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Singular Value Decomposition
Computing RMSD rigid transform
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Reminder: PCA

" Find principal components of data points

" Orthogonal directions that are dominant in
the data (have high variance)

Scatter matrix S=YY'
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Singular Value Decomposition



Geometric analysis of linear
transformations

= \We want to know what a linear
transformation A does

* Need some simple and “comprehensible”
representation of the matrix A

= Let’s look what A does to some vectors

» Since A(av) = aA(V), it’s enough to look at vectors v of

unit length
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Geometric analysis of linear
transformations

» Alinear (non-singular) transform A always
takes hyper-spheres to hyper-ellipses.
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Geometric analysis of linear
transformations

" Thus, one good way to understand what A
does is to find which vectors are mapped to
the “main axes” of the ellipsoid
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Geometric analysis of linear
transformations

" If Ais symmetric:| A=V D VT, V orthogonal

" The eigenvectors of A are the axes of the
ellipse

A
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Symmetric matrix:
eigendecomposition

" |n this case A is just a scaling matrix. The
eigendecomposition of A tells us which
orthogonal axes it scales, and by how much




General linear transformations:
Singular Value Decomposition

" |In general A will also contain rotations, not
just scales 1
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A=[uu,...u,]




General linear transformations:
Singular Value Decomposition

N2 4

AV=UZX

O,

orthonormal orthonormal
o,
Alv,v,..v,] =[wu,.. u,]

Av.= cu;,, 020




Some history

= SVD was discovered by the following people:

E. Beltrami M. Jordan J. Sylvester
(1835 — 1900) (1838 — 1922) (1814 — 1897)

E. Schmidt H. Weyl
(1876-1959) (1885-1955)
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SVD

= SVD exists for any matrix

= Formal definition:

= For square matrices A € R""”, there exist orthogonal
matrices U, V € R"" and a diagonal matrix T, such that all
the diagonal values o; of X are non-negative and

A=UzV'

A U YA
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SVD

= The diagonal values of X are called the singular values. It is
accustomed to sort them: 6,2 6,> ... 2 o,

* The columns of U (uy, ..., u,) are called the left singular
vectors. They are the axes of the ellipsoid.

* The columns of V (v, ..., v,) are called the right singular
vectors. They are the preimages of the axes of the ellipsoid.

A=UzV'

A U YA
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Reduced SVD

" For rectangular matrices, we have two forms
of SVD. The reduced SVD looks like this:

= The columns of U are orthonormal
* Cheaper form for computation and storage

A U YA
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Full SVD

" We can complete U to a full orthogonal matrix
and pad X by zeros accordingly
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SVD

Applications

" There are stable numerical algorithms to
compute SVD (albeit not cheap). Once you
have it, you have many things:

" Matrix inverse — can solve square linear systems
= Numerical rank of a matrix

= Can solve linear least-squares systems

= PCA

= Many more...



Matrix inverse and
solving linear systems

= Matrix inverse

A=UsVT
At=(UsvT) = (VT) 'z iUt =
(1 \
Y T
1
\ 2y

" So, to solve Ax=Db
x=VZ7U'b



Matrix rank

» The rank of A is the number of non-zero
singular values

m- I
A Jg ¥ V

T
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Numerical rank

" |f there are very small singular values, then A
is close to being singular. We can set a
threshold ¢, so that
numeric_rank(A) =#{c,| o, > 1}

= Using SVD is a numerically stable way! The
determinant is not a good way to check
singularity



PCA

" Construct the matrix X of the centered data points

(] A
X=\p; p, = P,
o )
* The principal axes are eigenvectors of S = XX'
[ \
S=XX"=U - U’

\ ’Id)



PCA

= We can compute the principal components by
SVD of X:

X =UzV'
XX'=uzv'(uzv')' =
=UxVv'vzu'=uziu’

" Thus, the left singular vectors of X are the
principal components! We sort them by the
size of the singular values of X.



