G22.3033-008, Spring 2010 Geometric Modeling

Singular Value Decomposition
Computing RMSD rigid transform

Reminder: PCA

- Find principal components of data points
- Orthogonal directions that are dominant in the data (have high variance)

Singular Value Decomposition

- We want to know what a linear transformation A does
- Need some simple and "comprehensible" representation of the matrix A
- Let's look what A does to some vectors

• Since $A(\alpha v) = \alpha A(v)$, it's enough to look at vectors v of unit length

 A linear (non-singular) transform A always takes hyper-spheres to hyper-ellipses.

Thus, one good way to understand what A does is to find which vectors are mapped to the "main axes" of the ellipsoid

- If A is symmetric: $A = V D V^T$, V orthogonal
- The eigenvectors of A are the axes of the ellipse

Symmetric matrix: eigendecomposition

In this case A is just a scaling matrix. The eigendecomposition of A tells us which orthogonal axes it scales, and by how much

$$A\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

General linear transformations: Singular Value Decomposition

In general A will also contain rotations, not

General linear transformations: Singular Value Decomposition

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i, \ \sigma_i \geq 0$$

Some history

SVD was discovered by the following people:

E. Beltrami (1835 – 1900)

M. Jordan (1838 – 1922)

J. Sylvester (1814 – 1897)

E. Schmidt (1876-1959)

H. Weyl (1885-1955)

SVD

- SVD exists for any matrix
- Formal definition:
 - For square matrices $A \in R^{n \times n}$, there exist orthogonal matrices $U, V \in R^{n \times n}$ and a diagonal matrix Σ , such that all the diagonal values σ_i of Σ are non-negative and

4/21/2010

SVD

- The diagonal values of Σ are called the singular values. It is accustomed to sort them: $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n$
- The columns of $U(\mathbf{u}_1, ..., \mathbf{u}_n)$ are called the left singular vectors. They are the axes of the ellipsoid.
- The columns of $V(v_1, ..., v_n)$ are called the right singular vectors. They are the preimages of the axes of the ellipsoid.

Reduced SVD

- For rectangular matrices, we have two forms of SVD. The reduced SVD looks like this:
 - The columns of U are orthonormal
 - Cheaper form for computation and storage

Full SVD

• We can complete U to a full orthogonal matrix and pad Σ by zeros accordingly

SVD

Applications

- There are stable numerical algorithms to compute SVD (albeit not cheap). Once you have it, you have many things:
 - Matrix inverse \rightarrow can solve square linear systems
 - Numerical rank of a matrix
 - Can solve linear least-squares systems
 - PCA
 - Many more...

Matrix inverse and solving linear systems

Matrix inverse

$$A = U\Sigma V^{T}$$

$$A^{-1} = \left(U\Sigma V^{T}\right)^{-1} = \left(V^{T}\right)^{-1}\Sigma^{-1}U^{-1} = V \begin{pmatrix} \frac{1}{\sigma_{1}} & & \\ & \frac{1}{\sigma_{n}} \end{pmatrix} U^{T}$$

• So, to solve Ax = b

$$\mathbf{x} = \mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\mathrm{T}} \mathbf{b}$$

Matrix rank

The rank of A is the number of non-zero singular values

Numerical rank

If there are very small singular values, then A is close to being singular. We can set a threshold t, so that

numeric_rank(A) =
$$\#\{\sigma_i | \sigma_i > t\}$$

Using SVD is a numerically stable way! The determinant is not a good way to check singularity

PCA

Construct the matrix X of the centered data points

$$\mathbf{X} = \begin{pmatrix} | & | & | \\ \mathbf{p}_1' & \mathbf{p}_2' & \cdots & \mathbf{p}_n' \\ | & | & | \end{pmatrix}$$

• The principal axes are eigenvectors of $S = XX^T$

$$\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{U} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix} \mathbf{U}^{\mathrm{T}}$$

PCA

We can compute the principal components by SVD of X:

$$X = U\Sigma V^{T}$$

$$XX^{T} = U\Sigma V^{T}(U\Sigma V^{T})^{T} =$$

$$= U\Sigma V^{T}V\Sigma U^{T} = U\Sigma^{2}U^{T}$$

■ Thus, the left singular vectors of X are the principal components! We sort them by the size of the singular values of X.

