependent characteristics, such as bend-

ing stiffness, to cloth simulators.

Fig. 27. Coarse-to-fine arap.

Smocked graph. The key

component of our method

is the formulation of the

smocked graph, extracted from

the smocking pattern, which

explicitly encodes the modi-

fied geometry after stitching

(as discussed in Section 4.2.1).

To check that our embedded

smocked graph is indeed

critical for the successful

computation of the smocking design, we try applying arap on
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Fig. 29. Ablation on solver. We compare our two-stage optimization

scheme to a simultaneous setting, where the underlay and the pleat graph

are embedded at the same time. We show the energies over iterations on

the top and the final results on the bottom. The spatial energy distributions

are visualized in Figure 35.

the coarse smocking pattern P instead of utilizing the smocked

graph. We optimize Equation (1) on the coarse smocking pattern

P and use the result to deform the finer fabric discretization P̃,

as discussed in Section 4.3. Figure 27 shows the resulting P and

P̃. We can see that the result is more regular than applying arap

to the fine grid P̃ directly (cf. Figure 5). However, the overall

geometric texture is still not as well structured as ours. The reason

is that the pleat vertices have too many degrees of freedom and

are not sufficiently regularized in this approach, whereas our

smocked graph encodes the global structural information and

firmly sets the relationship between the underlay and the pleat

nodes, yielding more regular results.

Pleat graph embedding. Our method embeds both the underlay

graph and the pleat graph to guide the fabric deformation. To

justify that the pleat graph embedding is indeed helpful, we try

Fig. 28. Ablation on pleat graph.

using only the optimized

embedding of the underlay

graph to guide the arap de-

formation, see the left part

of Figure 28. For complete-

ness, we also show the re-

sult of only using the op-

timized embedding of the

pleat graph to guide the de-

formation on the right of

Figure 28. We can see that the optimized embedding of the un-

derlay graph can help to guide the deformation to achieve a less

cluttered result compared to the other arap-baselines. However,

without guidance from the pleat graph to reduce the search space,

the pleats exhibit inconsistent orientations and irregular shapes, re-

sulting in an unpleasant (but still feasible) preview. This ablation

justifies that both the underlay and the pleat graphs contribute to

form regular and faithful appearance of the geometric texture.

Two-stage optimization. It is natural to have a two-stage opti-

mization of embedding the underlay and pleat graph separately,

since the pleats are induced by the fixed underlay graph. To

Table 2. Smocking Pattern Complexity and Modeling Runtime

smocking

pattern

smocked graph complexity
|VP̃ |

optimization (sec.)

|Vu | |Eu | |Vp | |Ep | Su Sp P̃
Figure 2 24 53 45 186 5,074 0.0015 0.130 1.920

Figure 12 30 66 121 360 8,613 0.0012 1.161 3.370

Figure 17(a) 64 210 97 382 12,769 0.0017 0.714 3.768

Figure 17(b) 64 98 249 1,038 19,321 0.0014 1.972 4.088

Figure 16(a) 49 106 130 537 14,994 0.0016 0.852 3.269

Figure 16(b) 49 106 144 621 11,236 0.0014 0.836 3.215

Figure 18(a) 60 149 88 418 9,116 0.0015 0.402 3.044

Figure 18(b) 144 353 262 1,222 67,600 0.0023 2.705 21.25

Figure 18(c) 72 153 103 525 10,836 0.0007 0.364 2.882

Figure 18(d) 192 392 346 1705 81,796 0.0076 7.527 25.89

We report the topology of the smocked graph, including the number of
underlay/pleat vertices and edges, and the resolution of the fine grid
|VP̃ |. The runtimes of embedding the underlay graph Su , the pleat graph

Sp , and solving for the full smocking design P̃ are reported in seconds.

further justify it, we compare to the setting where the underlay and

pleat graphs are solved simultaneously by minimizing the sum of

energies in Equation (6) and Equation (7). We show the correspond-

ing energy over iterations in Figure 29. We can see that the simul-

taneous optimization still produces reasonable results, since the

proposed distance constraintsdi, j properly encode the modified lo-

cal structure after smocking. However, our two-stage optimization

leads to a more faithful result w.r.t. the real fabrications shown in

Figure 5(d), in 3 times shorter computation time due to the smaller

number of variables to optimize in each stage. More specifically, in

our two-stage optimization process, we first focus on embedding

the underlay graph accurately, then use it to constrain and em-

bed the pleat graph. Solving the two embeddings simultaneously

is more likely to land in an undesirable local minimum.

