G22.3033-008, Spring 2010 Geometric Modeling

Introduction and Overview

Geometric Modeling

■ To describe any reallife object on the computer – must start with shape (2D/3D)

 Geometry processing: computerized modeling of 2D/3D geometry

Digital Geometry Processing (DGP)

- Processing of discrete (polygonal mesh) models
 - Typically triangular
- Why discrete?
 - Simplicity ease of description & transfer
 - Base data for rendering software/hardware
 - Output of most acquisition tools (CT, MRI, laser, etc..)
 - Input to most simulation/analysis tools

Interactive shape modeling

- Tools for design and editing of digital shapes
 - Interactive means fast algorithms
 - Intuitive expected outcome

Olga Sorkine, NYU, Courant Institute

Applications

Games/Movies

Medicine/Biology

Engineering

Architecture

Tools?

- Use techniques from both Math & CS
 - Differential geometry
 - Numerical linear algebra
 - Graph theory
 - **-** ...
- ...Combined with a lot of intuition...

Organization

- Olga Sorkine sorkine@cs.nyu.edu http://www.cs.nyu.edu/~sorkine/
- Office hours: Thursdays, 5-6pm, Room 1204 or other time (coordinate via e-mail)

Organization

 Course website (also linked from my homepage)

http://www.cs.nyu.edu/courses/spring10/ G22.3033-008/index.html

- Mailing list: g22_3033_008_sp10@cs.nyu.edu
- Check the website often for updates!

Organization

Course materials

- No book covers all topics
 - Many of the topics are recent research results ©
- I will link to relevant papers, presentations and tutorials on the course website
- Lecture slides will be available on the website shortly before the class
- Papers from: ACM SIGGRAPH, Symposium on Geometry Processing (SGP), Shape Modeling International (SMI), Eurographics, see

http://kesen.huang.googlepages.com/

Prerequisites

- Familiarity with basic calculus, linear algebra, and vector calculus
- Familiarity with a graphics API (e.g. OpenGL)
 - If not, learn quickly
- C/C++/Java coding skills, programming applications with some GUI
- Capability to search Google and forums for useful information ©

Course Overview

Topics

- Shape representations in computer graphics
 - Parametric (Bezier, splines), implicits, meshes + related data structures
- Shape acquisition and reconstruction
- Linear algebra tools for geometric modeling
- Differential geometry (normals, curvatures, ...)
- Digital geometry processing (smoothing etc.)
- Shape deformation (space- and surface-based)

Grading

- 5 programming homework assignments (70%)
 - Next week: warp-up exercise on Bezier curves
 - 2/10: mesh "hello world"
 - 2/24: surface reconstruction with marching cubes
 - 3/10: calculation of discrete differential quantities on meshes
 - 3/24: interface for mesh editing (selection)

Grading

- 5 programming homework assignments (70%)
 - The assignments will be supplemented by theoretical questions
 - You will submit a report, screenshots and code
 - In special cases (e.g., I didn't manage to run your code) demo of the assignment during office hours

Grading

- 30% Final project (start on 4/7 or earlier)
 - Use your mesh framework to implement:
 - An advanced digital geometry processing technique
 - And an interactive editing technique
 - Can pick from the methods we learned in class, and I will make suggestions as well
 - Can come up with a new technique! Opportunity to try research
 - Submit a report + code; demo in class on 4/28

The big picture

3D graphics programming in 1979

approx. 25 triangles

approx. 50 x 100 pixels

The big picture

Common workflow

approx. 25 polygons

approx. 50 x 100 pixels

The big picture

Common workflow

The big picture

Olga Sorkine, NYU, Courant Institute

The big picture

Common workflow

Modeling Rendering 3D Models 3D Objects **Images** Scene Manual Interaction Geometry • Direct Procedural Parametric Simulation manipulation Sampling of real-Points Sketching • Implicit world objects Animation Mesh Images Skeletal Material Video deformation Lighting Keyframing

The big picture

Model creation

The big picture

Model representation and conversion

Modeling

Rendering

3D Objects

- Manual
- Procedural
- Simulation
- Sampling of realworld objects
- Images
- Video

Images

- Interaction
 - Direct manipulation
 - Sketching
- Animation
 - Skeletal deformation
 - Keyframing

The big picture

Model modification and editing loop

Modeling

Rendering

3D Objects
Manual
Procedural
Simulation
Sampling of realworld objects
Images

Video

- Shape representation
 - Parametric curves/surfaces
 - Subdivision surfaces
 - Implicits

- Shape representation
 - Polygonal meshes

- Shape acquisition
 - Scanning/imaging
 - Reconstruction

1/21/2010

Olga Sorkine, NYU, Courant Institute

- Mathematical tools
 - Revisit linear algebra: transformations, spectral decomposition, PCA, SVD
 - See where these are used!

- Mathematical tools
 - Differential geometry continuous and discrete
 - Our main tool to analyze and understand shapes

- Digital geometry processing
 - Denoising, smoothing, simplification/remeshing, parameterization, compression

- Shape modeling and deformation
 - Space warps/ Freeform deformations

Shape modeling and deformation

Surface-based deformations

1/21/2010

Olga Sorkine, NYU, Courant Institute

- Sketch-based interfaces
 - Shape creation
 - Shape editing

1/21/2010

Olga Sorkine, NYU, Courant Institute

- More applications of geometric deformation
 - Skeleton-skin animation; morphing
 - Image/video retargeting

Thanks