G22.3033-008, Spring 2010 Geometric Modeling

Splines, tensor product surfaces

Olga Sorkine, NYU, Courant Institute

2/10/2010

Bezier Curves P₁₂ P₁ Pc PA P_B $S(t) = \sum_{i=1}^{n} \mathbf{p}_{i} B_{i}^{n}(t)$ P₂₃ P₀₁ i=0Po Curve and control polygon Po $B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$ P1 **Basis functions**

 P_2

2/10/2010

Disadvantages of Bezier Curves

- More control points
 - Higher degree
- Global support of basis functions
 - No local control
- Today
 - Piecewise Bezier Curves
 - B-Splines
 - Rational curves
 - Tensor Product Surfaces and NURBS

- Smoothly connected curve segments
 - Segments p_0 to p_k
 - Each segment p_i is polynomial of degree n
 - Whole curve defined over parameter interval [0, k + 1] with a global parameter u
 - Each segment defined over interval $[u_i, u_{i+1}] = [i, i+1]$

- Spline curve
 - Maximally smooth connections between segments
 - $-C^{n-1} \text{ continuity} \\ \forall l \in \{0, \dots, n-1\} : \frac{\partial^l}{\partial t^l} p_{i-1}(i) = \frac{\partial^l}{\partial t^l} p_i(i), i \in \{1, \dots, k\}$
- Curve in $[u_0, u_2]$ from two Bezier segments
 - Control points b_0, \ldots, b_n in $[u_0, u_1]$
 - Control points c_0, \ldots, c_n in $[u_1, u_2]$
- *C^r* smoothness affects r+1 control points of each curve

- Example: cubic Bezier curves
- C⁰ continuity
 - 1 control point of each curve affected
 - Endpoints have to match

- Example: cubic Bezier curves
- C^1 continuity
 - 2 control points of each curve affected

- Example: cubic Bezier curves
- C^2 continuity
 - 3 control points of each curve affected
 - A-frame

- Example: cubic Bezier curves
- C^2 continuity
 - 3 control points of each curve affected
 - A-frame

- Example: cubic Bezier curves
- C^2 continuity
 - 3 control points of each curve affected
 - A-frame

- Connect cubic segments to C^2 spline
- Control points defined by continuity conditions
- Can be specified by helper points alone

- Properties
 - Bezier points of segments defined by helper points
 - Affine invariance
 - Convex hull
 - Maximal smoothness (here: C^2)
 - Local control?

- Disadvantages
 - Global support of basis functions

- Insertion of control points increases degree
- C^r continuity between segments restricts control polygon
- B(asis)-Spline bases overcome these problems
 - Local support
 - Continuity control
 - Each basis function has arbitrary support interval (knot vector)

B-Spline Bases

• B-Spline bases of different degree

B-Spline Bases

- B-Spline bases of different degree
- Recurrence relation

 $N_i^0(u) = \begin{cases} 1 & u \in [u_i, u_{i+1}] \end{cases}$

$$N_i^n(u) = (u - u_i) \frac{N_i^{n-1}(u)}{u_{i+n} - u_i} + (u_{i+n+1} - u) \frac{N_{i+1}^{n-1}(u)}{u_{i+n+1} - u_{i+1}}$$

• B-Spline basis of degree n has support over n+1 intervals of the knot vector

B-Spline Bases

- Properties
 - Partition of unity $\sum_{i=1}^{n} N_i^n(u) = 1$
 - $\operatorname{Positivity}_{N_i^n(u) \ge 0}^i$

Compact support

 $N_i^n(u) = 0, \; \forall u \notin [u_i, u_i + n + 1]$

- Continuity

 $N_i^n(u)$ is (n-1) continuously differentiable

B-Spline Curve

• B-Spline curve is build from piecewise polynomial bases $k = s(u) - \sum_{k=1}^{k} d \cdot N^n(u)$

$$s(u) = \sum_{i=0}^{\infty} d_i N_i^n(u)$$

- Coefficients d_i are called deBoor points
- Bases are piecewise, recursively defined polynomials
 - Sequence of knots $u_0 < u_1 < ...$
 - Endpoints of basis function intervals
 - Knot vector $\mathbf{u} = [u_0, ..., u_{k+n+1}]$

