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Disadvantages of Bezier Curvessad a tages o e e Cu es
• More control points

– Higher degree

Global s pport of basis f nctions• Global support of basis functions
– No local control

• Today
Piecewise Bezier Curves– Piecewise Bezier Curves

– B-Splines
– Rational curves
– Tensor Product Surfaces and NURBS
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Piecewise Bezier CurvesPiecewise Bezier Curves 
• Smoothly connected curve segments

– Segments      to
– Each segment is polynomial of degreeEach segment     is polynomial of degree
– Whole curve defined over parameter interval       

with a global parameterwith a global parameter 
– Each segment defined over interval [ui, ui+1] = [i, i+1]

• Segment boundaries called knots

– Local parameter 
– Overall curve
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Piecewise Bezier CurvesPiecewise Bezier Curves
• Spline curve

– Maximally smooth connections between segments
– continuitycontinuity

• Curve in           from two Bezier segments
– Control points                 inCo t o po ts
– Control points                 in

• smoothness affects r+1
control points of each curve
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Piecewise Bezier CurvesPiecewise Bezier Curves
• Example: cubic Bezier curves

• continuity
1 t l i t f h ff t d– 1 control point of each curve affected

– Endpoints have to match
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Piecewise Bezier CurvesPiecewise Bezier Curves
• Example: cubic Bezier curves

• continuity
2 t l i t f h ff t d– 2 control points of each curve affected

– Co-linear, 
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Piecewise Bezier Curves
• Example: cubic Bezier curves

Piecewise Bezier Curves

• continuity
3 t l i t f h ff t d– 3 control points of each curve affected

– A-frame
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Piecewise Bezier Curves
• Example: cubic Bezier curves

Piecewise Bezier Curves

• continuity
3 t l i t f h ff t d– 3 control points of each curve affected

– A-frame
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Piecewise Bezier Curves
• Example: cubic Bezier curves

Piecewise Bezier Curves

• continuity
3 t l i t f h ff t d– 3 control points of each curve affected

– A-frame
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Piecewise Bezier CurvesPiecewise Bezier Curves
• Connect cubic segments to     spline

• Control points defined by continuity conditions

• Can be specified by helper points alone
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Piecewise Bezier CurvesPiecewise Bezier Curves
• Properties

– Bezier points of segments defined by helper points
– Affine invarianceAffine invariance
– Convex hull

M i l th (h )– Maximal smoothness (here:     )
– Local control?

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 12



Piecewise Bezier CurvesPiecewise Bezier Curves
• Disadvantages

– Global support of basis functions
– Insertion of control points increases degreeInsertion of control points increases degree
– continuity between segments restricts control 

polygonpolygon

• B(asis)-Spline bases overcome these problems
– Local support
– Continuity control– Continuity control
– Each basis function has arbitrary support interval 

(knot vector)
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B-Spline Bases
• B-Spline bases of different degree

B Spline Bases
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B-Spline Bases
• B-Spline bases of different degree

B Spline Bases

• Recurrence relation

• B-Spline basis of degree n has support over n+1
intervals of the knot vectorintervals of the knot vector
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B-Spline Bases DEMOB Spline Bases
• Properties

– Partition of unity

– Positivity

– Compact support

– ContinuityContinuity
is (n-1) continuously 

differentiable
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B-Spline CurveB Spline Curve
• B-Spline curve is build from piecewise 

polynomial bases

• Coefficients    are called deBoor pointsp

• Bases are piecewise, recursively defined 
l i lpolynomials 

– Sequence of knots u0 < u1 < ...
– Endpoints of basis function intervals
– Knot vector u = [u0, ..., uk+ +1]
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Knot vector u  [u0, ..., uk+n+1]



deBoor AlgorithmdeBoor Algorithm
• Generalization of de Casteljau algorithm

• Evaluate curve s(u) at parameter value u
t l i t i k th t– control point in k-th step
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deBoor Algorithm DEMOdeBoor Algorithm
• Cubic Basis
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deBoor AlgorithmdeBoor Algorithm
• Cubic Basis
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deBoor AlgorithmdeBoor Algorithm
• Cubic Basis
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deBoor AlgorithmdeBoor Algorithm
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deBoor AlgorithmdeBoor Algorithm
• Cubic Basis
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deBoor Algorithm DEMOdeBoor Algorithm
• De Casteljau is a special case of deBoor:

– First and last knot have multiplicity of n+1

– with                                                
B i f ti h l b l t– Basis functions have global support

de Casteljau Algorithm
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End ConditionsEnd Conditions
• Closed curves

– Periodic repetition of de Boor points and knots
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B-Spline CurvesB Spline Curves
• Knot vector

– Insertion of new knots does not change degree but 
number of segments/basis functions u = [u0, ..., uk+n+1]g

– Knots can have multiplicity, i.e., uj = ... = uj+p-1

C

[ 0 k+n+1]

• Continuity
– Curve is globally         continuous
– At points of multiplicity p, continuity drops to

P ti• Properties
– Variation diminishing & local convex hull
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B-Spline CurvesB Spline Curves
• Control the curve by 

– moving control points
– moving knotsmoving knots

• How intuitive is it to move knots? ... 
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Rational Bezier CurvesRational Bezier Curves