Least-squares rotation with SVD

Shape matching

We have two objects in correspondence

Want to find the rigid transformation that

Shape matching

 When the objects are aligned, the lengths of the connecting lines are small

Optimal local rotation

We will use this for mesh deformation

Shape matching – formalization

Align two point sets

$$P = \{\mathbf{p}_1, ..., \mathbf{p}_n\}$$
 and $Q = \{\mathbf{q}_1, ..., \mathbf{q}_n\}$.

Find a translation vector t and rotation matrix
 R so that

$$\sum_{i=1}^{n} \| (\mathbf{R}\mathbf{p}_{i} + \mathbf{t}) - \mathbf{q}_{i} \|^{2} \quad \text{is minimized}$$

Shape matching – solution

- Solve translation and rotation separately
 - If (\mathbf{R}, \mathbf{t}) is the optimal transformation, then the point sets $\{\mathbf{R}\mathbf{p}_i + \mathbf{t}\}$ and $\{\mathbf{q}_i\}$ have the same centers of mass

$$\overline{\mathbf{p}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{i} \qquad \overline{\mathbf{q}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{q}_{i}$$

$$\overline{\mathbf{q}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{R} \mathbf{p}_{i} + \mathbf{t}) = \mathbf{R} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{p}_{i} \right) + \mathbf{t} = \mathbf{R} \overline{\mathbf{p}} + \mathbf{t}$$

$$\downarrow \downarrow$$

$$\mathbf{t} = \overline{\mathbf{q}} - \mathbf{R} \overline{\mathbf{p}}$$

 To find the optimal R, we bring the centroids of both point sets to the origin

$$\mathbf{x}_i = \mathbf{p}_i - \overline{\mathbf{p}} \qquad \mathbf{y}_i = \mathbf{q}_i - \overline{\mathbf{q}}$$

We want to find R that minimizes

$$\sum_{i=1}^{n} \left\| \mathbf{R} \mathbf{x}_{i} - \mathbf{y}_{i} \right\|^{2}$$

$$\sum_{i=1}^{n} \left\| \mathbf{R} \mathbf{x}_{i} - \mathbf{y}_{i} \right\|^{2} = \sum_{i=1}^{n} \left(\mathbf{R} \mathbf{x}_{i} - \mathbf{y}_{i} \right)^{T} \left(\mathbf{R} \mathbf{x}_{i} - \mathbf{y}_{i} \right) =$$

$$= \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \mathbf{R}^{T} \mathbf{R} \mathbf{x}_{i} \right) - \mathbf{y}_{i}^{T} \mathbf{R} \mathbf{x}_{i} - \mathbf{x}_{i}^{T} \mathbf{R}^{T} \mathbf{y}_{i} + \mathbf{y}_{i}^{T} \mathbf{y}_{i} \right)$$
These terms do not depend on \mathbf{R} , so we can ignore them in the minimization

$$\min_{\mathbf{R}} \sum_{i=1}^{n} \left(-\mathbf{y}_{i}^{\mathsf{T}} \mathbf{R} \mathbf{x}_{i} - \mathbf{x}_{i}^{\mathsf{T}} \mathbf{R}^{\mathsf{T}} \mathbf{y}_{i} \right) = \max_{\mathbf{R}} \sum_{i=1}^{n} \left(\mathbf{y}_{i}^{\mathsf{T}} \mathbf{R} \mathbf{x}_{i} + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{R}^{\mathsf{T}} \mathbf{y}_{i} \right)$$
this is a scalar
$$\mathbf{x}_{i}^{\mathsf{T}} \mathbf{R}^{\mathsf{T}} \mathbf{y}_{i} = \left(\mathbf{x}_{i}^{\mathsf{T}} \mathbf{R}^{\mathsf{T}} \mathbf{y}_{i} \right)^{\mathsf{T}} = \mathbf{y}_{i}^{\mathsf{T}} \mathbf{R} \mathbf{x}_{i}$$

$$\Rightarrow \operatorname{argmax} \sum_{i=1}^{n} \mathbf{y}_{i}^{\mathsf{T}} \mathbf{R} \mathbf{x}_{i}$$

$$\sum_{i=1}^{n} \mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i} = \mathrm{tr} \left(\mathbf{Y}^{\mathrm{T}} \mathbf{R} \mathbf{X} \right) \qquad \left| \mathrm{tr}(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii} \right|$$