- Generalization of de Casteljau algorithm
- Evaluate curve s(u) at parameter value u
 - control point in k-th step

$$egin{aligned} &d_i^k = (1-lpha_i^k) d_{i-1}^{k-1} + lpha_i^k d_i^{k-1} & lpha_i^k = rac{u-u_i}{u_{i+n+1-k}-u_i} \ &d_i^0 = d_i, \ d_n^n = s(u) \end{aligned}$$

- De Casteljau is a special case of deBoor:
 - First and last knot have multiplicity of n+1

$$0 = u_0 = \dots = u_n < u_{n+1} = \dots = u_{2n+1}$$

with $u_{n+k} = 1 \ \forall k \in [1, \dots, n+1]$

- Basis functions have global support

$$d_i^k(u) = u d_i^{k-1}(u) + (1-u) d_{i+1}^{k-1}(u)$$

de Casteljau Algorithm

End Conditions

- Closed curves
 - Periodic repetition of de Boor points and knots

B-Spline Curves

- Knot vector
 - Insertion of new knots does not change degree but number of segments/basis functions $\mathbf{u} = [u_0, ..., u_{k+n+1}]$
 - Knots can have multiplicity, i.e., $u_j = ... = u_{j+p-1}$
- Continuity
 - Curve is globally C^{n-1} continuous
 - At points of multiplicity p, continuity drops to C^{n-p}
- Properties
 - Variation diminishing & local convex hull

B-Spline Curves

- Control the curve by
 - moving control points
 - moving knots
- How intuitive is it to move knots? ...

Rational Bezier Curves

Generalization of conic sections

$$\mathbf{x}(t) = \frac{w_0 \mathbf{b}_0 B_0^n(t) + \dots + w_n \mathbf{b}_n B_n^n(t)}{w_0 B_0^n(t) + \dots + w_n B_n^n(t)} \quad \mathbf{x}(t), \mathbf{b}_i \in \mathbb{R}^3$$

$$\mathbf{x}(t) = \sum_{i=0}^{n} \mathbf{b}_{i} \frac{\omega_{i} B_{i}^{n}(t)}{\sum_{i=0}^{n} \omega_{i} B_{i}^{n}(t)}$$

basis functions

Rational Bezier Curves

- Changing weights vs. moving control points
 - $-w_i$ shape parameters

Rational Bezier Curves

- deCasteljau algorithm: two alternatives
 - evaluate numerator and denominator separately
 - fast
 - unstable for large variations of weights
 - project intermediate points to hyperplane w=1

$$\mathbf{b}_{i}^{r}(t) = \frac{\sum_{j=0}^{r} w_{i+j} \mathbf{b}_{i+j} B_{j}^{r}(t)}{\sum_{j=0}^{r} w_{i+j} B_{j}^{r}(t)}$$

• slower, but more stable

Rational B-Spline Curves

NURBS (Non-Uniform Rational B-Splines)

 $\mathbf{x}(u) =$

- Defined by
 - Knot sequence
 - 2D/3D control polygon
 - Weight sequence

- Extension of deBoor algorithm
 - analogous to rational deCasteljau

Rational B-Spline Curves

- Properties
 - local control
 - convex hull?
 - variation diminishing?

only if weights are non-negative!

Freeform Surfaces

Extend curves to surfaces

Bilinear Interpolation

Hyperbolic paraboloid

$$\mathbf{x}(u,v) = \begin{bmatrix} 1-u & u \end{bmatrix} \begin{bmatrix} \mathbf{b}_{00} & \mathbf{b}_{01} \\ \mathbf{b}_{10} & \mathbf{b}_{11} \end{bmatrix} \begin{bmatrix} 1-v \\ v \end{bmatrix}$$

Isoparametric curve?

 \mathcal{U}

- Surface defined by curve moving through space
 - Curve may deform as it moves

- Surface defined by curve moving through space
 - Curve may deform as it moves
- Example: Bicubic Bezier Patch

- Surface defined by curve moving through space
 - Curve may deform as it moves
- Bezier curve

$$f(u) = \sum_{i=0}^{m} b_i B_i^m(u)$$

• Move control points on curves

$$f(u,v) = \sum_{i=0}^{m} b_i(v) B_i^m(u) \qquad b_i(v) = \sum_{j=0}^{n} b_{i,j} B_j^n(v)$$

$$f(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} b_{i,j} B_{i}^{m}(u) B_{j}^{n}(v)$$

