Robust Inside-Outside Segmentation using Generalized Winding Numbers

Alec JacobsonETH ZurichLadislav KavanUniversity of PennsylvaniaOlga Sorkine-HornungETH Zurich

INTERACTIVE GEOMETRY LAB

October 9, 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Processing solid shapes requires volumetric representation

Input triangle mesh

Surface-based Volume-based

Processing solid shapes requires volumetric representation

Input triangle mesh

Surface-based Volume-based

Explicit representations are essential

October 9, 2013

q

Explicit representations are essential

October 9, 2013

Explicit representations are essential

October 9, 2013

Apparent surface descriptions of solids are *unmeshable* with current tools

🔘 ıgl

October 9, 2013

Apparent surface descriptions of solids are *unmeshable* with current tools

🔘 ıgl

October 9, 2013

Apparent surface descriptions of solids are *unmeshable* with current tools

Meshes are often output of human creativity

Treating as scanned objects is inappropriate

over 130000 vertices!

Treating as scanned objects is inappropriate

October 9, 2013

Volume mesh should conform to input

) ıgl

October 9, 2013

Volume mesh should conform to input

Can mesh the entire convex hull, but what's inside? What's outside?

O Igl

October 9, 2013

Can mesh the entire convex hull, but what's inside? What's outside?

October 9, 2013

Can mesh the entire convex hull, but what's inside? What's outside?

O Igl

October 9, 2013

October 9, 2013

O Igl

October 9, 2013

October 9, 2013

OIGL

October 9, 2013

Alec Jacobson

21

October 9, 2013

October 9, 2013

Function guides a crisp segmentation

October 9, 2013

Function guides a crisp segmentation

OIGL

October 9, 2013

Function guides a crisp segmentation

October 9, 2013

Output is minimal, ripe for post-processing

Refined mesh using TETGEN, STELLAR, etc.

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

If shape is watertight, winding number is perfect measure of inside

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

34

October 9, 2013

If shape is watertight, winding number is perfect measure of inside

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#35

October 9, 2013

Winding number uses orientation to treat insideness as *signed integer*

October 9, 2013

Naive discretization is simple and exact

October 9, 2013

Generalizes elegantly to 3D via solid angle

🔘 ıgl

October 9, 2013

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

Q

October 9, 2013

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

Q

October 9, 2013

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

Q

October 9, 2013

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

Gracefully tends toward perfect indicator as shape tends towards watertight

October 9, 2013

What if shape is self-intersecting? Non-manifold?

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

$$\begin{cases} 2 \\ 1\frac{1}{2} \\ 1 \\ \frac{1}{2} \\ 0 \\ -\frac{1}{2} \end{cases}$$

Jumps by ±1 across input facets

Winding number jumps across boundaries, otherwise harmonic!

$$w(\mathbf{p}) = \frac{1}{2\pi} \oint_{\mathcal{C}} d\theta$$

October 9, 2013

Alec Jacobson

45

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Winding number jumps across boundaries, otherwise harmonic!

October 9, 2013

Other interpolating implicit functions are confused by overlap...

[Shen et al. 2004]

October 9, 2013

... or resort to approximation

[Shen et al. 2004]

🔘 ıgl

October 9, 2013

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

October 9, 2013

🔘 ıgl

October 9, 2013

Alec Jacobson

October 9, 2013

52

October 9, 2013

Alec Jacobson

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

Alec Jacobson

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

October 9, 2013

Alec Jacobson

56

Naive implementation is too expensive

$$w(\mathbf{p}) = \frac{1}{2\pi} \sum_{i=1}^{n} \theta_i$$

Winding number is sum of winding numbers: O(m)

October 9, 2013

 \mathcal{C}

October 9, 2013

 \mathcal{C}

October 9, 2013

 \mathcal{C}

October 9, 2013

October 9, 2013

October 9, 2013

Alec Jacobson

62

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

O Igl

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

Alec Jacobson

70

#71

October 9, 2013

October 9, 2013

Divide and conquer!

🔘 ıgl

October 9, 2013

Divide-and-conquer evaluation performs asymptotically better

Number of input facets, *m*

Divide-and-conquer evaluation performs asymptotically better

Divide-and-conquer evaluation performs asymptotically better

Idea: mesh entire convex hull, segment inside tets from outside ones

October 9, 2013

Segmentation is a labeling problem, labels should agree with w.n.

graphcut energy optimization with nonlinear coherency term + optional facet or surface-manifoldness constraints

October 9, 2013

Preprocessing and meshing convex hull dominates runtime

October 9, 2013

Winding number degrades gracefully

October 9, 2013

CDT maintains small features

We rely heavily on orientation

October 9, 2013

We rely heavily on orientation

We rely heavily on orientation

Octo

October 9, 2013

Brings a new level of robustness to volume meshing for a variety of shapes

Future work

- Even faster approximation
- Relationship to:
 diffusion curves,
 Mean Value Coordinates,
 etc.