6.5 Implementation

Implementation and runtime. We design the GUI as an addon in

Blender and implement our algorithm in Python where the pro-

jected Newton solver is used for optimization. Recall that our al-

gorithm has three main steps: (1) embedding the underlay graph

Su , (2) embedding the pleat graph Sp with fixed underlay graph,

and (3) solving for the smocking design on a finer grid P̃ based on

the embedded smocked graph. In Table 2, we report the runtime of

each step of our method on multiple smocking patterns with dif-

ferent complexities. Note that the number of stitching lines equals

to the number of underlay nodes, |L| = |Vu |, so we do not report

it separately in the table. Our method takes a few seconds on the

medium-sized smocking patterns, and up to half a minute on the

large ones. As a comparison, it usually takes up to a few hours to

smock a pattern, including drawing the grid on the fabric, anno-

tating all the stitching lines and sewing them. Sewing and mak-

ing knots for all the stitching points are the most time-consuming

parts of the process. Usually it takes about 2 to 3 minutes to finish

a single stitching line for an experienced maker. We can see that

our method is more efficient, convenient, and error tolerant.

Regularizers. When optimizing for the embedding of the pleat

graph as discussed in Section 4.2.5, we can add extra regularizers
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Fig. 30. The LEAF pattern with different parameters in Equation (8).

to make the pleats more regular,

min
X∈R|Vp |×3

∑
(vi ,vj )∈Ep

(���xi − xj
���2
− di, j

)2

− wembed

∑
∀i�j

���xi − xj
���2
+ wheight Var[h],

(8)

where Var[h] is the variance of the heights (the z coordinates) of

the pleat nodes. Here we add the maximizing embedding energy

with a negative sign to make the underconstrained pleat nodes

(e.g., boundary pleats) stay away from each other. We also encour-

age the geometric texture to keep a uniform height distribution

by penalizing its variance. In Figure 30 we show a simple abla-

tion study. We can see that adding the maximizing embedding

term leads to a less cluttered boundary. Meanwhile, adding the

pleat height regularizer can push the concave pleats (with nega-

tive height) upwards to form a more regular pattern. We observe

that even without these regularizers our method produces good

results away from the fabric boundary, and we use very small

weightswembed = wheight = 10−3 to make the boundary pleats more

attractive.

Initialization and parameters. We initialize each underlay node

v�i
by the average position on the flat fabric of all the stitching

points in �i , with zero height. We initialize each pleat node by its

original position on the fabric, with the initial height set to 1. The

weightswembed andwheight in Equation (8) are both set to 10−3 for all

the experiments. We run the embedding optimization until conver-

gence. The underlay embedding energy at convergence is smaller

than 10−8 for a well-constrained pattern.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this article, we discuss how to mathematically formulate Cana-

dian smocking, a decorative and practically beneficial surface em-

broidery technique. We introduce a simple yet effective method

that solves for the smocking design with 3D geometric textures

based on an input smocking pattern, which is represented by a set

of stitching lines drawn on top of the fabric. We first extract the

smocked graph from the input pattern, where the points in the

same stitching lines are merged into a single vertex, and the de-

generated or redundant edges are removed. This smocked graph

encodes the geometric features of the final smocking design. To

obtain the smocking design, we first embed the smocked graph

in 3D, where we embed the underlay graph and the pleat graph

in two steps. We then use the embedded smocked graph to guide

the deformation of the fabric represented via a finer grid using

arap. Our method is efficient and accurate, and our computed

smocking designs are very similar to real fabrications for a large set

of patterns, which allows us to design a user interface for smocking

design exploration.

In this work, we formulate smocking as a pure shape model-

ing problem without considering cloth dynamics and collision re-

sponse. Though the self-intersections do not significantly affect

the visual appearance of the digital smocking design, it would

be interesting to take them into consideration during modeling.

We also wish to investigate smocking from the perspective of

cloth simulation, as we can see that the state-of-the-art simula-

tors cannot tackle this problem directly. We leave it for future

work to investigate how to use our computed results as an initial

guess for cloth simulators while incorporating additional material-

dependent parameters, such as bending stiffness, to generate more

realistic results at fine scales. Another limitation of our current ap-

proach is that we do not fully explore all possible smocking designs

from an input pattern. For some complicated smocking patterns

(such as Figure 19(d)), multiple visually appealing local minima

(i.e., multiple final smocking designs) are possible. These results

can guide the user or designer to iron or steam the smocked fab-

ric into different shapes. We leave this shape space exploration as

future work. Another interesting direction is to investigate the in-

verse problem of smocking, i.e., finding the arrangement of stitch-

ing lines such that the final result is close to an expected 3D texture

or shape. Since smocking is a popular embroidery technique used

by high-end fashion designers, we wish to explore smocking de-

sign directly on surfaces in 3D, so that it could be integrated with

garment design. In our experiments, we notice that the smocked

shapes can serve as meta-materials, since the pleats on top of the

rigid underlay create extra thickness and elastic cushioning. In fu-

ture work, it would be interesting to design smocking patterns

with particular physical properties.

