Robust Inside-Outside Segmentation using Generalized Winding Numbers

Alec Jacobson

Ladislav Kavan

Olga Sorkine-Hornung

Processing solid shapes requires volumetric representation

Processing solid shapes requires volumetric representation

Explicit representations are essential

riangle mesh

tetrahedral mesh

Explicit representations are essential

triangle mesh watertight

tetrahedral mesh made by TETGEN

October 9, 2013

Explicit representations are essential

triangle mesh watertight

tetrahedral mesh made by TETGEN
quality elements varying density conform to input

Apparent surface descriptions of solids are unmeshable with current tools

Apparent surface descriptions of solids are unmeshable with current tools

Apparent surface descriptions of solids are unmeshable with current tools

Meshes are often output of human creativity

Treating as scanned objects is inappropriate

Treating as scanned objects is inappropriate

Volume mesh should conform to input

only 4000 vertices
our output tet mesh only 4500 vertices

Volume mesh should conform to input

only 4000 vertices
our output tet mesh only 4500 vertices

Can mesh the entire convex hull, but what's inside? What's outside?

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Feder

Can mesh the entire convex hull, but what's inside? What's outside?

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federa

Can mesh the entire convex hull, but what's inside? What's outside?

Generalized function indicates insideness

ETH
Eidgenössische Technische Hochschule Zürich

Generalized function indicates insideness

ETH
Eidgenössische Tecchische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Generalized function indicates insideness

ETH
Eidgenëssische Technische Hochschule Zürich
Swiss Federal

Generalized function indicates insideness

ETH Eidgenössische Technische Hochschule Zürich

Generalized function indicates insideness

ETH
Eidgenössische Technische Hochschule Zürich

Generalized function indicates insideness

ETH Eidgenössische Technische Hochschule Zürich

Function guides a crisp segmentation

Function guides a crisp segmentation

Function guides a crisp segmentation

October 9, 2013

Output is minimal, ripe for post-processing

Refined mesh using Tetgen, Stellar, etc.

Idea: mesh entire convex hull, segment inside tets from outside ones

Idea: mesh entire convex hull, segment inside tets from outside ones

Idea: mesh entire convex hull, segment inside tets from outside ones

October 9, 2013

Idea: mesh entire convex hull, segment inside tets from outside ones

Idea: mesh entire convex hull, segment inside tets from outside ones

ETH

Idea: mesh entire convex hull, segment inside tets from outside ones

October 9, 2013

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

If shape is watertight, winding number is perfect measure of inside

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

If shape is watertight,
winding number is perfect measure of inside

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

EHH
Eidgenössische Technische Hochschule Zürich
Swiss

Winding number uses orientation to treat insideness as signed integer

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

Naive discretization is simple and exact

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

$$
w(\mathbf{p})=\frac{1}{2 \pi} \sum_{i=1}^{n} \theta_{i}
$$

Generalizes elegantly to 3D via solid angle

$$
w(\mathbf{p})=\frac{1}{4 \pi} \iint_{\mathcal{S}} \sin (\phi) d \theta d \phi
$$

$$
w(\mathbf{p})=\frac{1}{4 \pi} \sum_{f=1}^{m} \Omega_{f}
$$

What happens if the shape is open?
$w(\mathbf{p})=\frac{1}{2 \pi} \oint_{c} d \theta$

19

What happens if the shape is open?

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

What happens if the shape is open?

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

What happens if the shape is open?

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

What happens if the shape is open?

$w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta$

Gracefully tends toward perfect indicator as shape tends towards watertight

What if shape is self-intersecting? Non-manifold?

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

Winding number jumps across boundaries, otherwise harmonic!

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

ETH
Eidgenössische Technische Hochschule Zürich

Winding number jumps across boundaries, otherwise harmonic!

$$
w(\mathbf{p})=\frac{1}{2 \pi} \oint_{\mathcal{C}} d \theta
$$

See MAPLE proof in paper or Rahul Narain's recent proof http://goo.gl/5LJWf

ETH

Eidgenössische Technische Hochschule Zürich

Other interpolating implicit functions are confused by overlap...

