G22.3033-004, Spring 2009
Interactive Shape Modeling

Linear algebra tools for
geometric modeling
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Recap

Surface acquisition and reconstruction
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Recap

Implicit functions

= Implicit function? S
f(p) =0 ,

* Need extra constraints implicit %, by

. .- . . . function oo~

to avoid trivial solution e

Fpi+eny) =+ HEEES Y-

f (pl_gnl) — =& i © f(p)<0 ¢ ai

I iextra o o " !

constraints e @-e—e—¥ |

__________________________________
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Recap

Implicit functions

= Radial basis function

fj:iZWi r(Hpi_ij) I\/T

" Constraints: T (p;) =0, f(pi+an) =«
= Need to solve for w;

bon) o et [ [ Linear
"|P: —Po r0 NP, — P, Wy _ f1
o) om0 [t < problem



Recap

Implicit functions

= Moving least squares ?TA

444444

f() = f,(0; f,(x)= argmmZHf (p)) - £ 6o, —X])

EHk | O

= Need to solve locally for f,, where f, isa

polynomial (solve for the coefficients C,)
f(X) = Co+ C X+ Y + Cy X2 + €y XY + Cs Y.
= c' b(x).

Weighted linear

min Zn:HCTb(pi) — fiHZWi (X) {—1 least squares
=0

problem




RBF vs. MLS

F(x) = 1,(x);
n
f (X) = Zwi I’(”X - P, H) f (X)= arg mdinZH £.(0,)— | 0(x-py|)
i=1 x €Ly i=1
= Need to solve for the = Solve for the local
weights w; polynomial in each X
" Closed formulation = No global closed formula
— each point has its own
function fit
= Requires solving a linear = Requires solving a linear
system of size nxn (N is system of size kxk (K is
the number of points!) the order of the

polynomial) for each
evaluation



Algebraic tools

Linear least squares

But first reminder: vectors/points,
inner product, projection
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Points and Vectors

Basic definitions

" Points specify /location in space (or in the

plane).

= Vectors have magnitude and direction (like

velocity).
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Points # Vectors
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Point + vector = point

/‘
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vector + vector = vector

= Parallelogram rule
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point — point = vector
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point + point: not defined!!

® Unless we are computing a weighted average
of points (weighted centroid).

" |f the weights sum up to one, the average is

meaningful.
— E D. @ o ©
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Dot product

= Defined for vectors:
(v, W) = [|v|| - ||w]| - cos&

cosd =L/ ||wl|

L = |lw][ cos@= (v, w) / ||v]

/

Projection of w onto v
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Dot product

in coordinates

V =V, Vy, o, V)T
W = (Wy, Wy, ..., Wy)T

(v, wy=viw=wlv=
= ViWy + VoW, ...+ VgWy
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Dot product

names, notations

» Dot product is also called inner product

= Notations: (v,w) or v-w or vIw (=w'vV)



Dot product

Perpendicular (orthogonal) vectors

M, Wy=vTw=0

W N
il
-
q
L /D‘/.po X
V
In 2D only: if v =(X, y) General hyper-plane:
then vt =%(-y, X) all points  such that

(q-Pp:N)=0
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Least squares fitting

Motivation

= Why are we going over this again?

= Many of the shape modeling methods presented
in later lectures minimize functionals of the form

Copt —argmln |1Ac - bl
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Least squares fitting

Motivation

" Given data points, fit a function that is “close”
to the points

y=1()




Simple example

line fitting — 15t order polynomial in 2D

= y-offsets minimization

A

y
Pi = (X, i)
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Simple example

line fitting — 15t order polynomial in 2D

* Findaline Yy =aXx + D that minimizes

E(a,b) = Y[y, - (@ +b)F

. E(a,b) is quadratic in the unknown parameters @, D

= Another option would be, for example:

AbsErr(a,b) = Zn:\yi —(ax; +b)|
i=1

= But-—itis not differentiable, harder to minimize...



Simple example

line fitting — LS minimization
* To find optimal a, b we differentiate E(a, b):
E(a,b) =) [y, —(ax +Db)J°
=1

2E(a,b) = (20 - (@ + b)] =0

%E(a’ b) — IZ;: (—2)[y| — (axi + b)] =0



Simple example

line fitting — LS minimization

= We obtain two linear equations for a, b:
> (=2x)[y; — (@x; + b)] = 0

> (-2)[y; - (ax; + b)] =0



Simple example

line fitting — LS minimization

= We get two linear equations for a, b:
oy Z [X:y; — axi2 —bx] =0

@ Y [y;—ax-b]=0

=1



Simple example

line fitting — LS minimization

= We get two linear equations for a, b:
n 2 n n
(;Xi)a"'(;xi)b:; XiYi

(Xx)a+(X1)b=2y



Simple example

line fitting — LS minimization

= Solve for a, b using e.g. Gauss elimination

" Question: why the solution is the minimum for
the error function?