• Bezier patch: $f: [0,1]^2 \to \mathbb{R}^3$

$$f(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} b_{i,j} B_{i}^{m}(u) B_{j}^{n}(v)$$

 $(m+1) \times (n+1)$ control points

- Bezier patch properties
 - Affine invariance
 - Convex hull
 - Boundary curves f(u,0), f(u,1), f(0,v), f(1,v)
 - Corner interpolation and normals
 - Smooth junctions
 - Derivatives

Repeated bilinear interpolation

Repeated bilinear interpolation

- 2D array of control points $\mathbf{b}_{i,j} = \mathbf{b}_{i,j}^{0,0}, \ 0 \le i,j \le n$
- Parameter (u,v)
- Recursive interpolation

$$egin{aligned} \mathbf{b}_{i,j}^{r,r} &= [1-u \quad u] \left[egin{aligned} \mathbf{b}_{i,j}^{r-1,r-1} & \mathbf{b}_{i,j+1}^{r-1,r-1} \ \mathbf{b}_{i+1,j+1}^{r-1,r-1} & \mathbf{b}_{i+1,j+1}^{r-1,r-1} \end{array}
ight] \left[egin{aligned} 1-v \ v \end{array}
ight] \ r &= 1,\ldots,n \ i,j &= 0,\ldots,n-r \end{aligned}$$

• Example (u,v)=(0.5, 0.5)

- If #control points differs in u- and v- direction
 - 1. compute $k = \min(m,n)$ 2D interpolation steps
 - 2. proceed with 1D deCasteljau

Derivatives

• Analogous to curve setting \rightarrow partial derivatives

Derivatives

• Analogous to curve setting \rightarrow partial derivatives

$$\frac{\partial}{\partial u}b^{m,n}(u,v) = \sum_{j=0}^{n} \left[\frac{\partial}{\partial u}\sum_{i=0}^{m}b_{i,j}B_{i}^{m}(u)\right]B_{j}^{n}(v)$$

Derivatives

• Analogous to curve setting \rightarrow partial derivatives

$$\frac{\partial}{\partial u}b^{m,n}(u,v) = \sum_{j=0}^{n} \left[\frac{\partial}{\partial u}\sum_{i=0}^{m} b_{i,j}B_{i}^{m}(u)\right]B_{j}^{n}(v)$$

Composite Surfaces

- C¹ continuous Bezier patch
 - control points must be collinear
 - same ratio

Composite Surfaces

- C¹ continuous Bezier patch
 - control points must be collinear
 - same ratio

Standard in most advanced modeling systems

Standard in most advanced modeling systems

$$\mathbf{x}(u,v) = \frac{\sum_{i} \sum_{j} w_{i,j} \mathbf{d}_{i,j} N_{i}^{m}(u) N_{j}^{n}(v)}{\sum_{i} \sum_{j} w_{i,j} N_{i}^{m}(u) N_{j}^{n}(v)}$$

projection of tensor product patches ≠ tensor product surface! (basis is not separable)

• Influence of weights

• Influence of weights

Influence of weights

 Influence of weights $W = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0.1 & 0.1 & 0.1 & 1 \\ 1 & 0.1 & 1 & 0.1 & 1 \\ 1 & 0.1 & 0.1 & 0.1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$

Raytracing Spline Surfaces

- Tessellate into triangles (deCasteljau, deBoor)
 - probably the fastest (with advanced data structures!)
 - large memory overhead

Raytracing Spline Surfaces

- Bezier clipping
 - reduces to root finding
 - exploits convex hull property for acceleration
 - many special cases, slow

Geometric Modeling

- Requirements on a surface representation
 - modeling flexibility
 - approximation power
 - ease of implementation
 - compact representation
 - efficient evaluation of surface and derivatives
 - fast spatial queries
 - ray-surface intersections, collision detection, insideoutside tests, etc.

Bezier- and B-Spline Surfaces

- Simple functions: Polynomials
 - efficient evaluation (no exp, sin, sqrt, etc.)
 - simple derivatives
- Intuitive editing
 - surface deforms naturally when moving control points
- Boundary constraints
 - difficult to model (and modify!) complex geometries

Additional Topics

• Trimming

Additional Topics

- Subdivision surfaces
 - smooth surface as the limit of a sequence of successive refinements

Thank you!