Least-squares rotation with SVD



Shape matching

= We have two objects in correspondence

= Want to find the rigid transformation that
aligns them
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Shape matching

" When the objects are aligned, the lengths of
the connecting lines are small
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Optimal local rotation

= \We will use this for mesh deformation

V.
: J2
Vis = '
J1
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Shape matching — formalization

= Align two point sets
P={p,, ..., p,} and O={q,, ..., q,}

= Find a translation vector t and rotation matrix
R so that

IS minimized

Z H(Rpi T t)_ q; 2
i=1




Shape matching — solution

= Solve translation and rotation separately

" If (R, t) is the optimal transformation, then the
point sets {Rp, + t} and {q,} have the same
centers of mass

1 1
P—;Z_;,P Q—;Z_llq
_ 1 1 &
q:—Z(Rp +t):R(Zp ]+t:Rp+t
n o n i1
U




Finding the rotation R

" To find the optimal R, we bring the centroids
of both point sets to the origin

X, =P;,—P yi:qi_q
= \We want to find R that minimizes

ZHin —Y.
i=1

2




Finding the rotation R

ZHin R4 = Z(in _yi)T(RXz‘ _yi):
i=1 i=1

=i1—y:in—x:RTyi {oy)

These terms do not depend on R,
so we can ignore them in the minimization




Finding the rotation R

mRinZ( y'Rx. —x/R'y ) maXZ(yTRX +XTRTyl)

this is a scalar

XZ.TRTyi — (XZ-TRTY,-)T =Y. sz‘

—

R

argmax )y, Rx,




Finding the rotation R

Zn:y;rRXi = tr(YTRX) :tr(A): iAii
=1

vl _ | I | |
_gir_ R X|1 X|2 X, _iir_ R|X1R|X2 R|X

Olga Sorkine, NYU, Courant Institute 4/21/2010



Finding the rotation R
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Finding the rotation R

® Find R that maximizes
tr(YTRX)z tr(RXYT) (because tr(AB) = tr(BA))
= let’sdoSVDon S = XY'

S=XYT=UzV'
J
tr(RXY")=tr(RUZV" )= tr(=(V'RU))

| - 7 >

orthogonal matrix



Finding the rotation R

= We want to maximize
tr(=(V'RU))

orthogonal matrix
all entries <1




Finding the rotation R

tr(2(V'RU))= Za m, <Za
= Our bestshotism_ =1, i.e. to make V'RU =
V'RU =1
RU=V
R=VU'




Summary of rigid alignment

" Translate the input points to the centroids

X;=P;—P Y. =4, —(q
= Compute the “covariance matrix”
S=XY' = inyl.T
=1
" Compute the SVD of S
S=UzV'

" The optimal orthogonal R is
R=VU'



Sign correction

= |t is possible that det(VU') = -1 : sometimes
reflection is the best orthogonal transform

W el
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Sign correction

= |t is possible that det(VU') = -1 : sometimes
reflection is the best orthogonal transform
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Sign correction

= |t is possible that det(VU') = -1 : sometimes
reflection is the best orthogonal transform

" To restrict ourselves to rotations only:
take the last column of V (corresponding to
the smallest singular value) and invert its sign.

= Why? See the PDF...



Complexity

= Numerical SVD is an expensive operation
O(min(mn?,nm?))

= We always need to pay attention to the
dimensions of the matrix we’re applying SVD
to.



SVD for animation compression

Chicken animation

See for instance:

Representing Animations by Principal Components, M. Alexa and W. Muller, Eurographics 2000

Compression of Soft-Body Animation Sequences, Z. Karni and C. Gotsman, Computers&Graphics 28(1): 25-34, 2004
Key Point Subspace Acceleration and Soft Caching, M. Meyer and J. Anderson, SIGGRAPH 2007



3D animations

= Fach frame is a 3D model (mesh)
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3D animations

= Connectivity is usually constant (at least on large segments of
the animation)

= The geometry changes in each frame — vast amount of data!

13 seconds, 3000 vertices/frame, 26 MB
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Animation compression by
dimensionality reduction

= The geometry of each frame is a vector in R space
(N = #vertices)

X

Xy

N
3N x #f




Animation compression by
dimensionality reduction

= Find a few vectors of R*" that will best represent our frame
vectors!

T
U 3Nxf > fxf V' ixf

X1

: T
xN V

N

g
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Animation compression by
dimensionality reduction

= The first principal components are the important ones

X, 0,

: 92 T
X Oy \%
N

: = u; Uy Mg ‘

V'

Sasis

e
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Animation compression by
dimensionality reduction

Approximate each frame by linear combination of the first
principal components

The more components we use, the better the approximation

Usually, the number of components needed is much smaller
than f.




Animation compression by
dimensionality reduction

= Compressed representation:

= The chosen principal component vectors u

= Coefficients OCZ- for each frame

Animation with only Animation with

2 principal components 4 out of 400 principal
components
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