[Shen et al. 2004]

...or resort to approximation

[Shen et al. 2004]
igl

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Sharp discontinuity across input eases precise, conformal segmentation

Naive implementation is too expensive

$$
w(\mathbf{p})=\frac{1}{2 \pi} \sum_{i=1}^{n} \theta_{i}
$$

Winding number is sum of winding numbers: $O(m)$

191

Interesting fact reveals asymptotic speedup

\mathcal{C}

Interesting fact reveals asymptotic speedup

\mathcal{C}

Interesting fact reveals asymptotic speedup

\mathcal{C}

Interesting fact reveals asymptotic speedup

\mathcal{C}

$\overline{\mathcal{C}}$

$\mathcal{C} \cup \overline{\mathcal{C}}$

$w_{\mathcal{C} \cup \overline{\mathcal{C}}}(\mathbf{p})=0$

Interesting fact reveals asymptotic speedup

\mathcal{C}
$\overline{\mathcal{C}}$
$\mathcal{C} \cup \overline{\mathcal{C}}$

$$
w_{\mathcal{C}}(\mathbf{p})+w_{\overline{\mathcal{C}}}(\mathbf{p})=w_{\mathcal{C} \cup \overline{\mathcal{C}}}(\mathbf{p})=0
$$

Interesting fact reveals asymptotic speedup

\mathcal{C}
$\overline{\mathcal{C}}$
$\mathcal{C} \cup \overline{\mathcal{C}}$

$$
w_{\mathcal{C}}(\mathbf{p})=-w_{\overline{\mathcal{C}}}(\mathbf{p})
$$

Interesting fact reveals asymptotic speedup

\mathcal{C}
$\overline{\mathcal{C}}$
$\mathcal{C} \cup \overline{\mathcal{C}}$

p

$$
w_{\mathcal{C}}(\mathbf{p})=-w_{\overline{\mathcal{C}}}(\mathbf{p})
$$

Interesting fact reveals asymptotic speedup

\mathcal{C}
$\overline{\mathcal{C}}$

$$
w_{\mathcal{C}}(\mathbf{p})=-w_{\overline{\mathcal{C}}}(\mathbf{p})
$$

Interesting fact reveals asymptotic speedup

\mathcal{C}
$\overline{\mathcal{C}}$

$$
w_{\mathcal{C}}(\mathbf{p})=-w_{\overline{\mathcal{C}}}(\mathbf{p})
$$

Interesting fact reveals asymptotic speedup

191

Divide and conquer!

Divide and conquer!

Divide and conquer!

ETH
Eidgenössische Technische Hochschule Zürich

Divide and conquer!

Divide and conquer!

Divide and conquer!

Divide-and-conquer evaluation performs asymptotically better

Divide-and-conquer evaluation performs asymptotically better

Divide-and-conquer evaluation performs asymptotically better

Idea: mesh entire convex hull, segment inside tets from outside ones

Segmentation is a labeling problem, labels should agree with w.n.

graphcut energy optimization with nonlinear coherency term

+ optional facet or surface-manifoldness constraints

Preprocessing and meshing convex hull dominates runtime

ETH

 Eidgenëssische Technische Hochschule ZürichSwiss Federal Institute of Technology Zurich

Winding number degrades gracefully

(a) 191

October 9, 2013
Alec Jacobson
\# 80
ETH
Eidgenëssische Technische Hochschule Zürich
Swiss Federal

CDT maintains small features

Open boundaries

Input triangle mesh
Winding number

We rely heavily on orientation

We rely heavily on orientation

We rely heavily on orientation

Brings a new level of robustness to volume meshing for a variety of shapes

Future work

- Even faster approximation
- Relationship to: diffusion curves, Mean Value Coordinates, etc.

Acknowledgements

Pierre Alliez, Ilya Baran, Leo Guibas, Fabian Hahn, James O’Brien, Daniele Panozzo, Leonardo Koller Sacht, Alexander Sorkine-Hornung, Josef Pelikan, Kenshi Takayama, Kaan Yücer

Marco Attene for MESHFIX
Hang Si for TETGEN
This work was supported in part by the ERC grant iModel (StG-2012-306877), by an SNF award 200021137879 and the Intel Doctoral Fellowship.

Robust Inside-Outside Segmentation using Generalized Winding Numbers

http://igl.ethz.ch/projects/winding-number/ (paper, code, video)

Alec Jacobson
jacobson@inf.ethz.ch
Ladislav Kavan
Olga Sorkine-Hornung

Surface processing is distinct from volumetric

Brings a new level of robustness to volume meshing for a variety of shapes

We rasterize the winding number, rather than ray cast

We rasterize the winding number, rather than ray cast

196

ETH
Eidgenössische Technische Hochschule Zürich
Swiss Feder

We rasterize the winding number, rather than ray cast

196

ETH
Eidgenëssische Technische Hochschule Zürich
Swiss Feders.

