G22.3033-008, Spring 2010
Geometric Modeling

Linear Solvers

Motivation

" |aplace-type systems

Olga Sorkine, Courant Institute 4/14/2010 2

Linear Solvers

Motivation

fix
edit

Olga Sorkine, Courant Institute 4/14/2010 3

Linear Solvers

Motivation
[| |
[1] e |

K
X =arg min(HLx—éiXH2 +> 1% —ck\zj
X s=1

... and the same for y and z

Olga Sorkine, Courant Institute 4/14/2010 4

Linear Solvers

Motivation

Lx = ¢

Normal Equations:

L'Lx -Le

X = (iTE) Tt

Olga Sorkine, Courant Institute 4/14/2010 5

Linear Systems

" Matrix is often fixed, rhs changes

=H
]]
i'F %

L ¢

Olga Sorkine, Courant Institute 4/14/2010 6

Iterative Solvers

General approach: try to minimize some
energy function E(x)

Linear case: E(x) = ||Ax — b||2
Start from a guess X,
Ilteratively improve: x;,, = g(x;)

Convergence: E(x) sufficiently small

Descent Search

General algorithm

= Input: initial guess x,eR"
" Step0: set 1=0

» Step 1: if E(x) < € stop,
else compute search direction h,e R"

= Step 2: compute the step size A,

A eargmin E(x;+A-h;) < Line search

A>0

= Step 3: setx;,;=x;+ A;h,, gotoStep1

Olga Sorkine, Courant Institute 4/14/2010 8

Descent Search

Quadratic energy (linear problem)

= Input: initial guess x,eR"
" Step0: set 1=0

= Step 1: if ||Ax—b||2 < g stop,
else compute search direction h,e R

= Step 2: compute the step size A,

< } Line search

A eargmin |[A(x; +A-h;)—b
A>0

= Step 3: setx;,;=x;+ A;h,, gotoStep1

Olga Sorkine, Courant Institute 4/14/2010 9

Search Direction h,

Steepest descent

= Gradient is the direction in which the function
grows the fastest

E

h; = -VE(x;) / [[VE(x)|

Olga Sorkine, Courant Institute 4/14/2010 10

Search Direction h,

Steepest descent

= Gradient is the direction in which the function
grows the fastest

E

L D R R SR

VE(x;) =2(A'Ax; —A'b)

Olga Sorkine, Courant Institute 4/14/2010 11

Search Direction h,

Steepest descent

= Gradient is the direction in which the function
grows the fastest

Olga Sorkine, Courant Institute 4/14/2010 12

Search Direction h,

Steepest descent

® Unlucky case: we pick the same direction
many times

/ T T

>

\

x0

Olga Sorkine, Courant Institute 4/14/2010 13

Search Direction h,

Steepest descent

®" Unlucky case: we pick the same direction
many times

i

|
X
START

Search Direction h,

Conjugate gradient

" Choose n linearly independent directions
= — Converge in N steps

- — 4}

//*

N
N

Search Direction h,

Conjugate gradient

" The directions hy, h,, ..., h, are chosen to be
mutually “conjugate”, i.e., orthogonal w.r.t.
the inner product defined by A

(Ah;,h;)=h{Ah, =0

Multigrid Solvers

= Coarsen the matrix and the rhs

= Solve on the coarse level, then interpolate to
the finer level

" On meshes: geometric multigrid, i.e. coarsen
the mesh by edge collapse operations

Mo
My
Ms

-M 3

Iterative Solvers

Discussion

Efficient in memory

" Only store the matrix A

Not much gain when the rhs changes

= Still need to iterate to find the solution, even
though A is the same

Too slow for interactive applications
Problem-dependent parameters

Ax=Db
LUx=Db

Olga Sorkine, Courant Institute

Matrix Factorization

LU decomposition

4/14/2010 19

A

Ax=Db
L(Ux)=Db

Olga Sorkine, Courant Institute

Matrix Factorization

LU decomposition

4/14/2010 20

Matrix Factorization

LU decomposition

AX = b Ly — b) This is backsubstitution.

