G22.3033-008, Spring 2010 Geometric Modeling

Shape Representations

Course topics

- Shape representation
 - Points
 - Parametric surfaces
 - Implicits

1/21/2010

Olga Sorkine, NYU, Courant Institute

Course topics

- Shape representation
 - Polygonal meshes
 - Subdivision surfaces

Shape representation

- Where does the shape come from?
- Modeling "by hand":
 - Higher-level representations, amendable to modification, control
 - Parametric surfaces, subdivision surfaces, implicits

- Acquired real-world objects:
 - Discrete sampling
 - Points, meshes

Shape acquisition

Sampling of real world objects

- Standard 3D data from a variety of sources
 - Often results from scanners
 - Potentially noisy

- Depth imaging (e.g. by triangulation
- Registration of multiple images

- points = unordered set of 3-tuples
- Often converted to other reps
 - Meshes, implicits, parametric surfaces
 - Easier to process, edit and/or render

To figure out neighborhoods

Neighborhood information

Why do we need neighbors?

- Need sub-linear implementations of
 - k-nearest neighbors to point x
 - In radius search $\|\mathbf{p}_i \mathbf{x}\| < \varepsilon$

Spatial Data Structures

Commonly used for point processing

- Regular uniform 3D lattice
 - Simple point insertion by coordinate discretization
 - Simple proximity queries by searching neighboring cells

- Determining lattice parameters
 (i.e. cell dimensions) is nontrivial
- Generally unbalanced, i.e. many empty cells

Spatial Data Structures

Commonly used for point processing

Octree

- Splits each cell into 8 equal cells
- Adaptive, i.e. only splits when too many points in cell
- Proximity search by (recursive) tree traversal and distance to neighboring cells
- Tree might not be balanced

Spatial Data Structures

Commonly used for point processing

Kd-Tree

- Each cell is individually split along the median into two cells
- Same amount of points in cells
- Perfectly balanced tree
- Proximity search similar to the recursive search in an Octree
- More data storage required for inhomogeneous cell dimensions

1/21/2010

Parametric Curves and Surfaces

Smooth Shape Representation

Parametric Curves and Surfaces

Curves are 1-dimensional objects

$$S(t) = \mathbf{x}_t$$

■ Planar curve: S(t) = (x(t), y(t))

■ Space curve: S(t) = (x(t), y(t), z(t))

Parametric Curves and Surfaces

Surfaces are 2-dimensional parameterizations

$$S(u,v) = (x(u,v), y(u,v), z(u,v))$$

Parametric Curves

Examples

Explicit curve/circle in 2D

$$\mathbf{p}: \mathbf{R} \to \mathbf{R}^2$$

 $t \mapsto \mathbf{p}(\mathbf{t}) = (x(t), y(t))$

$$\mathbf{p}(t) = \mathbf{r} \cdot (\cos(t), \sin(t))$$
$$t \in [0, 2\pi)$$

Parametric Curves and Surfaces

Examples

Bezier curves

$$S(t) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i}^{n}(t)$$

Curve and control polygon

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Po P₂ P₂

Basis functions

Parametric Surfaces

Examples

Sphere in 3D

$$S: \mathbb{R}^2 \to \mathbb{R}^d, d = 1, 2, 3, \dots$$

$$S(u,v) = r \cdot (\cos(u)\cos(v), \sin(u)\cos(v), \sin(v))$$
$$(u,v) \in [0, 2\pi) \times [-\pi/2, \pi/2]$$

Parametric Surfaces

Tensor product surfaces

Curve swept by another curve

$$S(u,v) = \sum_{i,j} \mathbf{p}_{ij} B_i(u) B_j(v)$$

Bezier surface:

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{ij} B_{i}^{m}(u) B_{j}^{n}(v)$$

Parametric Curves and Surfaces

- Advantages
 - Easy to generate points on the curve/surface
 - Separates x/y/z components

- Disadvantages
 - Hard to determine inside/outside
 - Hard to determine if a point is on the curve/surface

Illustration

Definition

■ Definition
$$g: \mathbb{R}^3 \to \mathbb{R}$$

$$K = g^{-1}(0) = \{ \mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0 \}$$

Space partitioning

$$\{\mathbf{p} \in \mathbf{R}^3 : g(\mathbf{p}) < 0\}$$
 Inside

$$\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0\}$$
 Curve/Surface

$$\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) > 0\}$$
 Outside

Examples

Implicit circle and sphere

$$f: R^2 \to R$$
$$K = \{ \mathbf{p} \in R^2 : f(\mathbf{p}) = 0 \}$$

$$f(x,y) = x^2 + y^2 - r^2$$

$$g: R^3 \to R$$

$$K = \left\{ \mathbf{p} \in R^3 : g(\mathbf{p}) = 0 \right\}$$

$$g(x,y,z) = x^2 + y^2 + z^2 - r^2$$

Gradient

The normal vector to the surface (curve) is given by the gradient of the (scalar) implicit function

$$\nabla g(x,y,z) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)^{1}$$

Example

$$g(x, y, z) = x^{2} + y^{2} + z^{2} - r^{2}$$
$$\nabla g(x, y, z) = (2x, 2y, 2z)^{T}$$

$$\nabla g(x,y,z) = (2,2,0)^{\mathrm{T}}$$

Smooth set operations

Standard operations: union and intersection

$$\bigcup_{i} g_{i}(\mathbf{p}) = \min g_{i}(\mathbf{p})$$
$$\bigcap_{i} g_{i}(\mathbf{p}) = \max g_{i}(\mathbf{p})$$

$$\bigcap_{i} g_{i}(\mathbf{p}) = \max g_{i}(\mathbf{p})$$

- In many cases, smooth blending is desired
 - Pasko and Savchenko [1994]

$$g \cup f = \frac{1}{1+\alpha} \left(g + f - \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$
$$g \cap f = \frac{1}{1+\alpha} \left(g + f + \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$