APPENDICES

A SMOCKED GRAPH EMBEDDING

In this section, we discuss the intuition behind our relaxation of the

problem defined in Equation (5) for the embedding of the smocked

graph, presented in Sections 4.2.4 and 4.2.5.

Embedding the underlay. We embed the underlay graph in 2D by

fully stretching the underlay edges to their upper bound di, j as de-

fined in Equation (4). Intuitively, gathering the underlay nodes in a

stitching line is equivalent to translating all these nodes in the xy-

plane (the initial fabric plane) to the same position. After smocking

(translation), the underlay nodes still stay on the xy-plane, i.e., they

remain co-planar. This co-planarity property allows us to solve

the embedding of the underlay in 2D, which significantly reduces

the search space. Indeed, we observe that the underlay regions of

the fabricated results are co-planar, which validates our 2D search

space.

Our reformulation is based on the fact that the optimum to

Equation (5) is at the exact boundary of some inequality con-

straints. We can picture the inequality constraints in Equation (5)

as follows: imagine we have a set of tiny balls or beads placed

on the xy-plane, and each bead represents an underlay node. For

each pair of beads, e.g., the beads that represent the i, jth under-

lay node, we use a string with length di, j to connect the two
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beads (see the inset figure). We then move the beads on the

plane such that they are far from each other and none of the

strings are broken. We can imagine that at the optimal situa-

tion, some of the strings become tight, which means if we move

the attached beads any further, then these strings will break. At

the same time, there are other strings

that stay loose, which means their ex-

treme can never be reached and they

are useless in constraining the beads. In

other words, if we simply remove the

loose strings, and do the above experi-

ment again, then we will end up with

the same configuration (up to transla-

tion and rotation). Moreover, the short

strings are more likely to be tight at the optimum compared to

the long strings. Since the underlay graph is planar and the di, j

values are derived from the fabric, which is a connected and pre-

sumably inextensible 2-manifold, we can conclude that the under-

lay edges (e.g., pink edges/strings highlighted in the inset figure)

become tight at the optimum. Therefore, in Equation (6) we only

consider the underlay nodes that are connected to each other.

Embedding the pleats. We embed the pleat nodes in 3D on top

of the solved underlay graph. Our reformulation in Equation (7) is

based on the observation that the 3D embedding of a pleat node

is only constrained by the embeddings of the neighboring nodes.

Specifically, the embedding distance constraint between a pleat

node and a faraway node can be ignored. The intuition behind this

is that the distance constraint between a pleat node v1 and a far-

away node v2 is satisfied automatically according to the triangle

inequality if the distance constraint betweenv2 and a neighboring

node v3, and the distance constraint between v3 and v1 are sat-

isfied. Thus, we only need to consider the pleat nodes and their

neighboring nodes, i.e., the node pairs in the pleat edge set Ep .

B INTERACTIVE USER INTERFACE

We implement an interactive user interface in Blender as an add-on

(see Figure 31) including the following functionalities:

• define a unit smocking pattern by creating a 2D grid and draw-

ing stitching lines

• define a full smocking pattern by

– tiling the loaded unit smocking pattern (with user-defined

repetition and shift of the unit pattern)

– drawing stitching lines directly on a square or hexagonal

grid to define the full pattern

• modify a full smocking pattern by

– deforming the square grid into a radial grid (with user-

defined radius)

– adding margins to the pattern

– combining it with another smocking pattern (along user-

specified axis and space)

– deleting/adding stitching lines from/to the pattern

• simulate the smocked pattern with intermediate steps includ-

ing

– extracting the smocked graph from the pattern

– embedding the underlay and pleat subgraphs of the

smocked graph

Fig. 31. We introduce an interactive user interface for smocking design,

implemented in Blender as an add-on.

