Why Linear Algebra? (for Computer Scientists)

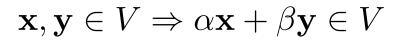
Olga Sorkine-Hornung

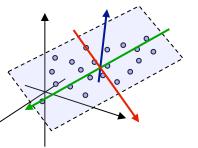
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Why Math?

 Computer Scientists, not just programmers

 Practice solid arguments, correctness proofs it's an art!




Main topics of the LA class

Linear systems of equations

 $\begin{array}{l} 3x_1 + 4x_2 - 1.5x_3 = 0\\ x_1 - 3.2x_2 + 5x_3 = 17\\ 2x_1 + 7x_2 + 3.1x_3 = 42 \end{array} \qquad \qquad A\mathbf{x} = \mathbf{b}$

Linear (vector) spaces and transformations

Linear Algebra is everywhere

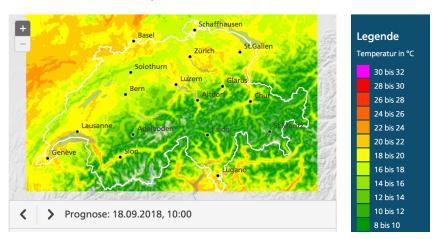
- Most world's phenomena involve complicated equations
- Computers can only do basic arithmetic
- → Usually can't do the original equations, approximate by series of linear equations
- \rightarrow Model things as linear spaces $\tilde{I}^{i}(\mu)$

September 19, 2018

$$\begin{split} E(q) &= \sum_{nT} A_T \|\nabla q^T - \mathbf{w}^T\|^2 \to \min\\ E(V') &= \sum_{i=1}^{nT} \|\delta_i - \mathcal{L}(\mathbf{v}'_i))\|^2 + \sum_{i=m}^n \|\mathbf{v}'_i - \mathbf{u}_i\|^2,\\ q_m^i &= \sum_k \frac{1}{M_i - 1} \sum_{\substack{j \in O\\ \text{arg min}}} X^{ji} \sum_{n=1}^3 w_{mn}^{ij} q_n^j\\ \arg \min_{w_j} \frac{1}{2} \int_{\Omega}^{j} |\Delta w_j|^2 dV\\ E(q) &= \sum_T A_T \|\nabla q^T - \mathbf{w}^T\|^2 \to \min\\ \tilde{I}^i(\cdot) : \bigcup_{k=1}^{d_i - 1} \Delta_k^i \longrightarrow \mathbb{R}. \end{split}$$

$$\begin{split} \dot{\mathbf{x}}_{1}^{i}(\mu) &= \langle \mu, \mu \rangle_{\mathbb{R}^{3}} = \langle \mu_{1} \widetilde{\mathbf{x}}_{k}^{i} + \mu_{2} \widetilde{\mathbf{x}}_{k+1}^{i}, \quad \mu_{1} \widetilde{\mathbf{x}}_{k}^{i} + \mu_{2} \widetilde{\mathbf{x}}_{k+1}^{i} \rangle_{\mathbb{R}^{3}} = \\ &= \mu_{1}^{2} \widetilde{g}_{k,k}^{i} + 2 \, \mu_{1} \, \mu_{2} \, \widetilde{g}_{k,k+1}^{i} + \mu_{2}^{2} \, \widetilde{g}_{k+1,k+1}^{i}, \\ \dot{\mathbf{x}}_{2}^{i} &= \langle \widetilde{\mathbf{x}}_{2}^{i}, \frac{\widetilde{\mathbf{x}}_{1}^{i}}{\|\widetilde{\mathbf{x}}_{1}^{i}\|} \rangle \frac{\widetilde{\mathbf{x}}_{1}^{i}}{\|\widetilde{\mathbf{x}}_{1}^{i}\|} + \langle \widetilde{\mathbf{x}}_{2}^{i}, \mathbf{n} \rangle \, \mathbf{n} + \langle \hat{\mathbf{x}}_{2}^{i}, \mathbf{N}^{i} \rangle \, \mathbf{N}^{i} = \end{split}$$

