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Course Topics

= Shape acquisition

» Scanning/imaging

® Reconstruction

T
et L

ﬁ"% i
£

Olga Sorkine, Courant Institute, NYU 2/24/2010 2



Data Acquisition

Pipeline
Scanning: Registration: Stitching/reconstruction: Postprocess:
results in — bring all range — Integration of scans into > | * Topological and
range images images to one a single mesh Beometric
coordinate filtering
* Remeshing
system .
* Compression
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Surface reconstruction

" How to create a single mesh?

= Surface topology?
= Smoothness?
= How to connect the dots?
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Continuous reconstruction
2D Example

" Given a set of scattered (scalar) data points /,
at positions p; in a 2D parameter domain

®" The principles are applicable to arbitrary
parameter domain dimensions
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Continuous reconstruction
2D Example

" Goal: approximate function f fromf, p,

fi:f(pi) P:

\TT‘P
Pk
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Radial Basis Functions
1D Example

" Independent of parameter domain dimension

" Function f represented as
" Weighted sum of radial functions r
" |[n the parameter domain positions p,

f(X) = Zl: W, ’”(‘
I

>

p, —x|)




Radial Basis Functions

Computing the coefficients

= Set

to

pi_ij)

fj:ZWi’”(

compute the weights/coefficients w,

* Linear system of equations

(
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Global Approximation

= Given pieRd,fl. cR, 1=0

’..

" P, — parameter domain positions

= f.—function values

= Compute polynomial curve f(p,)= f,, i=0,...,n

@ @

A

f(x)=a+bx+cx’
-
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Least Squares Approximation

" Error functional
T = 2r0) -1
" Polynomial basis of ldegree m in d dimensions
f(x)=b(x)"c
b(x) =[b,(x),.... 5, ()]  c=lep ]

b(X) = :1,x,y,x2,xy,y2]r
" Previous 1D quadratic Example 7 (x) =c, +c,x+c,x°
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Least Squares Approximation

= Solve for c by taking (partial) derivatives of J, ¢
w.r.t. the unknowns and setting to zero

QJLS/@C]:O: 2217 X; C ff]—

3.&5/8(?2 —0: 22172 X;) Fe - j,] =

dJrs/dci =0: 2217;\ X; )| Ie — fil =



Least Squares Approximation

® |n matrix-vector notation

Z2b Xli C f;] _
2Z[b(X:)b( ;) C—b(xf)ﬁ]
Zb(x;)b(x,,-)% =Y b(xi)f

» Solve for ¢ = [Zb(x;)b(x,-)T]_l Zb(x;)ﬁ

]

|
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Least Squares Approximation

2D quadratic example

" Error functional and partial derivatives

f(X)=a+bu+byv+c u’+c uv+c, v’

(mb'Q)Z(f(“ )—fl) —(mbllg)Z(a+b u+bv.+c u +c uv.+c, v —f)

uv i
I

ﬁZ(f(ui,v,.)—fi)z/é’a:ZZ(aeruui+bvvl.+cuuui2+c uv, +c, v —f\ 0

l

ﬁZ(f(ul.,vi)—fl.)z/ﬁcw =ZZV (a+bu +byv, +c, u’+c, uv,+c, v —fl):O



" Linear system of equations
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Least Squares Approximation

2D quadratic example
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Least Squares Approximation

Results
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Weighted Least Squares

" Principle: local approximation at X by
weighting the squared errors based on
proximity in the parameter domain

29(1

P _XH)

min 3|/ ()~ /,




Weighted Least Squares

Weighting functions

PE
" Gaussian Od)=e”™ A
" /1 is a smoothing parameter B \

———————

= Wendland function
O(d)=1—d /! h)*(4d | h+1)
= Defined in [0, 4] and
6(0) =1, 8(h)=0, 6'(h)=0 and 8"(h) =0

= Singular function
g o(d) = 1

d*+¢&°

" For small ¢, weights large near d=0 (interpolation)



Moving Least Squares

Parametric 1D example

" Principle: “construct” a global function from
infinitely many locally weighted functions

2‘9(1 P _XH)

£09= /6 min> [ (p)-

=<




Moving Least Squares

Parametric 1D example

= The infinite set

0= min > [ 7)1 ol

is continuously differentiable if and only if 8 is
continuously differentiable

P _XH)

A

[~




LS, MLS and Weight Functions

Linear polynomial fit

O
0

" Global least squares

O

= MLS with approximating _{o\/\

weight function

_R
1
= MLS with (near) o) = -_
singular weight function \\N

H(d):e i




Implicit Surface Reconstruction



Distance Field Reconstruction

2D example

= |dea: construct a distance
field on the points @

" Implicit function ®
f(pi): 0 o— 0 @

for the points p,
" Trivial solution f =0 ®

= Requires additional ®
constraints



Distance Field Reconstruction
[Hoppe et al. 1992]

