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Least squares fitting

Motivation

= Why are we going over this again?

" Many of the shape modeling methods presented
in later lectures minimize functionals of the form

Copt —argmln I1AC - b]|*
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Least squares fitting

Motivation

" Given data points, fit a function that is “close”
to the points

y=1(x)




Simple example

line fitting — 15t order polynomial in 2D

" y-offsets minimization

A

y
Pi = (X, Vi)
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Simple example

line fitting — 15t order polynomial in 2D

* Findaline Y =ax + b that minimizes

E(a.b) = YLy, ~ (@ +b)]

» E(a,b) is quadratic in the unknown parameters @, b

= Another option would be, for example:

AbsErr(a,b) = Zn:\yi — (ax; +b)
1=1

= But—itis not differentiable, harder to minimize...



Simple example

line fitting — LS minimization
* To find optimal @, b we differentiate E(a, b):
E(a,b) =) [y, —(ax +b)I°
i=1

%E(a’ b) = i(_zxi)[yi — (aXi + b)] =0

%E(a, b) = le (-2)[y; - (ax; + b)] =0



Simple example

line fitting — LS minimization

= \We obtain two linear equations for a, b:
> (-2x)[y; - (@x; + b)] = 0

iznl: (—2)ly;— (ax; + b)] =0



Simple example

line fitting — LS minimization

= We get two linear equations for a, b:
() Z [X:y: — axi2 —bx] =0

@ > [yi-ax—b]=0

=1



Simple example

line fitting — LS minimization

= We get two linear equations for a, b:
n 2 n n
(;Xi)a+(éxi)b:§ XiYi

(Xx)a+(21)b=2y,



Simple example

line fitting — LS minimization

= Solve for a, b using e.g. Gauss elimination

" Question: why the solution is the minimum for
the error function?

E@,b)= Y [y; - (ax; + b)I’



Fitting polynomials
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Fitting polynomials

= Decide on the degree of the polynomial, k
= Want to fit f(x) = ax‘+a_ X"+ ... +ax+ a,

" Minimize:

n
E@g, a3, - 8) = IV — (@G +a %+ +axtag)]’
=1

E(ag,....a) = Z(— XM — (@ +a X ..+ ag)] = 0



Fitting polynomials
= We get a linear system of k+1 equations in k+1 variables
[ n n n \ [ n
Z]_ in ink /ao\ Zlyl
i—1 i=1 i—1 i—1
in inz ink+1 in Y,
i=1 i=1 i=1 : i=1

\

ink lekﬂ lezk \ak) ZX V.

\_i=1 i=1 i= \_i=1 )



General parametric fitting

* We can use this approach to fit any function f (x)
= Specified by parameters Cc, C,, Cs, ...
* The expression f (X) linearly depends on the parameters.

" T(X) =C13(X) + CT5(X) + ... + ¢ fi(X)
" Minimize —find best Cc,, C,, C; ... :

S ()~ 2= 3 131 () = flF



Solving linear systems in LS sense

" Let’s look at the problem a little differently:

= We have data points p; and desired function values f;
= We would like :

vVi=l, ..,n:. f(p)=H

= Strict interpolation is in general not possible

" |n polynomials: n+1 points define a unique interpolation
polynomial of degree n.

= So, if we have 1000 points and want a cubic polynomial, we
probably won’t find it...



Solving linear systems in LS sense

= We have an over-determined linear system nxKk:

f(p) =cq fi(py) +C, T(py) + ... +¢ fil(py) =1
f(P,) =cq fi(py) +C, 1x(Py) + ... + ¢ fil(pPy) =1,

f (pn) — Cl fl(pn) + C2 1:Z(pn) T ... T Ck 1:k(pn) — 1:n



Solving linear systems in LS sense

" |n matrix form:

SACHERACH S A (BT ()
f.(p,) f(py) ... f(py) || C, f,
\ Gy /

\fl(pn) fZ(pn) fk(pn)/ \fn/



Solving linear systems in LS sense

" |n matrix form:
Ac=D

where A = (f;(p;) );; is a rectangular nxk matrix, n>k

C = (Cl’ C2, sy Ck)T b — (fl’ f2’ "t fn)T
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Solving linear systems in LS sense

