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RepresentationRepresentation
• Parametric:

• Implicit:• Implicit:
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Parametric curvesParametric curves

• Curves are 1-dimensional parameterizations

t 0

• Planar curve: ))()(()( ty,txtf =

t=0

t=0 5t 0.5

• Space curve: t=0.75))( ),()(()( tzty,txtf =

t=1
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Parametric Curvesa a et c Cu es
Continuity and regularity

• Line segment

• The same segment can be
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Parametric Curvesa a et c Cu es
Continuity and regularity

• A parametric curve is n-times continuously differentiable 
if the image f is n-times continuously differentiable (Cn)

• The derivative f ′ (t) at position t is a tangent vector

A i l h f i diff ti bl d f ′ (t) ≠ 0• A curve is regular when f is differentiable and f ′ (t) ≠ 0
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Parametric Curvesa a et c Cu es
Continuity and regularity

• Example
)0()(]22[ 233 =→− ,t,ttf,R,:f

0)0()023()( 2 =⇒=′ 'f,t,ttf

• f is continuously differentiable,
but not regular at t = 0

• The regularity of a curve can be interpreted as its 
visual smoothnessvisual smoothness
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Parametric Curvesa a et c Cu es
Arc length parameterization

• A curve is parameterized by arc length when

][1)( b,at,tf ∈=′

• Any regular curve can be parameterized by
l th

][1)( b,at,tf ∈

arc length 

• For arc length parameterized curves:
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sf:sK

sf:sT
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′= Tangent vector

Curvature vector
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sf:s
sf:sK

′′=κ

= Curvature vector

Curvature (scalar)
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Smooth Curves (2D)Smooth Curves (2D)
• Goal: intuitive modeling tool for curves

• User inputs points
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Smooth Curves (2D)Smooth Curves (2D)
• Goal: intuitive modeling tool for curves

• User inputs points

• Find a curve that interpolates/approximates 
the pointsp

• Allow user to change the curve (how?)
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Polynomial CurvesPolynomial Curves

• Parametric form with polynomials• Parametric form with polynomials
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Polynomial CurvesPolynomial Curves

• Parametric form with polynomials
ti

• Parametric form with polynomials

• Interpolated control points     with 

Basis Coefficients
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Polynomial CurvesPolynomial Curves
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• Solve 
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• Parametric form with polynomials• Parametric form with polynomials

• Interpolated control points     with 

• Solve

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 20



Polynomial CurvesPolynomial Curves
• General parametric form

– Weighted sum of coefficients and basis functions

Basis functionsCoefficients
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ProblemsProblems
• Sum of monomials       
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ProblemsProblems
• Sum of monomials       

– Not an affine combination (don’t sum up to 1)
– Coefficients don’t have geometric meaningCoefficients             don t have geometric meaning
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What might be good basis functions?g g

• Intuitive editing
– Control points are coefficients
– Predictable behaviorPredictable behavior
– No oscillation

L l t l– Local control

• Mathematical guaranteesg
– Smoothness, affine invariance, linear precision, ...

• Efficient processing and rendering
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What might be good basis functions?g g

• Lagrange polynomials

O ill ti h ti– Oscillation, accuracy, shape preservation
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What might be good basis functions?g g

• Lagrange polynomials

O ill ti h ti– Oscillation, accuracy, shape preservation

• Hermite interpolationp
– Points and derivatives

Domain dependent e g (affine) transformations– Domain-dependent, e.g., (affine) transformations

• Approximation instead of interpolation
– Bezier- and B-Spline curves
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Bernstein PolynomialsBernstein Polynomials

– Binomial coefficients    
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Bernstein PolynomialsBernstein Polynomials

– Binomial coefficients 

–
–
–
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Bernstein PolynomialsBernstein Polynomials
• Properties

– Partition of Unity

– Non-negativity

– Maximum

– Recursive formulationRecursive formulation
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Bezier CurvesBezier Curves
• General parametric form

Basis functionsCoefficients

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 34



Bezier Curves
• Curve based on Bernstein polynomials

Bezier Curves

Bernstein polynomialsCoefficients
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Bezier Curves
• Curve based on Bernstein polynomials

Bezier Curves
Control
polygon

Bernstein polynomialsControl points
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Properties of Bezier Curves
• Geometric interpretation of control points

Properties of Bezier Curves

• Convex hull

• Affine invariance

• Endpoint interpolation• Endpoint interpolation

• Symmetry

• Linear precision
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Efficient Computation?Efficient Computation?
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De Casteljeau AlgorithmDe Casteljeau Algorithm
• Exploit recursive definition of Bernstein polynomials

• Repated convex combination of control points
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De Casteljeau AlgorithmDe Casteljeau Algorithm
• Exploit recursive definition of Bernstein polynomials

• Repated convex combination of control points

• Numerically robust and efficient
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DerivativesDerivatives
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DerivativesDerivatives

• Endpoints
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DerivativesDerivatives

• Endpoints
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Degree ElevationDegree Elevation
• Add control point without changing the shape

– More degrees of freedom for editing
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Degree Elevation
• Add control point without changing the shape

Degree Elevation

– More degrees of freedom for editing

New control points
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Degree Elevation
• Add control point without changing the shape

Degree Elevation

– More degrees of freedom for editing
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SubdivisionSubdivision
• Split curve at some parameter value

• Represent by two curve segments of same degree

• Control points?
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SubdivisionSubdivision
• Split curve at some parameter value

• Represent by two curve segments of same degree

• control polygons after   subdivisions

• Converges quadratically towards• Converges quadratically towards
– Efficient rendering
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Variation DiminishingVariation Diminishing
• Curve “wiggles” no more than control polygon
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• For any line, number of intersections with control 
polygon ≥ intersection with curvepolygon ≥ intersection with curve
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Variation DiminishingVariation Diminishing
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Variation DiminishingVariation Diminishing
• Curve “wiggles” no more than control polygon

• For any line, number of intersections with control 
polygon ≥ intersection with curvepolygon ≥ intersection with curve

• Application: intersection computationpp p
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ReferencesReferences
• Farin: Curves and Surfaces for CAGD, Morgan 

Kaufmann, 2002

• Demo applets:• Demo applets: 
http://i33www.ira.uka.de/applets/mocca/html/noplugin/inhalt.html

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 77



HomeworkHomework
• Practical part:

– Allow user to input control points
– Calculate the corresponding Bezier curve by usingCalculate the corresponding Bezier curve by using 

the De Casteljeau algorithm and display it
Bonus options (see the definition on the website)– Bonus options (see the definition on the website)

• Theoretical part:
– Prove the properties of Bezier curves we 

mentioned in class; think about modeling options; g p

Homework handout is on the course website
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Thank you!Thank you!
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