® | inear distance function
per point

6/'
" Direction is defined by
surface normal PR
f(x)=n,-(x-p,)
= Distance in space is the g —
minimum of all local o “_
distance functions AN

f(x)= min f(x)= minn, (x-p,)



Distance Field Reconstruction

Inside + outside point constraints

= Additional data to define

inside and outside T e

" Basicidea [Turk and + © -
O’Brien 1999] - - -
I _|_

" |nsert additional value , o ~ -
constraints manually e

= These constraints can be
added as soft constraints
with low(er) weight



Distance Field Reconstruction

Inside + outside point constraints

" This information can also N J
be obtained from N hN T
surface normals Ne
f(p;+an,)=a +—e o
- Some acquis?tion L
devices provide . i
normals £ o .
A
" |f not, they must be I 1

locally approximated



Distance Field Reconstruction

Inside + outside point constraints

" This information can also
be obtained from vy
surface normals "

f(pi T Omi): 21

= Some acquisition
devices provide
normals

" |f not, they must be
locally approximated
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Distance Field Reconstruction
Radial basis functions (RBFs)

= Similar to parametric case

= Given points and normals p;, n.
construct a function with

f(pi): 0, f(pi -I-Otnl.): o

= Possible solution: Gaussian RBFs

)= T e b
s

>




Distance Field Reconstruction
Moving least squares (MLS)

= Given points and normals p;, N,
construct a function with

f(pi): 0, f(pi T ni): o
using the moving least squares technique

£09= £ min 3£~ " 6llp, x|




MLS Distance Field

1D example
" One dimensional Implicit function
)
X
® b g |, —— Approximation

« Constraint — AX) Weighting




MLS Distance Field

1D slice of a 2D height field
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MLS Distance Field

1D example

= Adding inside + outside constraints
AX)

® b g |, —— Approximation
« Constraint — AX) Weighting




MLS Distance Field

1D example

" Linear polynomial fit (uniform weights)
AX)

I

® b g |, —— Approximation
« Constraint — AX) Weighting
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MLS Distance Field

1D example

" Linear polynomial fit (Gaussian weights)
AX)

N\

® b g |, —— Approximation
« Constraint — AX) Weighting
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MLS Distance Field

1D example

" Linear polynomial fit (Gaussian weights)

X
I
i /
|
| >~ fo (pz) _in
|
X
. | o

|

® D — N, ——— Approximation

« Constraint — AX) Weighting
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MLS Distance Field

1D example

" Quadratic polynomial fit (Gaussian weights)
)

® b g |, —— Approximation
« Constraint — AX) Weighting

Olga Sorkine, Courant Institute, NYU 2/24/2010 35




MLS Distance Field

1D example

" Constant polynomial fit (Gaussian weights)
)

e reee————————— X
o | o
|
® P ) —— Approximation
« Constraint — AX) Weighting
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MLS Distance Field

1D example

" Constant polynomial fit (Gaussian weights)

-(X)
I
i
I
I
I
® ‘ ®
‘i—*‘h—;_> X
[ ) I Y
|
® Db e L ——— Approximation
« Constraint — AX) Weighting
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MLS Distance Field

1D example

= MLS approximation results
AX)

Surface points

® b g |, —— Approximation
« Constraint — AX) Weighting




MLS Distance Field

1D example

= Discrete evaluation with marching cubes (3D)
)

+ + +

I I | I I I | |
| | I I I I I |
I | + | - | - | - I | + |
| | I I : : I :
| | | ¢ |

I | | o | . | | |
I I I I | I

IR

® b g |, —— Approximation
« Constraint — AX) Weighting




MLS Distance Field

1D example

= Discrete evaluation with marching cubes (3D)
)

: Surface points
+ - +
I

;o L

® b g |, —— Approximation
« Constraint — AX) Weighting
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MLS Distance Field

1D example

= Discrete evaluation with marching cubes (3D)

-f(X) Surface points
| linear interpolatibn

I I
I I |
|+ | - |+
| | |
I | I
I . I
I I

® b g |, —— Approximation
« Constraint — AX) Weighting




MLS Distance Field

2D lllustration




MLS Distance Field

Extensions

" Point constraints vs. true normal constraints

Y 0 VAN ot W N

g

= Details: shen, C., 0'Brien, J. F., Shewchuk J. R., "Interpolating and

Approximating Implicit Surfaces from Polygon Soup." Proceedings of ACM
SIGGRAPH 2004, Los Angeles, California, August 8-12.