» More constrains than variables — no exact
solutions generally exist

= We want to find something that is an
“approximate solution”:

Copt —argmlnHAc b||*



Finding the LS solution

= c e RX
= Ac e R"

" As we vary C, Ac varies over the linear

subspace of R" spanned by the columns of A:
T 1 —Clx

C,
AC = A |A4] Ay I Cl A + C2A2 +... _I_CkAk

c
\L o
This is also known as the column space of A
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Finding the LS solution

= We want to find the closest Ac to b: min [|Ac - b

AC
closestto b

Subspace spanhned
by columns of A




Finding the LS solution

= The point Ac closest to b satisfies:
(Ac —Db) L {subspace of A’s columns}

AN
0
V column A:: (A, Ac—b)=0
Vi, A'(Ac—b)=0

AN

These are AV4

called the AT(AC _ b) — O

normal equations




Finding the LS solution

* We have a square symmetric
system (A'A)c = A'b

(kxk)

= |f A has full rank (the columns of A are
linearly independent) then (ATA) is invertible.

min [Ac—b|’
J
c=(ATA)"ATb




Weighted least squares

" |f each constraint has a weight in the energy:
mind w (f,(p,) - )’
¢ ia

* The weights w; > 0 and don’t depend on C

" Then:
min (Ac — b)' W'W (Ac — b) where W = (w)).

(A"W?A)c = A'W?b




Principal Component Analysis

But first, reminder about

eigenvectors and eigenvalues
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Motivation

" Given a set of points, find the best line that
approximates them

Olga Sorkine, NYU, Courant Institute 2/24/2010



Motivation

v

= We just saw how to fit a parametric line
y = ax +b, but this does not work for vertical lines
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Motivation

= How to fit a line such that the true (orthogonal)
distances are minimized?
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Principal Component Analysis

\ X

= PCA finds axes that minimize the sum of distances?
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Linear algeb

ra recap

Symmetric matrices

" |f Ais symmetric, the eigenvectors are
orthogonal and there’s always an eigenbasis.

A
N
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Principal Component Analysis

Basic idea

" PCA finds an orthogonal basis that best represents
given data set

= PCA finds a best approximating line/plane/axes...
(in terms of Zdistances?)
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Principal Component Analysis

Basic idea

" PCA finds an orthogonal basis that best represents
given data set

156 T T I T 1

teg - — e 3D point setin
so | gL - standard basis
E L

-5  "J

-168

-15@ | | ] | |
-158-1AA-58 @& SE 188 154

= PCA finds a best approximating line/plane/axes...
(in terms of Xdistances?)



Principal Component Analysis
Applications

" An axis-aligned bounding box: agrees with the
standard axes

minX | ® maxX X




Principal Component Analysis

Application: oriented bounding box

" Tighter fit
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Principal Component Analysis

Application: oriented bounding box

" Axis aligned bounding box




Principal Component Analysis

Application: oriented bounding box

" Oriented bounding box by PCA
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Principal Component Analysis

Application: oriented bounding box

= Serve as very simple “approximation” of the object
= Fast collision detection, visibility queries
= Whenever we need to know the dimensions (size) of the object

m  The models consist of
thousands of polygons

m To quickly test that they
don’t intersect, the
bounding boxes are
tested

m  Sometimes a hierarchy
of BB’s is used

m The tighter the BB — the
less “false alarms” we
have
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Principal Component Analysis

ing

local frame fitti

Application

2/24/2010
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Principal Component Analysis

Application: estimate normals
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Principal Component Analysis

Application: shape alignment

= 3D search engines (see
http://shape.cs.princeton.edu/)
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Principal Component Analysis

Application: shape alignment

" Can use PCA to find canonical axes and scale
for shape comparison

Translation Scale Rotation
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Notations

= Denote our data points by Xy, X,, ..., X, € R

n
" Centerof mass: | = L3 x, o
n
1=1

= Vectors from the centroid:

Yi=Xi—m




The origin of the new axes

" The origin of the new axes will be the center
of mass m

= |t can be shown that: g

n
m = argminZn:Hxi - m =52 X
X i=1




Variance of projected points

" Let us measure the variance (scatter) of our points in different directions
= Let’slook ataline L through the center of mass m, and project our points
X; onto it. The variance of the projected points X'; is:

Want to find directions
of maximal/minimal variance

var(L) =1 lIx -m|f
i=1

Original set Small variance Large variance
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Variance of projected points

» Given a direction Vv, |[v|| =1
* Line L through min the direction of vis L(t) = m + vt.

