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Geometric Modeling

Surface deformation using

ur
differential coordinates
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Recap

Differential coordinates

= Detail = smooth(surface) — surface
= Smoothing = averaging
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Recap

Differential coordinates

= Represent local detail at each surface point
" More descriptive of the shape than just xyz

" Linear transition from Xyz to o

= Useful for operations on surfaces where
surface details are important
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Recap

Laplacian matrix

" The transition between xyz and 9 is linear:
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Properties of the Laplacian matrix

* rank(L)=n—-c¢ (n—1 for connected meshes)

*= We can reconstruct the xyz geometry from o up to
translation

fix
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edit
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Reconstruction




Reconstruction
(1 | [ ]
[ 1 ] e |

k \
izargmin(HLx—SXH2+Z‘xk _ckfj
X s=1

... and the same fory and z
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Reconstruction

A X =D>D

Normal Equations:

ATA x = Al
x = (ATA)! ATp
com?ute
once

Olga Sorkine, Courant Institute 3/30/2010 8



Details | left out

A X

b

Normal Equations:
ATA x = ATb
x = (ATA)! Alb

Actually, we won’t compute the inverse (dense
matrix, expensive). Instead we will factor
A'A = MMT, M is sparse and triangular
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Matrix factorization

LU decomposition

BX — b Ly — b ) This is backsubstitution.

- If L, U are sparse it is very

L(UX) — b UX — y fast. The hard work is

computing L and U
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Matrix factorization

Cholesky decomposition

Cholesky factor exists if B is positive definite. It
is even better than LU because we save
memory.
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Details | left out

L ||v.| = |0

_—em W

These should actually be high
weights to ensure interpolationof | A x
the constraints. Or better yet, we
can substitute the constraints
directly into the LS system

b

Normal Equations:

ATA x = Alb
X = (ATA)! ATb
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Differential coordinates for editing

" |ntrinsic surface representation

= Allows various surface editing operations that preserve local
surface details (normals, mean curvature)
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Why differential coordinates?

" Local detail representation — enables detail preservation
through various modeling tasks

= Representation with sparse matrices
= Efficient linear reconstruction
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Editing framework

= The spatial constraints will serve as modeling constraints

= Solve the reconstruction equation every time the modeling
constraints are changed

Detail constraints: Lx =0
Modeling constraints: Xj = Cj , JE {jl, Jos--- jk}

L v, | =

s
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Editing framework

= ROl is bounded by a belt (static anchors)
= Manipulation through handle(s)
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Fundamental problem: invariance to

A, p=—Hn transformations

The basic Laplacian operator is translation-invariant, but not rotation-
invariant

Reconstruction attempts to preserve the original global orientation of the
details (the normal directions)

-

3/30/2010
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Fundamental problem: invariance to
transformations

fixed
vertices

input intuitive expectation actual result
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Fundamental problem: invariance to
transformations

The basic Laplacian operator is translation-invariant, but not rotation-
invariant

Reconstruction attempts to preserve the original global orientation of the
details (the normal directions)

ﬁ\\ Q



Fundamental problem: invariance to
transformations

The basic Laplacian operator is translation-invariant, but not rotation-
invariant

Reconstruction attempts to preserve the original global orientation of the
details (the normal directions)

o .




Fundamental problem: invariance to
transformations

= Similar problem with the Great Wall of China...
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Energy functional

" We posed this minimization problem (under
handle constraints):

arg min ||Ax _Ax |

X

org

" But the rotated version of the original shape is
not a minimizer. Need a rigid-invariant energy!