• Generalization of conic sections• Generalization of conic sections

basis functions
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Rational Bezier CurvesRational Bezier Curves
• Changing weights vs. moving control points

– shape parameters
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Rational Bezier CurvesRational Bezier Curves
• deCasteljau algorithm: two alternatives

– evaluate numerator and denominator separately
• fastfast
• unstable for large variations of weights

project intermediate points to hyperplane w=1– project intermediate points to hyperplane w=1

• slower, but more stable
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Rational B-Spline Curves
• NURBS (Non-Uniform Rational B-Splines)

Rational B Spline Curves

• Defined by
K t– Knot sequence

– 2D/3D control polygon
– Weight sequence

• Extension of deBoor algorithm 
– analogous to rational deCasteljau
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Rational B-Spline Curves

• Properties

Rational B Spline Curves

• Properties
– local control
– convex hull?
– variation diminishing? only if weights are g

non-negative!
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Freeform Surfaces
• Extend curves to surfaces

Freeform Surfaces
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Bilinear InterpolationBilinear Interpolation
• Hyperbolic paraboloid

• Isoparametric curve?• Isoparametric curve?
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Tensor Product SurfacesTensor Product Surfaces
• Surface defined by curve moving through space

– Curve may deform as it moves
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Tensor Product SurfacesTensor Product Surfaces
• Surface defined by curve moving through space

– Curve may deform as it moves

E ample Bic bic Be ier Patch• Example: Bicubic Bezier Patch
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Tensor Product SurfacesTensor Product Surfaces
• Surface defined by curve moving through space

– Curve may deform as it moves

Be ier c r e• Bezier curve
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Tensor Product SurfacesTensor Product Surfaces
• Bezier patch:

∑∑=
m n

n
j

m
ij,i vBuBbv,uf )()()(

control points

= =i j0 0

control points

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 40



Tensor Product SurfacesTensor Product Surfaces
• Bezier patch properties

– Affine invariance
– Convex hullConvex hull
– Boundary curves

C i t l ti d l– Corner interpolation and normals
– Smooth junctions
– Derivatives
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2D De Casteljau Algorithm2D De Casteljau Algorithm
• Repeated bilinear interpolation
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2D De Casteljau Algorithm2D De Casteljau Algorithm
• Repeated bilinear interpolation
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2D De Casteljau Algorithm2D De Casteljau Algorithm
• 2D array of control points 

• Parameter (u,v)

• Recursive interpolation
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2D De Casteljau Algorithm2D De Casteljau Algorithm
• Example (u,v)=(0.5, 0.5)
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2D De Casteljau Algorithm2D De Casteljau Algorithm
• If #control points differs in u- and v- direction

1. compute k = min(m,n) 2D interpolation steps
2 proceed with 1D deCasteljau2. proceed with 1D deCasteljau
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DerivativesDerivatives
• Analogous to curve setting → partial derivatives
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DerivativesDerivatives
• Analogous to curve setting → partial derivatives
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Composite SurfacesComposite Surfaces
• C1 continuous Bezier patch

– control points must be collinear
– same ratiosame ratio
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Composite SurfacesComposite Surfaces
• C1 continuous Bezier patch

– control points must be collinear
– same ratiosame ratio
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NURBS SurfacesNURBS Surfaces
• Standard in most advanced modeling systems
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NURBS SurfacesNURBS Surfaces
• Standard in most advanced modeling systems

projection of tensor product patches ≠projection of tensor product patches ≠ 
tensor product surface! (basis is not 

separable)separable)
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NURBS Surfaces
• Influence of weights

NURBS Surfaces
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NURBS Surfaces
• Influence of weights

NURBS Surfaces
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NURBS Surfaces
• Influence of weights

NURBS Surfaces
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NURBS Surfaces
• Influence of weights

NURBS Surfaces
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Raytracing Spline SurfacesRaytracing Spline Surfaces
• Tessellate into triangles (deCasteljau, deBoor)

– probably the fastest (with advanced data 
structures!))

– large memory overhead
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Raytracing Spline SurfacesRaytracing Spline Surfaces
• Bezier clipping

– reduces to root finding
– exploits convex hull property for accelerationexploits convex hull property for acceleration
– many special cases, slow

B i ft l t
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Geometric ModelingGeometric Modeling
• Requirements on a surface representation

– modeling flexibility
– approximation powerapproximation power
– ease of implementation

t t ti– compact representation
– efficient evaluation of surface and derivatives
– fast spatial queries

• ray-surface intersections, collision detection, inside-y , ,
outside tests, etc.

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 60



Bezier- and B-Spline SurfacesBezier and B Spline Surfaces
• Simple functions: Polynomials

– efficient evaluation (no exp, sin, sqrt, etc.)
– simple derivativessimple derivatives

• Intuitive editing
– surface deforms naturally when moving control 

points

• Boundary constraints
diffi lt t d l ( d dif !) l t i– difficult to model (and modify!) complex geometries
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Additional TopicsAdditional Topics
• Trimming

Computer Graphics FS 2009Olga Sorkine, NYU, Courant Institute 62



Additional TopicsAdditional Topics
• Subdivision surfaces

– smooth surface as the limit of a sequence of 
successive refinements
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Thank you!Thank you!
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