Tessellation of implicit surfaces



Tessellation

= Want to approximate an implicit surface with a mesh

= For rendering, further processing

= Can‘t explicitly compute all the roots
= |nfinite amount (the whole surface)

= The expression of the implicit function may be complicated

= Solution: find approximate roots by trapping the implicit
surface in a grid (lattice)

Olga Sorkine, Courant Institute, NYU 2/24/2010
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Tessellation
2D grid

= 16 different configurations in 2D

= 4 equivalence classes (up to rotational and reflection
symmetry + complement)

sisisgs
spsjsgs



Tessellation
2D grid

= 16 different configurations in 2D

= 4 equivalence classes (up to rotational and reflection
symmetry + complement)

@
IZIKIIIIEl

case 1 case 2 case 3 case 4



Tessellation

2D grid, consistency

= Case 4 is ambiguious:

= Always pick consistently to avoid problems with the resulting
mesh
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Tessellation
2D triangle grid

= No ambiguity if we have triangles instead of squares
= However, it is still unknown what the true surface is!

Olga Sorkine, Courant Institute, NYU 2/24/2010 49



Tessellation
3D — Marching Cubes

Layer k+1

/

L

Layer k /

Olga Sorkine, Courant Institute, NYU

2/24/2010

50



Tessellation
3D — Marching Cubes

= Marching Cubes (Lorensen and Cline 1987)

1.

2.

Load 4 layers of the grid
iInto memory

Create a cube whose /ﬁ A
vertices lie on the two Layerker T 1Y
middle layers

Classify the vertices of LaVe-/K
the cube according to the

implicit function (inside,
outside or on the surface)




Tessellation
3D — Marching Cubes

4. Compute case index. We have 28= 256 cases (0/1 for each of
the eight vertices) — can store as 8 bit (1 byte) index.

\YJ V
8 7
e
> V4
€s

v v - n
- J '
» 0. O
ell 12
X \ w10

index = [Vy |V, [vs]va|vs|ve|v,|vg] index = |0]o]1]o]o]ofo]1][=33
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Tessellation

3D — configurations

= We have 14 equivalence classes (by rotation, reflection and

complement)
/ / ;7‘ /

= .
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Tessellation
3D — Marching Cubes

5. Using the case index, retrieve the connectivity in the look-up

table

= Example: the entry for index 33 in the look-up table indicates
that the cut edges are e;; e,; e.; e; e5and e, ; the output
triangles are (ey; ey; €,4) and (eg; e,q; ).

Z

index =|0]of1]o]o]o]o|1]=33




Tessellation
3D — Marching Cubes

6. Compute the position of the cut vertices by linear
interpolation:

V.=aVv, +(1-a)v, :
__Jv,)
f(vy)=1(v,)

7. Compute the vertex normals

Schon behandelte Wirfel

Richtung in die
marschiert wird

8. Move to the next cube

Aktueller Wiarfel

Neu zu behandelnde Kante

Olga Sorkine, Courant Institute, NYU 2/24/2010
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Tessellation

3D — configurations, consistency

" Have to make consistent choices for neighboring
cubes

" Prevent “holes” in the triangulation

3 q/ ) Ty
) xl i
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Tessellation
Grid-Snapping

* Problems with short triangle edges

= When the surface intersects the cube close to a corner, the resulting
tiny triangle doesn‘t contribute much area to the mesh

= When the intersection is close to an edge of the cube, we get skinny
triangles (bad aspect ratio)
*" Triangles with short edges waste resources but don‘t
contribute to the surface mesh representation




Tessellation
Grid-Snapping
= Solution: threshold the distances between the created

vertices and the cube corners

= When the distance is smaller than d; ., we snap the vertex to
the cube corner

= |f more than one vertex of a triangle is snapped to the same
point, we discard that triangle altogether

i P B
ot . I' g | | EPRERL
y 1\ . lx’) v \ {I_IF{T:: T‘J-C-\.I.r i
\ L1 LR . - wa T W Pl WL T AT
'.-'JJ' f ('_,-' ¥ k'.i'"i ‘:‘» _:...J" -J_l'\. EUI ;I f g li H::
f. 1{ ] ;Ig: I & Ll-j qx'/"f i _.’It 4 :
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Tessellation

Grid-Snapping

= With Grid-Snapping one can obtain significant reduction of

space consumption

Parameter |0 0,1 0,2 0,3 0,4 0,46 |0,495
Vertices 1446 [ 1398 | 1254 1182 |1074 (830 830
Reduction |0 3,3 13,3 (18,3 |25,7 (42,6 |42,6




Tessellation

Sharp corners and sharp edges

= (Kobbelt et al. 2001):

®» Evaluate the normals

" When they significantly differ, create additional

vertex

Y
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