October 9, 2013

Acknowledgements

Pierre Alliez, Ilya Baran, Leo Guibas, Fabian Hahn, James O'Brien, Daniele Panozzo, Leonardo Koller Sacht, Alexander Sorkine-Hornung, Josef Pelikan, Kenshi Takayama, Kaan Yücer

Marco Attene for MESHFIX

Hang Si for TETGEN

This work was supported in part by the ERC grant iModel (StG-2012-306877), by an SNF award 200021 137879 and the Intel Doctoral Fellowship.

Robust Inside-Outside Segmentation using Generalized Winding Numbers

http://igl.ethz.ch/projects/winding-number/ (paper, code, video)

Alec Jacobson jacobson@inf.ethz.ch Ladislav Kavan Olga Sorkine-Hornung

October 9, 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Additional material

Surface processing is distinct from volumetric

Brings a new level of robustness to volume meshing for a variety of shapes

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

October 9, 2013

Alec Jacobson

#100

October 9, 2013

October 9, 2013

October 9, 2013

Alec Jacobson

#103

Surface cleanup methods modify the input too much

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

Surface cleanup methods modify the input too much

October 9, 2013

Alec Jacobson

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Winding number tells more than just inside: *how many times inside*

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

Winding number tells more than just inside: *how many times inside*

October 9, 2013

Alec Jacobson

#107

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Duplicate any multiply inside parts: consistently overlapping tet mesh

October 9, 2013

Duplicate any multiply inside parts: consistently overlapping tet mesh

October 9, 2013

Some ambiguities are just semantics

Q

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

Some ambiguities are just semantics

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

Some ambiguities are just semantics

October 9, 2013

Alec Jacobson

#112

Simple thresholding is not enough

$$is_outside(e_i) = \begin{cases} true & \text{if } w(e_i) < 0.5\\ false & \text{otherwise} \end{cases}$$

Each element in CDT

October 9, 2013

October 9, 2013

0

#115

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

$$u(x_i) = \begin{cases} \max(w(e_i) - 0, 0) & \text{if } x_i = \text{outside} \\ \max(1 - w(e_i), 0) & \text{otherwise} \end{cases}$$

$$V(x_i) = \begin{cases} \max(w(e_i) - 0, 0) & \text{if } x_i = \text{outside} \\ \max(1 - w(e_i), 0) & \text{otherwise} \end{cases}$$

$$V(x_i) = \begin{cases} winding \\ w$$

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

$$v(x_i, x_j) = \begin{cases} 0 & \text{if } x_i = x_j \\ \frac{a_{ij} \exp\left(|w(e_i) - w(e_j)|^2\right)}{2\sigma^2} & \text{otherwise} \end{cases}$$

$$winding \text{ threshold number}$$

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

Alec Jacobson

0

0

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

 $\underset{\mathbf{x}|x_i \in [0,1]}{\operatorname{argmin}} E(\mathbf{x}) \quad \text{use graphcut (maxflow)}$

October 9, 2013

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

 $\underset{\mathbf{x}|x_i \in [0,1]}{\operatorname{argmin}} E(\mathbf{x}) \quad \text{use graphcut (maxflow)}$

subject to hard *facet constraints*

October 9, 2013

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

 $\underset{\mathbf{x}|x_i \in [0,1]}{\operatorname{argmin}} E(\mathbf{x}) \quad \text{use graphcut (maxflow)}$

subject to hard *facet constraints*

"nonregular" [Kolmogorov & Zabin 2004]

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

 $\underset{\mathbf{x}|x_i \in [0,1]}{\operatorname{argmin}} E(\mathbf{x}) \quad \text{use graphcut (maxflow)}$

subject to hard *facet constraints*

October 9, 2013

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

 $\underset{\mathbf{x}|x_i \in [0,1]}{\operatorname{argmin}} E(\mathbf{x}) \quad \text{use graphcut (maxflow)}$

subject to hard *facet constraints*

use heuristic \rightarrow local min.

October 9, 2013

Alec Jacobson

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$E = \sum_{i=1}^{m} \left[u(x_i) + \gamma \frac{1}{2} \sum_{j \in N(i)} v(x_i, x_j) \right]$$

 $\underset{\mathbf{x}|x_i \in [0,1]}{\operatorname{argmin}} E(\mathbf{x}) \quad \text{use graphcut (maxflow)}$

subject to hard *facet constraints*

+subject to hard *manifoldness constraints*

OIGL

October 9, 2013

Alec Jacobson

ETTH Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Hard constraints are optional: outliers

October 9, 2013

Alec Jacobson

#123

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Even failure to create beautiful *surface*, can be success as volume representation

Even failure to create beautiful *surface*, can be success as volume representation

October 9, 2013

Even failure to create beautiful *surface*, can be success as volume representation

Auto. weights Novel poses of textured input mesh

October 9, 2013

Alec Jacobson

#126

Cleanup methods modify input too much, ...

Cleanup methods modify input too much, ...

#128

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

October 9, 2013

... but we rely heavily on orientation