X = m[ = v, X, =My [{|v][ = (v, y;) = VTYi = YiTV




Variance of projected points

= So, n

var(L) = £ - —mf =42 (V) =4

2
YTVH .

_ %(YTV)T (YTV)z Lv'YY'v=v'Sv.

S=(ln)YY'

Scatter matrix

where Y is a dxn matrix with y, = X, —m as columns.

* The scatter matrix S measures the variance of our points



Directions of maximal variance

» So, we have: var(L)=v'Sv
" Theorem:
et f:{veR? | |v]|=1} >R,
f(v)= v'Sv (and S is a symmetric matrix).

Then, the extrema of f are attained at the eigenvectors of S.

= So, eigenvectors of S are directions of maximal/minimal
variance!



Directions of maximal variance

Find extrema of V' Sv
side condition v'v=1
Lagrange Multipliers: Vf + AVg =0

V(V'SV)+ AV(v'v-1)=0
Sv+Av =0
Sv=-1v

This is the definition of an eigenvector of S



Summary so far

We take the centered data vectors y,, Y, ..., ¥, € R
Construct the scatter matrix S=YY'

S measures the variance of the data points
Eigenvectors of S are directions of maximal variance.



Scatter matrix eigendecomposition

" Sis symmetric
—> S has eigendecomposition: S = VvDV'

4 A

The eigenvectors form
orthogonal basis



Principal components

= Eigenvectors that correspond to big
eigenvalues are the directions in which the

data has strong components (= large
variance).

" |f the eigenvalues are more or less the same —
there is no preferable direction.

= Note: the eigenvalues are always non-
negative. Think why...



Principal components

"= There’s no preferable
direction

= Slooks like this:

2’ T
V V
A

= Any vectoris an
eigenvector
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There’s a clear preferable
direction

S looks like this:

A
V A

u

L is close to zero, much
smaller than A
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How to use what we got

Oriented bounding box

" For finding oriented bounding box or
alignment — we simply compute the bounding
box with respect to the axes defined by the
eigenvectors. The origin is at the centroid m.
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How to use what we got

Local frame/normal estimation

= Sort the eigenvectors by ascending
eigenvalues

" The eigenvector with A =0 is the normal

normal
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How to use what we got

Dimensionality reduction / approximation

y y
® (o)
@®
P
..,.'
(o)
> 2 >
X X
This line segment approximates the The projected data set approximates

original data set the original data set
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How to use what we got

Dimensionality reduction / approximation

= Each image is 64x64
= \ector in Ro%4

= Butin fact all the
faces live on a low-
dimensional subspace

= Can find meaningful axes
with PCA and other

methods
= face pose
= expression
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How to use what we got

Dimensionality reduction / approximation

" |n general dimension d, the eigenvalues are
sorted in descending order:
A =>A,> > A
" The eigenvectors are sorted accordingly.

= To get an approximation of dimension d< d,
we take the d”’ first eigenvectors and look at
the subspace they span (d’=1isaline,d’'=2
is a plane...)



How to use what we got

Dimensionality reduction / approximation

" To get an approximating set, we project the
original data points onto the chosen subspace:

Projection:

X'=m+ Vv, + oV, +...+ oy vy 0V ...+ 0V

— /
—~




Technical remarks:

= 1.>0,1=1,...,d (such matrices are called positive semi-
definite). So we can indeed sort by the magnitude of 4,
* Theorem: 4,20 < (Sv,v)>0 Vv
Proof: S =VDV' = (SV, V) = v'Sv=v'VDV'v =
= (VTV)T D (VTV) =w'Dw-=
= AW, + LW, + L AW,

Therefore, 4,20 < (Sv,v)>0 Vv