Smooth set operations

Examples

• For $\alpha = 1$, this is equivalent to min and max

$$\lim_{\alpha \to 1} g \cup f = \frac{1}{2} \left(g + f - \sqrt{(g - f)^2} \right) = \frac{g + f}{2} - \frac{|g - f|}{2} = \min(g, f)$$

$$\lim_{\alpha \to 1} g \cap f = \frac{1}{2} \left(g + f + \sqrt{(g - f)^2} \right) = \frac{g + f}{2} + \frac{|g - f|}{2} = \max(g, f)$$

Blobs

- Suggested by Blinn [1982]
 - Defined implicitly by a potential function around a point \mathbf{p}_i : $g_i(\mathbf{p}) = a_i e^{-b_i \|\mathbf{p} \mathbf{p}_i\|^2}$
 - Set operations by simple addition/subtraction

Advantages

- Easy to determine inside/outside
- Easy to determine if a point is on the curve/surface

Disadvantages

- Hard to generate points on the curve/surface
- Does not lend itself to (real-time) rendering

Polygonal Meshes

Polygonal Meshes

- Boundary representations of objects
 - Surfaces, polyhedrons

How are these objects stored?

Geometric graph

- A graph is a pair G=(V, E)
 - V is a set of n distinct vertices $\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_{n-1}$
 - E is a set of edges $(\mathbf{v}_i, \mathbf{v}_j)$
- If $V \subset \mathbb{R}^d$ with $d \ge 2$, then G=(V, E) is a *geometric graph*
- The degree or valence of a vertex describes the number of edges incident to this vertex

Polygonal mesh

- A finite set M of closed, simple polygons Q_i is a polygonal mesh if:
 - The intersection of enclosed regions of any two polygons in M is empty
 - The intersection of two polygons in M is either empty, a vertex $v \in V$ or an edge $e \in E$

Every edge belongs to at least one polygon

Polygonal mesh

- The set of all edges that belong to only one polygon is termed the boundary of the polygonal mesh, and is either empty or forms closed loops
- If the set of edges that belong to only one polygon is empty, then the polygonal mesh is closed
- The set of all vertices and edges in a polygonal mesh form a graph

Orientability

 A polygonal mesh is orientable, if the incident faces to every edge can be equally oriented

If the faces are equally oriented for every edge,

the mesh is oriented

Notes

- Every non-orientable closed mesh embedded in R³ intersects itself
- The surface of a polyhedron is always orientable

Klein bottle

Möbius strip

Data structures for meshes

Space requirements

Coordinates/attributes

$3 \times 16 + k \text{ bits/vertex}$

 vertex 1
 x
 y
 z
 c

 vertex 2
 x
 y
 z
 c

 vertex 3
 x
 y
 z
 c

Connectivity

3 x log₂V bits/triangle

triangle 1	1	2	3
triangle 2	3	2	4
triangle 3	4	2	5
triangle 4	7	5	6
triangle 5	6	5	8

Data structures for meshes

Half-edge data structure

Half-edge has:

- Pointer to twin h-e
- Pointer to origin vertex
- Pointer to next h-e
- Pointer to previous h-e
- Pointer to incident face
- Vertex has:
 - Pointer to one emanating h-e
- Face has:
 - Pointer to one of its enclosing h-e

Data structures for meshes

Half-edge data structure

Vertexlist

V		he		
0	0.0	0.0	0.0	0
1	1.0	0.0	0.0	1
2	1.0	1.0	0.0	2
3	0.0	1.0	0.0	3
4	0.0	0.0	1.0	4
5	1.0	0.0	1.0	9
6	1.0	1.0	1.0	13
7	0.0	1.0	1.0	16

Face

f	e
0	e0
1	e8
2	e4
3	e16
4	e12
5	e20

Half-Edgelist

he	vstart	next	prev	opp	he	vstart	next	prev	opp
0	0	1	3	6	12	2	13	15	10
1	1	2	0	11	13	6	14	12	22
2	2	3	1	15	14	7	15	13	19
3	3	0	2	18	15	3	12	14	2
4	4	5	7	20	16	7	17	19	21
5	5	6	4	8	17	4	18	16	7
6	1	7	5	0	18	0	19	17	3
7	0	4	6	17	19	3	16	18	14
8	1	9	11	5	20	5	21	23	4
9	5	10	8	23	21	4	22	20	16
10	6	11	9	12	22	7	23	21	13
11	2	8	10	1	23	6	20	22	9

Next week

- More about shape representations
- Parametric representations
 - Bezier curves
 - Splines
- First Homework Assignment (warmup)

Thanks

(and please register if you want to take the course)