Fixing local rotations

Multiresolution framework

input

SAVAVAW
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Fixing local rotations

Multiresolution framework

Smooth base surface
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Fixing local rotations

Multiresolution framework

Details — displacement vectors

N N L
S

-B
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Fixing local rotations

Multiresolution framework

Encode details in the local frame of B

d; = a;t; + a,n;

Olga Sorkine, Courant Institute 3/30/2010 26



Fixing local rotations

Multiresolution framework

Deform smooth base surface

BI
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Fixing local rotations

Multiresolution framework

Local frames on B’

BI
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Fixing local rotations

Multiresolution framework

Add details back — in local frame!

d,'=a;t +an;

BI
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Fixing local rotations

Multiresolution framework

Displace the vertices to get the result

SI
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Fixing local rotations

Multiresolution framework

= Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004

— Multiresolution Editing
‘.4_-"‘&.*- ———————————————————

Editing

Decomposition
UOI}ONJSU0O8Y

> Geometric
Details
D
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Fixing local rotations

Multiresolution framework

= Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004

— Multiresolution Editing ™ g

S Smooth base surface: defined by Laplacian
smoothing of the input mesh (1998) or the
steady-state (2004): solve

min |[Lx — O

constraints: handles

Decomposition

S 4
,

Geometric
. Details
D
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Fixing local rotations

Multiresolution framework

= Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004

Decomposition

| s 13 * - .

Geometric details: simply the difference
vectors between base surface B and input S
For each vertex, compute

di:Vi_bi

Represent di in the local frame of bi
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= a;t; + a,t, + a;n;

I
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Fixing local rotations

Multiresolution framework

= Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004

Editing the base surface: move the handle

vertices, solve again I e
. 2 $ == wm o = —
min ||Lx||
with the new handle constraints S’ -y
A
- ’ By
@) 3
7 :
& Editing 5
o > 7]
£ c
% =3
a o g
Geometric
) Details
D
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= Kobbelt et al. SIGGRAPH 98, Botsch and Kobbelt SIGGRAPH 2004

Decomposition

Fixing local rotations

Multiresolution framework

Add back details —
in the local frame!
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Editing
o
Bf
> Geometric
Details
D
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Multiresolution framework

Discussion

= Advantages:

= Fast! Linear solve for the base surface deformation, and
then add back displacements

" |ntuitive, easy to implement

" Problem: works only for small height fields (details
vectors are small)

S8 -
\ ) 4 ) >
aImosf a height field not a height field
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Multiresolution framework

Discussion

= Problem: If detail vectors are too big we get overshooting and
self-intersections, especially in concave cases




Local rotations — single res. solutions

= Come up with a rotation field on the surface
nased on the modeling constraints

= Rotate the differential coordinates; solve
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Estimation of rotations
Lipman et al. 2004

= Reconstruct the surface with the original Laplacians o (naive
Laplacian editing)

= Compute smoothed local frames, estimate rotation
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Estimation of rotations
Lipman et al. 2004

= Reconstruct the surface with the original Laplacians o (naive
Laplacian editing)

= Compute smoothed local frames, estimate rotation
* Rotate the 0’s and reconstruct again

Olga Sorkine, Courant Institute



Estimation of rotations
Lipman et al. 2004

= Advantages:
= Sparse linear solve
= |Less or no self-intersections thanks to global optimization
(no more local displacements that fight each other)
" Disadvantages:
» Heuristic estimation of the rotations

= Speed depends on the support of the smooth local frame
estimation operator; for highly detailed surfaces it must be
large

= Unclear how much we need to smooth (what is detail?)



Rotation propagation

[Yu et al. SIGGRAPH 2004][Zayer et al. EG 2005][Lipman et al. SIGGRAPH 2005]

= Assume more user input: the user also
specifies handle rotation

® The rotation is diffused to the rest of the ROI
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Rotation propagation

= Geodesic distance [Yu et al. 2004]

= Harmonic fielc
" Optimization |
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[Zayer et a

Lipman et a

Harmonic field
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Harmonic fields on meshes

= Scalar function, attains 1 on the active handle, O on
the static handles

= Smooth in-between, no local extrema
= Solve:
Apytf=0
with constraints ;=1 on active handle,
f. = 0 on static handle