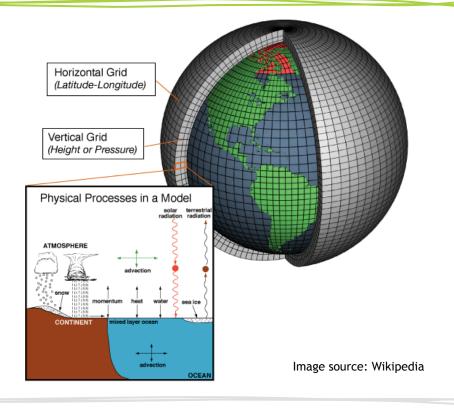
 $\widetilde{g}_{12} \simeq i$


Examples from everyday life

Weather forecasting

- Solve PDEs (partial differential equations) that model the physics of the atmosphere
- Unknowns: temperature, humidity, wind... at every point in Earth's atmosphere at a certain time

Temperature


Image source: MeteoSwiss

Weather forecasting

- Analytical solution (formula) doesn't exist
- → Discretization on a grid, numerical approximation
- Huge systems of linear equations

 $A\mathbf{x} = \mathbf{b}$

Weather forecasting

- Linear algebra done by supercomputers!
- CS challenge: how to solve huge linear equations, and fast

Some of the MeteoSwiss supercomputers at CSCS, Lugano

Google search engine

- Web crawler "reads" the Internet pages and indexes by keywords
- User enters keyword, search engine retrieves pages containing it
- In what order to present the found pages??

Lineare Algebra ETH

Google Search

I'm Feeling Lucky

Lineare Algebra I & II, Studienjahr 2017/2018 - ETH Zürich https://metaphor.ethz.ch/x/2017/hs/401-1151-00L/ ▼ Translate this page

4.5: Endomorphismen und Determinanten, Woche 13, [FIS] § 4.5; [F] §3.4; [J] § 6.7; [P] § 6.5. Ende des Prüfungsstoffes Lineare Algebra I. § 5.1: Eigenwerte und ...

igl | Interactive Geometry Lab | ETH Zurich | Linear Algebra HS 2017 ... igl.ethz.ch/teaching/linear-algebra/la2017/ ▼

May 9, 2018 - Lineare Algebra. Orthogonal projection; best rigid fit. Vorlesungs-Nr. 401-0131-00; Semester: Herbst 2017; Dozenten: Özlem Imamoglu,

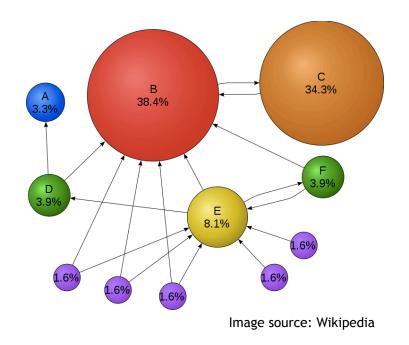
Lineare Algebra Herbst 2017 - ETH Zürich

https://metaphor.ethz.ch/x/2017/hs/401-01511-00L/ ▼ Translate this page September (2. Semesterworche), wird im Anschluss an die Vorlesung das Buch zur Vorlesung verkauft: K. Nipy/D. Stoffer, Lineare Algebra, vdf Hochschulverlag, ...

ETH :: D-MATH :: Lineare Algebra I

www2.math.ethz.ch/education/bachelor/lectures/.../linalg1.html ▼ Translate this page Präsenz: Ab der vierten Semesterwoche mittwochs, 12:00 i 13:00 im HG J 15.1. Zwischenprüfung. Die Zwischenprüfungsnoten wurden versandt. Wenn Sie Ihre ...