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii}$$

$$\sum_{i=1}^{n} \mathbf{y}_{i}^{\mathrm{T}} \mathbf{R} \mathbf{x}_{i} = \mathrm{tr} \left(\mathbf{Y}^{\mathrm{T}} \mathbf{R} \mathbf{X} \right) \qquad \left| \mathrm{tr}(\mathbf{A}) = \sum_{i=1}^{n} \mathbf{A}_{ii} \right|$$

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

Find R that maximizes

$$tr(Y^{T}RX) = tr(RXY^{T})$$
 (because $tr(AB) = tr(BA)$)

• Let's do SVD on $S = XY^T$

$$S = XY^{T} = U\Sigma V^{T}$$

$$\downarrow \downarrow$$

$$tr(RXY^{T}) = tr(RU\Sigma V^{T}) = tr(\Sigma(V^{T}RU))$$
orthogonal matrix

We want to maximize

$$egin{bmatrix} \sigma_1 & & & & & \\ & \sigma_2 & & & \vdots & m_{22} & \vdots \\ & & \sigma_3 & & & \cdots & m_{33} \end{bmatrix}$$

$$\operatorname{tr}(\Sigma(V^{T}RU)) = \sum_{i=1}^{3} \sigma_{i} m_{ii} \leq \sum_{i=1}^{3} \sigma_{i}$$

$$\operatorname{tr}(\Sigma(\mathbf{V}^{\mathrm{T}}\mathbf{R}\mathbf{U})) = \sum_{i=1}^{3} \sigma_{i} \, \mathbf{m}_{ii} \leq \sum_{i=1}^{3} \sigma_{i}$$

• Our best shot is $m_{ii} = 1$, i.e. to make $V^TRU = I$

$$V^{T}RU = I$$

$$RU = V$$

$$R = VU^T$$

Summary of rigid alignment

Translate the input points to the centroids

$$\mathbf{x}_i = \mathbf{p}_i - \overline{\mathbf{p}}$$
 $\mathbf{y}_i = \mathbf{q}_i - \overline{\mathbf{q}}$

Compute the "covariance matrix"

$$\mathbf{S} = \mathbf{X}\mathbf{Y}^{\mathrm{T}} = \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{y}_{i}^{\mathrm{T}}$$

Compute the SVD of S

$$S = U\Sigma V^{T}$$

The optimal orthogonal R is

$$R = VU^{T}$$

Sign correction

■ It is possible that $det(VU^T) = -1$: sometimes reflection is the best orthogonal transform

Sign correction

■ It is possible that $det(VU^T) = -1$: sometimes reflection is the best orthogonal transform

Sign correction

■ It is possible that $det(VU^T) = -1$: sometimes reflection is the best orthogonal transform

- To restrict ourselves to rotations only: take the last column of V (corresponding to the smallest singular value) and invert its sign.
- Why? See the PDF...

Complexity

- Numerical SVD is an expensive operation O(min(mn²,nm²))
- We always need to pay attention to the dimensions of the matrix we're applying SVD to.

SVD for animation compression

Chicken animation

See for instance:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000 Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004 Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007

3D animations

Each frame is a 3D model (mesh)

3D animations

- Connectivity is usually constant (at least on large segments of the animation)
- The geometry changes in each frame → vast amount of data!

13 seconds, 3000 vertices/frame, 26 MB

The geometry of each frame is a vector in R^{3N} space

Find a few vectors of R^{3N} that will best represent our frame

The first principal components are the important ones

- Approximate each frame by linear combination of the first principal components
- The more components we use, the better the approximation
- Usually, the number of components needed is much smaller than f.

Olga Sorkine, NYU, Courant Institute

4/21/2010

- Compressed representation:
 - The chosen principal component vectors
 - Coefficients \mathcal{C}_i for each frame

Animation with only 2 principal components

Animation with 4 out of 400 principal components