ALGORITHM 1: Smocking Pattern from Stitching Lines

Input : A set of stitching lines L = { �i }
Output : A graph G = (V, E) to complete the smocking pattern

V ← {v ∈ �i | ∀�i ∈ L}
// create underlay edges

E ← DelaunayTriangulation (V )
regularly sample a set of pleat nodes V′ inside the bounding box of

L
foreach v ∈ V′ do

// create pleat edges for v

E′ ← DelaunayTriangulation (V⋃ {v })
E ← E⋃ {e ∈ E′ |v ∈ e }

end

E′ ← DelaunayTriangulation (V′)
E ← E⋃ E′
V ← V⋃V′

– applying arap to compute the smocking design

• render the smocking design

• run cloth simulator implemented in Blender on the fine-

resolution smocking pattern

Please see the supplementary videos for the real-time demonstra-

tions of our UI. The Blender add-on can be found at https://github.

com/llorz/SmockingDesign/python_implementation.

C ALGORITHMIC DETAILS

Algorithm 1 shows the pseudo-code for grid-free smocking de-

sign discussed in Section 4.4.1, which gives instructions on how to

construct a graph from input stitching lines without given grids.

Specifically, given a set of stitching lines as input, we first extract

the underlay nodes V from the endpoints of the stitching lines.

We can then construct the underlay graph by computing a Delau-

nay triangulation [Delaunay et al. 1934; Lee and Schachter 1980]

conditioned on the input stitching lines. We then sample a set of

pleat nodes and construct the pleat graph. As discussed in Section 4

and demonstrated by Figure 8, the pleat region pops up from the

base layer (underlay region) to form the texture. We therefore fo-

cus on connecting the sampled pleat nodes to the underlay graph

to construct the pleat graph. For each sampled pleat node v , we
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Fig. 32. Embedding of the coarser (left) and the finer (right) discretization

of the smocking pattern shown in Figure 7.

Fig. 33. C-IPC on arrow pattern without collision handling.

Fig. 34. Step-by-step arap. We run arap to sew each stitching line �i , i =

1, . . . , 24 in the smocking pattern shown in Figure 2. Note that all visual-

izations are in a consistent scale.

compute the Delaunay triangulation again on the underlay nodes

and this pleat node, i.e., V⋃{v}, from which we can extract the

pleat edges between v and the neighboring underlay vertices. We

can additionally connect the pleat nodes to the neighboring pleat

nodes by Delaunay triangulating all the pleat nodes only. In this

way, we can construct the underlay graph and the pleat graph for

smocking design computation from stitching lines alone. One im-

portant observation is that the pleat nodes need to be evenly sam-

pled w.r.t. the input stitching lines. For example, one can take the

middle points of the stitching lines as the pleat nodes, as shown in

Figure 13. In this way, the regularity encoded in the input stitch-

ing lines is kept during the pleat graph construction, and therefore

leads to desirable simulated results.

Fig. 35. Optimized energy distribution after simultaneous optimization

(top) and our two-stage optimization (bottom), as discussed in Figure 29.

We also draw the stitching lines in black.

D ADDITIONAL RESULTS

C-IPC without collision. Figure 33 shows the results of C-IPC [Li

et al. 2021] on the arrow pattern without collision handling. Dis-

abling self-collision handling for the static solver does not im-

prove computational efficiency; instead, it leads to worse results

compared to Figure 25. Using the dynamic solver without self-

collision handling results in faster iterations. However, running

the dynamic solver until convergence leads to a cluttered configu-

ration. Here, we select an intermediate iteration where the pleats

are sufficiently formed and the overall shape starts to show signs

of clumping.

Step-by-step arap. Another straightforward solution to model

smocking is by applying arap to each stitching line separately to

mimic the manufacturing process. In Figure 34, we adopt this strat-

egy to model the smocking pattern depicted in Figure 2, following

a left-to-right and bottom-to-top sequence of stitching. However,

we observe that this approach causes the fabric to bend inward in-

stead of shrinking towards the center as it happens during actual

fabrication (illustrated in Figure 5(d)). As a result, the final out-

come exhibits a messy appearance with extremely cluttered pleats

with many self-intersections, as shown in Figure 34 of the final re-

sult when viewed from the side. As a comparison, our progressive

arap simultaneously stitches all the stitching lines, ensuring more

uniform “stitching forces” to promote fabric shrinkage in more ac-

curate directions. This results in a superior baseline compared to

the step-by-step arap approach.
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Optimized energy distributions. In Figure 35, we visualize the en-

ergy (the sum of Equation (6) and Equation (7)) of the computed

smocked design shown in Figure 29 after optimization using simul-

taneous solver and our two-stage solver. For easier visual compar-

ison, we visualize the per-vertex errors on the original smocking

pattern. We can see that the result from simultaneous optimiza-

tion shows more prominent error in the underlay region (edges

that connect two different stitching lines), while the result of the

two-stage optimization has a smoother error distribution in the

pleat region.
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