I::) - If L, U are sparse it is very
L(UX) = b UX =Yy fast. The hard work is

computing L and U

Olga Sorkine, Courant Institute 4/14/2010 21

Matrix Factorization

LU decomposition

This is backsubstitution.

_IfL, Uare sparse it is very
fast. The hard work is
| computing Land U

Olga Sorkine, Courant Institute 4/14/2010 22

A

Olga Sorkine, Courant Institute

Matrix Factorization

Cholesky decomposition

Cholesky factor exists if A is positive definite. It
is even better than LU because we save
memory.

4/14/2010 23

Cholesky Decomposition

A=LL'

" Ais symmetric positive definite (SPD):
V x20, (Ax, x)>0 <« all A’s eigenvalues >0

AN =

Olga Sorkine, Courant Institute 4/14/2010 24

Dense Cholesky Factorization

P DTN ‘ - il g e . TR
N G TR eeltare o UL TR
I A W TR P S PR A S P I ALY
AT,
— d -y
— - ".".\.
i II_ "
b d
i

500x500 matrix
3500 nonzeros |

l Cholesky Factorization

36k nonzeros

Olga Sorkine, Courant Institute 4/14/2010 25

Sparse Cholesky Factorization

T
A=LL
500500 matrix|
3500 nonzeros [

Reordering
PAP

reverse Cuthill-

McKee algorithm

l Cholesky Factorization

AR,
e s
LR
N
o

36k nonzeros

Olga Sorkine, Courant Institute 4/14/2010 26

Sparse Cholesky Factorization

T
A=LL
500500 matrix|
3500 nonzeros [

Reordering
PAP

reverse Cuthill-

McKee algorithm

l Cholesky Factorization l

36k nonzeros

14k nonzeros

Olga Sorkine, Courant Institute 4/14/2010 27

Sparse Cholesky Factorization

T

A=LL | ..

500x500 matrix . Reordering

3500 nonzeros #
. PAP

nested dissection
(parallelizable)

l Cholesky Factorlzatlon

L

36k nonzeros

Olga Sorkine, Courant Institute 4/14/2010 28

Sparse Cholesky Factorization

T
A=LL |
500x500 matrix|:
3500 nonzeros

Reordering

#
PAP

nested dissection
(parallelizable)

l Cholesky Factorization l
|

7k nonzeros

L

36k nonzeros

>
)
[
:.'n?‘-'
Y
T
3
-',;
L
0
i .*t' A
G BELACESEL Lt i1 1k HHH

Olga Sorkine, Courant Institute 4/14/2010 29

Direct Solvers

Discussion

" Highly accurate
" Manipulate matrix structure
" No iterations, everything is closed-form

= Easy to use

= Off-the-shelf library, no parameters

= |f A stays fixed, changing rhs (b) is cheap

= Just need to back-substitute (factor precomputed)

Direct Solvers

Discussion

" High memory cost

" Need to store the factor, which is typically denser
than the matrix A

" |f the matrix A changes, need to re-compute
the factor (expensive)

TAUCS tutorial

= TAUCS: a library of sparse linear solvers
" Has both iterative and direct solvers

" Direct (Cholesky and LU) use reordering and are
very fast

" | provide a wrapper for TAUCS on the final
project homepage

TAUCS tutorial

= Basic operations:
" Define a sparse matrix structure
= Fill the matrix with its nonzero values (i, j, v)
= Factor A'A
" Provide an rhs and solve

TAUCS tutorial

= Basic operations:

" Define a sparse matrix structure

InitTaucslinterface();

1dA;

= CreateMatrix(4, 3);
(AN
N\

Hrows #Hcols

nt
1dA

TAUCS tutorial

= Basic operations:

= Fill the matrix A with its nonzero values (i, j, v)

SetMatrixeEntry(idA, 1, jJ, V);

TAUCS tutorial

= Basic operations:

= Fill the matrix A with its nonzero values (i, j, v)

SetMatrixEntry(idA, 1, §J, V);
1

matrix ID, obtained in CreateMatrix

TAUCS tutorial

= Basic operations:

= Fill the matrix A with its nonzero values (i, j, v)

SetMatrixeEntry(idA, 1, jJ, V);
1

|

row index i, column index j,
zero-based

TAUCS tutorial

= Basic operations:

= Fill the matrix A with its nonzero values (i, j, v)

SetMatrixeEntry(idA, 1, jJ, V);

T
|

value of matrix entry ij
for instance, -w;;

TAUCS tutorial

= Basic operations:

= Factor the matrix A'A

FactorATA(1dA);

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

taucsType b[4] = {3, 4, 5, 6};
taucsType Xx[3];

SolveATA(idA, b, x, 1);

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

taucsType b[4] = {3, 4, 5, 6};
taudsType X[3]:

SolveATA(idA, b, x, 1);

typedef for double

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

taucsType b[4] = {3, 4, 5, 6};
taucsType Xx[3];

SolveATA(idA, b, x, 1);

ID of the A matrix

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

taucsType b[4] = {3, 4, 5, 6};
taucsType Xx[3];

SolveATA(idA, b, x, 1);

rhs for the LS system Ax=Db

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

taucsType b[4] = {3, 4, 5, 6};
taucsType Xx[3];

SolveATA(idA, b, X, 1);

array for the solution

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

Ais 4x3

taucsType b[4] = {3, 4, 5, 6};
taucsType Xx[3];

SolveATA(idA, b, x, 1);

number of rhs’s

TAUCS tutorial

= Basic operations:

" Provide an rhs and solve

Alis 4x3

taucsType b2[8] = {3, 4, 5, 6, 7, 8, 9, 10};
taucsType xy[6];

SolveATA(idA, b2, xy, 2);

number of rhs’s

TAUCS tutorial

= |f the matrix A is square a priori, no need to
solve the LS system

" Then just use FactorA()and SolveAQ

Further Reading

= Efficient Linear System Solvers for Mesh
Processing
Mario Botsch, David Bommes, Leif Kobbelt

Invited paper at IMA Mathematics of Surfaces Xl, Lecture
Notes in Computer Science, Vol 3604, 2005, pp. 62-83.

http://cg.www.techfak.uni-bielefeld.de/publications/papers/
http://cg.www.techfak.uni-bielefeld.de/publications/papers/

	G22.3033-008, Spring 2010�Geometric Modeling
	Linear Solvers�Motivation
	Linear Solvers�Motivation
	Linear Solvers�Motivation
	Linear Solvers�Motivation
	Linear Systems
	Iterative Solvers
	Descent Search�General algorithm
	Descent Search�Quadratic energy (linear problem)
	Search Direction hi�Steepest descent
	Search Direction hi�Steepest descent
	Search Direction hi�Steepest descent
	Search Direction hi�Steepest descent
	Search Direction hi�Steepest descent
	Search Direction hi�Conjugate gradient
	Search Direction hi�Conjugate gradient
	Multigrid Solvers
	Iterative Solvers�Discussion
	Matrix Factorization�LU decomposition
	Matrix Factorization�LU decomposition
	Matrix Factorization�LU decomposition
	Matrix Factorization�LU decomposition
	Matrix Factorization�Cholesky decomposition
	Cholesky Decomposition
	Dense Cholesky Factorization
	Sparse Cholesky Factorization
	Sparse Cholesky Factorization
	Sparse Cholesky Factorization
	Sparse Cholesky Factorization
	Direct Solvers�Discussion
	Direct Solvers�Discussion
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	TAUCS tutorial
	Further Reading