We rasterize the winding number, rather than ray cast

196

ETH
Eidgenösische Technische Hochschule Zürich
Swiss Federal

We rasterize the winding number, rather than ray cast

196
\# 96
ETH
Eidgenësische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

We rasterize the winding number, rather than ray cast

31 rays

191

We rasterize the winding number, rather than ray cast

63 rays

191

We rasterize the winding number, rather than ray cast

127 rays

191

We rasterize the winding number, rather than ray cast

255 rays

191

We rasterize the winding number, rather than ray cast

19

We rasterize the winding number, rather than ray cast

1023 rays

191

We rasterize the winding number, rather than ray cast

2047 rays

191

Surface cleanup methods modify the input too much

Surface cleanup methods modify the input too much

[Attene 2010]

Winding number tells more than just inside: how many times inside

191

Winding number tells more than just inside: how many times inside

Duplicate any multiply inside parts: consistently overlapping tet mesh

Duplicate any multiply inside parts: consistently overlapping tet mesh

Some ambiguities are just semantics

Some ambiguities are just semantics

ETH
Eidgenössische Technische Hochschule Zürich

Some ambiguities are just semantics

ETH
Eidgenössische Technicche Hochschule Zürich Eidgenössische Technische Hochschule Zurich
Swiss Federal Institute of Technology Zurich

Simple thresholding is not enough

is_outside $\left(e_{i}\right)= \begin{cases}\text { true } & \text { if } w\left(e_{i}\right)<0.5 \\ \text { false } & \text { otherwise }\end{cases}$

Each element in CDT

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}[\underbrace{\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]}_{\text {data }}
$$

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]
$$

$$
u\left(x_{i}\right)= \begin{cases}\max \left(w\left(e_{i}\right)-0,0\right) & \text { if } x_{i}=\text { outside } \\ \max \left(1-w\left(e_{i}\right), 0\right) & \text { otherwise }\end{cases}
$$

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]
$$

$$
v\left(x_{i}, x_{j}\right)=\left\{\begin{array}{l}
0 \\
\frac{a_{i j} \exp \left(\left|w\left(e_{i}\right)-w\left(e_{j}\right)\right|^{2}\right)}{2 \sigma^{2}}
\end{array}\right.
$$

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]
$$

$\operatorname{argmin} E(\mathbf{x}) \quad$ use graphcut (maxflow) $\mathbf{x} \mid x_{i} \in[0,1]$

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]
$$

$\operatorname{argmin} E(\mathbf{x}) \quad$ use graphcut (maxflow) $\mathbf{x} \mid x_{i} \in[0,1]$
subject to hard facet constraints

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]
$$

$\operatorname{argmin} E(\mathbf{x}) \quad$ use graphcut (maxflow) $\mathbf{x} \mid x_{i} \in[0,1]$

subject to hard facet constraints

"nonregular"
[Kolmogorov \& Zabin 2004]

Graphcut encourages coherency

$$
E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]
$$

$\operatorname{argmin} E(\mathbf{x}) \quad$ use graphcut (maxflow) $\mathbf{x} \mid x_{i} \in[0,1]$

subject to hard facet constraints

Graphcut encourages coherency

$E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]$
$\operatorname{argmin} E(\mathbf{x}) \quad$ use graphcut (maxflow) $\mathbf{x} \mid x_{i} \in[0,1]$

subject to hard facet constraints

use heuristic \rightarrow local min.

Graphcut encourages coherency

$E=\sum_{i=1}^{m}\left[u\left(x_{i}\right)+\gamma \frac{1}{2} \sum_{j \in N(i)} v\left(x_{i}, x_{j}\right)\right]$
$\operatorname{argmin} E(\mathbf{x}) \quad$ use graphcut (maxflow) $\mathbf{x} \mid x_{i} \in[0,1]$

subject to hard facet constraints

+subject to hard manifoldness constraints

ETH

Hard constraints are optional: outliers

ETH
Eidgenössische Technische Hochschule Züric

Even failure to create beautiful surface, can be success as volume representation

Even failure to create beautiful surface, can be success as volume representation

Even failure to create beautiful surface, can be success as volume representation

Auto. weights

Novel poses of textured input mesh

Cleanup methods modify input too much, ...

Cleanup methods modify input too much, ...

... but we rely heavily on orientation

 Eidgenossische Technische Hochschule Zürich
Swiss Federal

