G22.3033-008, Spring 2010
Geometric Modeling

Singular Value Decomposition
Computing RMSD rigid transform

Olga Sorkine, NYU, Courant Institute 4/21/2010

Reminder: PCA

" Find principal components of data points

" Orthogonal directions that are dominant in
the data (have high variance)

Scatter matrix S=YY'

Olga Sorkine, NYU, Courant Institute 4/21/2010

Singular Value Decomposition

Geometric analysis of linear
transformations

= \We want to know what a linear
transformation A does

* Need some simple and “comprehensible”
representation of the matrix A

= Let’s look what A does to some vectors

» Since A(av) = aA(V), it’s enough to look at vectors v of

unit length
—).
N %

Geometric analysis of linear
transformations

» Alinear (non-singular) transform A always
takes hyper-spheres to hyper-ellipses.

A

N — D)
|/

ARy

.

N

Olga Sorkine, NYU, Courant Institute 4/21/2010

Geometric analysis of linear
transformations

" Thus, one good way to understand what A
does is to find which vectors are mapped to
the “main axes” of the ellipsoid

— A,
@V] <_//'

¢ @

Olga Sorkine, NYU, Courant Institute 4/21/2010

Geometric analysis of linear
transformations

" If Ais symmetric:| A=V D VT, V orthogonal

" The eigenvectors of A are the axes of the
ellipse

A
NG

Symmetric matrix:
eigendecomposition

" |n this case A is just a scaling matrix. The
eigendecomposition of A tells us which
orthogonal axes it scales, and by how much

General linear transformations:
Singular Value Decomposition

" |In general A will also contain rotations, not
just scales 1

U/ > 62ﬁ=
/

A=[uu,...u,]

General linear transformations:
Singular Value Decomposition

N2 4

AV=UZX

O,

orthonormal orthonormal
o,
Alv,v,..v,] =[wu,.. u,]

Av.= cu;,, 020

Some history

= SVD was discovered by the following people:

E. Beltrami M. Jordan J. Sylvester
(1835 — 1900) (1838 — 1922) (1814 — 1897)

E. Schmidt H. Weyl
(1876-1959) (1885-1955)

Olga Sorkine, NYU, Courant Institute 4/21/2010

SVD

= SVD exists for any matrix

= Formal definition:

= For square matrices A € R""”, there exist orthogonal
matrices U, V € R"" and a diagonal matrix T, such that all
the diagonal values o; of X are non-negative and

A=UzV'

A U YA

Olga Sorkine, NYU, Courant Institute 4/21/2010

SVD

= The diagonal values of X are called the singular values. It is
accustomed to sort them: 6,2 6,> ... 2 o,

* The columns of U (uy, ..., u,) are called the left singular
vectors. They are the axes of the ellipsoid.

* The columns of V (v, ..., v,) are called the right singular
vectors. They are the preimages of the axes of the ellipsoid.

A=UzV'

A U YA

Olga Sorkine, NYU, Courant Institute 4/21/2010

Reduced SVD

" For rectangular matrices, we have two forms
of SVD. The reduced SVD looks like this:

= The columns of U are orthonormal
* Cheaper form for computation and storage

A U YA

Olga Sorkine, NYU, Courant Institute 4/21/2010

Full SVD

" We can complete U to a full orthogonal matrix
and pad X by zeros accordingly

Olga Sorkine, NYU, Courant Institute 4/21/2010

SVD

Applications

" There are stable numerical algorithms to
compute SVD (albeit not cheap). Once you
have it, you have many things:

" Matrix inverse — can solve square linear systems
= Numerical rank of a matrix

= Can solve linear least-squares systems

= PCA

= Many more...

Matrix inverse and
solving linear systems

= Matrix inverse

A=UsVT
At=(UsvT) = (VT) 'z iUt =
(1 \
Y T
1
\ 2y

" So, to solve Ax=Db
x=VZ7U'b

Matrix rank

» The rank of A is the number of non-zero
singular values

m- I
A Jg ¥ V

T

Olga Sorkine, NYU, Courant Institute 4/21/2010

Numerical rank

" |f there are very small singular values, then A
is close to being singular. We can set a
threshold ¢, so that
numeric_rank(A) =#{c,| o, > 1}

= Using SVD is a numerically stable way! The
determinant is not a good way to check
singularity

PCA

" Construct the matrix X of the centered data points

(] A
X=\p; p, = P,
o)
* The principal axes are eigenvectors of S = XX'
[\
S=XX"=U - U’

\ ’Id)

PCA

= We can compute the principal components by
SVD of X:

X =UzV'
XX'=uzv'(uzv')' =
=UxVv'vzu'=uziu’

" Thus, the left singular vectors of X are the
principal components! We sort them by the
size of the singular values of X.

Least-squares rotation with SVD

Shape matching

= We have two objects in correspondence

= Want to find the rigid transformation that
aligns them

Olga Sorkine, NYU, Courant Institute 4/21/2010

Shape matching

" When the objects are aligned, the lengths of
the connecting lines are small

Olga Sorkine, NYU, Courant Institute 4/21/2010

Optimal local rotation

= \We will use this for mesh deformation

V.
: J2
Vis = '
J1

Olga Sorkine, NYU, Courant Institute 4/21/2010

Shape matching — formalization

= Align two point sets
P={p,, ..., p,} and O={q,, ..., q,}

= Find a translation vector t and rotation matrix
R so that

IS minimized

Z H(Rpi T t)_ q; 2
i=1

Shape matching — solution

= Solve translation and rotation separately

" If (R, t) is the optimal transformation, then the
point sets {Rp, + t} and {q,} have the same
centers of mass