Example: in this simple case,
the harmonic field is a just a
linear ramp
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Rotation propagation w/harmonic fields
Examples

Why does this happen?
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Rotation propagation w/harmonic fields
Examples

" |f rotations are provided and consistent with the
desired transformation, this works well

= However, the method is translation-insensitive
(doesn’t generate rotations when there are none
provided)
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Optimization of rotation propagation
Lipman et al. 2005

= Keep alocal frame at each vertex
= Prescribe changes to some selected frames (rotation/scaling)

= ‘Zﬁ'ﬁ»\&

N\

L]

Local frame:
{a;, b;, n;}




Optimization of rotation propagation
Lipman et al. 2005

®  Reconstruction:

* Encode the differences between adjacent frames —the numbers a By
for each edge...

= Solve for the new frames in least-squares sense

a;— a; = o,a; +o,by + o
bl_bj — ai + bi + ni
n—-—n =v.a +v,b; +v.n

constraints



Optimization of rotation propagation
Lipman et al. 2005

® Reconstruction:

= After having the frames, solve for positions
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Optimization of rotation propagation
Lipman et al. 2005

® Reconstruction:

= After having the frames, solve for positions




Optimization of rotation propagation
Lipman et al. 2005

= Some results
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Optimization of rotation propagation
Lipman et al. 2005

" Can use this representation for shape

interpolation
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Lipman2005Morph

SEES

File Edit ‘iew ‘Window Help

Comparison with linear
shape interpolation

*

N\

linear interpolation of our
surface representation

AN
N J 9 )

A
/ !‘

o4

linear interpolation of
Cartesian coordinates

1]

[ oooots 2

“—0

\_\ 'fl;\" I'Q |/;h\| I/;;\ '-/;h /
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Implicit definition of transformations
Sorkine et al. 2004

" The idea: solve for local transformations AND the edited
surface simultaneously!

= Estimate the local transformations T, from the eventual
solution

V':argvmin ZH:HL(VE) —®(5i)H2 + ZHV'J _ch2
=1

/ jeC

Transformation
of the local frame
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Defining T.

2
vi—c,|

V' =arg mm[ZL(V ) @(5 )H

" How to formulate T, ?

jeC

" Based on the local (1-ring) neighborhood
" Linear dependence on the unknown v’

/ - ’
Vi =TV, v, Vi

| T
/ _ I
V’

=T Vi




Defining T,

" First attempt: define T, simply by solving

T. =arg

K
min Z
T; ]=1
|

vi =T,
J




Defining T,

" Plug the expressions for T. into the least-
squares reconstruction formula:

V’:argvmin iZnI:HL(Vi') —®(5i)H2 + ZHV’j —Csz

jeC

Linear combination
of the unknown v’

But: we didn’t solve anything since T, is
arbitrary affine transformation, i.e.
admits distorting shears




Constraining T,

= Rotation + scale (i.e., similarity) is easy in 2D:

S 0 0) cos@ sinf d, w a t
T.={0 s O}l —sind cosé dy =l-a w t
0 0 1) 0 0 1 0 0 1

= Can edit 2D curves:



Constraining T,

= Rotation + scale (i.e., similarity) is easy in 2D:

(s 0 0) cos@ sind d ) (w a t
T.={0 s O}l —sind cosé dy =l-a w t
0 0 1)L 0 0 1) {0 0 1)

= Applied in [Igarashi et al. 05] for 2D shape manipulation:
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Defining the transformations T,

= |n 3D: have to linearize rotations

= Works well for moderate rotations, problems with large rotation angles

s -h, h, t
hy s -h t
-h, h s f
o 0 0 1
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Laplacian editing results
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Laplacian editing results

L A
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Laplacian editing results

Olga Sorkine, Courant Institute

3/30/2010 62



Laplacian editing results
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Linear deformation methods
Summary

" |Involve linear global optimization (efficient)
= Suffer from artifacts because of local rotations