Google search engine - PageRank

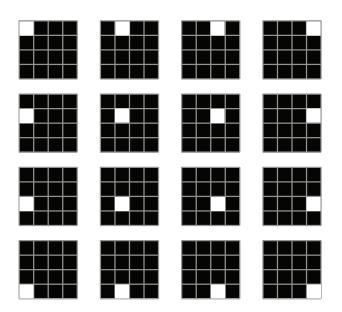

PageRank(v)

 $\frac{1}{\# \text{ links from v}}$

- PageRank algorithm sorts search results by importance
- Importance of a page = how many other important pages link to it

 $\operatorname{PageRank}(u) = \sum_{v: v \text{ links to } u}$

- PageRanks of all webpages? Eigenvalue problem! $A \mathbf{u} = \lambda \mathbf{u}$
- We will learn about it in the 2nd half of the semester

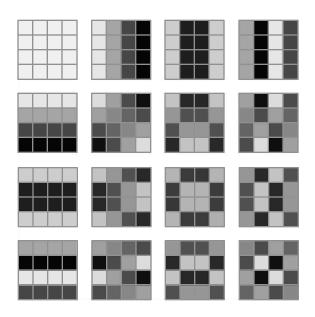

Digital image representation

- Images are vectors!
- The image on the right:
 - 2272 x 1704 pixels
 - pixel = (R,G,B)-value
 - this image is a 11,614,464dimensional vector

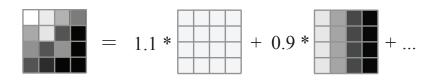
Images as vectors

The standard basis for 4x4 grayscale images 16 vectors

Any 4x4 grayscale image is a **linear combination** of this standard basis

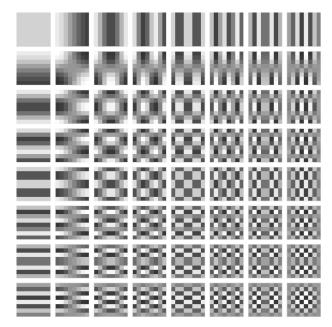


$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \ldots + \alpha_n \mathbf{b}_n$$


Need to store all $\alpha_1, \alpha_2, \ldots, \alpha_n$

JPEG image compression

The 4x4 DCT (discrete cosine) basis 16 vectors Any 4x4 grayscale image is **also** a linear combination of that basis!



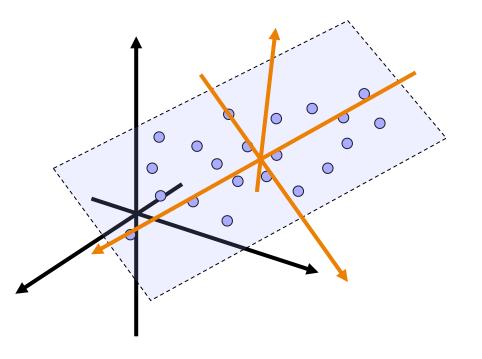
$$\mathbf{x} = \beta_1 \mathbf{c}_1 + \beta_2 \mathbf{c}_2 + \ldots + \beta_n \mathbf{c}_n$$

For "natural" images we can omit all but a few first β

JPEG image compression

The 8x8 DCT (discrete cosine) basis 64 vectors

Any 8x8 grayscale image is a linear combination of that basis!


$$\mathbf{x} = \beta_1 \mathbf{c}_1 + \beta_2 \mathbf{c}_2 + \ldots + \beta_n \mathbf{c}_n$$

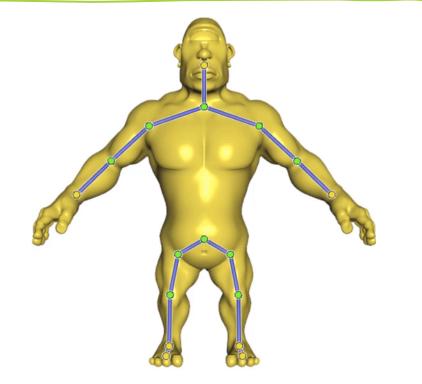
For "natural" images we can omit all but a few first β

JPEG image compression

- Images are vectors in a (high-dimensional) space
- Different coordinate systems = different bases
- JPEG image compression: project onto a lowerdimensional linear space

Computer animation

• How do virtual characters move?


Excerpt from "Big Buck Bunny", open Blender movie

Computer animation

- Artist designs key poses for skeleton
- Collection of linear transformations in 3D space
- Automatic interpolation over the character's surface and over time

Linear Algebra is fundamental

Enjoy the class!

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Interactive sessions: Clicker

- Install the ETH EduApp on your smartphone
 - or -
- Make sure you can log in at https://eduapp-app1.ethz.ch/