1 1
P—;Z_;,P Q—;Z_llq
_ 1 1 &
q:—Z(Rp +t):R(Zp]+t:Rp+t
n o n i1
U

Finding the rotation R

" To find the optimal R, we bring the centroids
of both point sets to the origin

X, =P;,—P yi:qi_q
= \We want to find R that minimizes

ZHin —Y.
i=1

2

Finding the rotation R

ZHin R4 = Z(in _yi)T(RXz‘ _yi):
i=1 i=1

=i1—y:in—x:RTyi {oy)

These terms do not depend on R,
so we can ignore them in the minimization

Finding the rotation R

mRinZ(y'Rx. —x/R'y) maXZ(yTRX +XTRTyl)

this is a scalar

XZ.TRTyi — (XZ-TRTY,-)T =Y. sz‘

—

R

argmax)y, Rx,

Finding the rotation R

Zn:y;rRXi = tr(YTRX) :tr(A): iAii
=1

vl _ | I | |
gir R X|1 X|2 X, _iir_ R|X1R|X2 R|X

Olga Sorkine, NYU, Courant Institute 4/21/2010

Finding the rotation R

Olga Sorkine, NYU, Courant Institute

4/21/2010

Finding the rotation R

® Find R that maximizes
tr(YTRX)z tr(RXYT) (because tr(AB) = tr(BA))
= let’sdoSVDon S = XY'

S=XYT=UzV'
J
tr(RXY")=tr(RUZV")= tr(=(V'RU))

| - 7 >

orthogonal matrix

Finding the rotation R

= We want to maximize
tr(=(V'RU))

orthogonal matrix
all entries <1

Finding the rotation R

tr(2(V'RU))= Za m, <Za
= Our bestshotism_ =1, i.e. to make V'RU =
V'RU =1
RU=V
R=VU'

Summary of rigid alignment

" Translate the input points to the centroids

X;=P;—P Y. =4, —(q
= Compute the “covariance matrix”
S=XY' = inyl.T
=1
" Compute the SVD of S
S=UzV'

" The optimal orthogonal R is
R=VU'

Sign correction

= |t is possible that det(VU') = -1 : sometimes
reflection is the best orthogonal transform

W el

Olga Sorkine, NYU, Courant Institute 4/21/2010

Sign correction

= |t is possible that det(VU') = -1 : sometimes
reflection is the best orthogonal transform

Olga Sorkine, NYU, Courant Institute 4/21/2010

Sign correction

= |t is possible that det(VU') = -1 : sometimes
reflection is the best orthogonal transform

" To restrict ourselves to rotations only:
take the last column of V (corresponding to
the smallest singular value) and invert its sign.

= Why? See the PDF...

Complexity

= Numerical SVD is an expensive operation
O(min(mn?,nm?))

= We always need to pay attention to the
dimensions of the matrix we’re applying SVD
to.

SVD for animation compression

Chicken animation

See for instance:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000

Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004
Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007

3D animations

= Fach frame is a 3D model (mesh)

Olga Sorkine, NYU, Courant Institute 4/21/2010

3D animations

= Connectivity is usually constant (at least on large segments of
the animation)

= The geometry changes in each frame — vast amount of data!

13 seconds, 3000 vertices/frame, 26 MB

Olga Sorkine, NYU, Courant Institute 4/21/2010

Animation compression by
dimensionality reduction

= The geometry of each frame is a vector in R space
(N = #vertices)

X

Xy

N
3N x #f

Animation compression by
dimensionality reduction

= Find a few vectors of R*" that will best represent our frame
vectors!

T
U 3Nxf > fxf V' ixf

X1

: T
xN V

N

g

Olga Sorkine, NYU, Courant Institute 4/21/2010

Animation compression by
dimensionality reduction

= The first principal components are the important ones

X, 0,

: 92 T
X Oy \%
N

: = u; Uy Mg ‘

V'

Sasis

e

Olga Sorkine, NYU, Courant Institute 4/21/2010

Animation compression by
dimensionality reduction

Approximate each frame by linear combination of the first
principal components

The more components we use, the better the approximation

Usually, the number of components needed is much smaller
than f.

Animation compression by
dimensionality reduction

= Compressed representation:

= The chosen principal component vectors u

= Coefficients OCZ- for each frame

Animation with only Animation with

2 principal components 4 out of 400 principal
components

Olga Sorkine, NYU, Courant Institute 4/21/2010

	G22.3033-008, Spring 2010�Geometric Modeling
	Reminder: PCA
	Singular Value Decomposition
	Geometric analysis of linear transformations
	Geometric analysis of linear transformations
	Geometric analysis of linear transformations
	Geometric analysis of linear transformations
	Symmetric matrix: �eigendecomposition
	General linear transformations: Singular Value Decomposition
	General linear transformations: Singular Value Decomposition
	Some history
	SVD
	SVD
	Reduced SVD
	Full SVD
	SVD�Applications
	Matrix inverse and �solving linear systems
	Matrix rank
	Numerical rank
	PCA
	PCA
	Least-squares rotation with SVD
	Shape matching
	Shape matching
	Optimal local rotation
	Shape matching – formalization
	Shape matching – solution
	Finding the rotation R
	Finding the rotation R
	Finding the rotation R
	Finding the rotation R
	Finding the rotation R
	Finding the rotation R
	Finding the rotation R
	Finding the rotation R
	Summary of rigid alignment
	Sign correction
	Sign correction
	Sign correction
	Complexity
	SVD for animation compression
	3D animations
	3D animations
	Animation compression by dimensionality reduction
	Animation compression by dimensionality reduction
	Animation compression by dimensionality reduction
	Animation compression by dimensionality reduction
	Animation compression by dimensionality reduction