" The relationship between the translation of a
handle and the local rotation is inherently
nonlinear
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Nonlinear surface-based deformations

= Formulate a nonlinear functional that handles
local rotations properly

= Still need an efficient method to minimize

p' =argmin E(p,p’)
o
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As-rigid-as-possible surface deformation
Sorkine and Alexa 2007

= Smooth effect on the large scale

= As-rigid-as-possible effect on the small scale (preserves
details)

' !k A
L\ -
i )
| @
‘\_
/ 2

& .
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Modeling ARAP detail preservation

" Previous work: Laplacian editing and its
variants

m@nzn:\\L(v;)— RO, stv,=c;,jeC
Yooial

= Concentrated on making the optimization
linear by “inventing” the right rotations or
optimizing their linearized version



Direct ARAP modeling

= We actually may want to preserve the shapes
of cells covering the surface

- _—



Direct ARAP modeling

® | et’s ook at cells on a mesh
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Direct ARAP modeling

= Ask all the star edges to transform rigidly, then
the shape of the cell is preserved

—

J2

J1



Direct ARAP modeling

(vi _V’j)_ R; (v, _Vj)H2

= Cell energy: min ) ‘

JeN(1)

—

J2

I}



Direct ARAP modeling

= |f v, v’ are known then R; is uniquely defined

Viz D>
v R;

I '

" |t's the shape matching problem!
= Build covariance matrix S=VV''
= SVD: S=UZP'

* R.=UP'

=

R. is a non-linear function of v’




Direct ARAP modeling

" Can formulate overall energy of the
deformation:

mind > - v Ry —v,)f

i=1 jeN(i)

st.vi=c;,JeC



Energy minimization

= Alternating iterations

q- Given initial guess v',, find optimal rotations R;

= This is a per-cell task! We already showed how to
define R, when v, v' are known

= Given the R, (fixed), minimize the energy by
finding new v’

\J Invlnzn: Z H(V{—V'j)—Rl.(VE—Vj)HZ

i=1 jeN(i)



Energy minimization

= Alternating iterations

q- Given initial guess v',, find optimal rotations R;

= This is a per-cell task! We already showed how to
define R, when v, v' are known

= Given the R, (fixed), minimize the energy by

finding new v’ ,
\,/ Lv =b




The big advantage

" EFach iteration decreases the energy (or at
least guarantees not to increase it!)

" The matrix L stays fixed!

" Precompute Cholesky factorization

" Just back-substitute each iteration (+ the SVD
computations)



The importance of proper weighting

" |f we use uniform Laplacian L

.........................

...................
........................

., M SR . . SR W A R R . TR, I, T Y

e B R S Bl B g b B B

Olga Sorkine, Courant Institute 3/30/2010 77



The importance of proper weighting

" The problem: need to compensate for varying
shapes of the 1-ring

H(V -vi)—Ri(vi—v, )H

JeN (1)



Use cotan weights

= Add cotangent weights [Pinkall and Polthier 93]

EceII — Z W{;‘

JeN(I)

(vi _V’j)_ R (v, _Vj)H2

1
o W, = E(COt oL +c0t[3ij)




Use cotan weights

" This gives symmetric results

E. = Z W H(Vi’ -vi)—Ri(v, —VJ-)Hz

JeN (D)

.....................
.....................

....................
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Results

" Can start from naive Laplacian editing as initial
guess and iterate

2 iterations

Initial guess 1 iterations 4 iterations
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Results

" Faster convergence when we start from the
previous frame
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Issues

Works fine on small meshes
On larger meshes: slow convergence

" Each iteration is more expensive of course

" Need more iterations because the conditioning of
the system becomes worse as the matrix grows

Implement multi-res strategy?

Also: material stiffness depends on the 1-ring
size (lots of wrinkles for fine meshes)



More issues

" This technique is good for preserving edge
length (relative error very small)

= No notion of volume, however

" Essentially, thin shells for the poor

= Can extend to volumetric meshes

b [:.
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