E@,b)= Y[y — (ax; + b)T



Fitting polynomials




Fitting polynomials

= Decide on the degree of the polynomial, k
" Want to fit f (x) = akxk + ak_lx"‘1 + ... +ax+ a,

" Minimize:

N K k-1 2
E(a,, a;, ..., ) = Z[Yi — (X +a_ X T+ ..taxtag)]
i=1

E(ag,.-a) = (- 2N — (X +a X " +...+ a)] = 0
i=1



Fitting polynomials

= We get a linear system of k+1 equations in k+1 variables

[ n n n A [ n A
Zl in ink (a‘O\ Zl yi
i=1 i=1 =1 31 =1

ixi ixiz ixikﬂ iXiYi
i1 i1 i1 : =

n n n

n
ink lek+1 . lezk \ak/ k;Xikyi)

\_i=1 i=1




General parametric fitting

= We can use this approach to fit any function f (X)
= Specified by parameters Cy, C,, Cg, ...
" The expression f (X) linearly depends on the parameters.

" T(X) =C,1y(X) + CT(X) + ... + ¢ 1 (X)
* Minimize — find best ¢, C,, C5 ... :

S () - 117 = 3 1% 5(P) — P



Solving linear systems in LS sense

" Let’s look at the problem a little differently:
= We have data points p; and desired function values f;
= We would like :

vVi=1, ...,n: f(p)=*

= Strict interpolation is in general not possible

" |n polynomials: n+1 points define a unique interpolation
polynomial of degree n.

= So, if we have 1000 points and want a cubic polynomial, we
probably won’t find it...



Solving linear systems in LS sense

= We have an over-determined linear system nxKk:

f(p) =c, fi(py) + ¢, fr(py) + ... +¢ fil(P) =14
f(p,) =c, f1(py) + ¢, f,(p,) + ... + ¢ fil(P,) =1,

f (pn) — Cl 1:1(pn) + CZ fz(pn) + ...t Ck 1:k(pn) — 1:n



Solving linear systems in LS sense

" |n matrix form:

f.(p,) f(p) ... f(P) )G f,
f,(,) f,(p) ... f(P2) || C, f,
Ck

fl(pn) fZ(pn) fk (pn) fn



Solving linear systems in LS sense

=" |n matrix form:
Ac=Db

where A = (1;(p;) );; is a rectangular nxk matrix, n>k

C = (Cl’ C2’ ceny Ck)T b — (fl’ f2; nery fn)T
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Solving linear systems in LS sense

= More constrains than variables — no exact
solutions generally exist

= We want to find something that is an
“approximate solution”:

Copt = argmin |Ac - b||*



Finding the LS solution

'CERk
» Ac e R"

= As we vary C, AcC varies over the linear
subspace of R" spanned by the columns of A:

—_—

4 c,
C2
AC= | Al 4| [Ial ||| = Cy|al + Clal +... +C A

c
\L 1
This is also known as the column space of A
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Finding the LS solution

= We want to find the closest Ac to b: min [|Ac - b||?

AcC
closestto b

Subspace spanned
by columns of




Finding the LS solution

* The point Ac closest to b satisfies:
(Ac—Db) L {subspace of A’s columns}

AN
U,
V column A:: (A, Ac—b)=0
Vi, A'(Ac-b)=0

AN

These are AV4

called the AT(AC _ b) — O

normal equations
T (ATA)e = ATb




Finding the LS solution

* We have a square symmetric
system (A'A)c = A'b

(kxk)

= If A has full rank (the columns of A are
linearly independent) then (A'A) is invertible.

min |[Ac—b|’
U
c=(ATA]"ATb




Weighted least squares

" |f each constraint has a weight in the energy:
min Y w, (f,(p,) - )’
¢ A

* The weights w; > 0 and don’t depend on C
" Then:
min (Ac — b)" W'W (Ac —b) where W = (w)):

(A'W2A)c = A'W?b




Principal Component Analysis

But first, reminder about
eigenvectors and eigenvalues
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Motivation

" Given a set of points, find the best line that
approximates them
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Motivation

= We just saw how to fit a parametric line
y = ax +b, but this does not work for vertical lines
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Motivation

= How to fit a line such that the true (orthogonal)
distances are minimized?
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Principal Component Analysis

\ X

= PCA finds axes that minimize the sum of distances?
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Linear algebra recap

Vector space

= |Informal definition:

m\/ £ @ (a non-empty set of vectors)
"V, We V = v+weV (closed under addition)

"V e V, Ol isscalar = OV € V(closed under multiplication by
scalar)

= Formal definition includes axioms about associativity and
distributivity of the + and - operators.

= 0 V always!



Linear algebra recap

Vector space — example

" let ® be a plane through the origin in 3D
»V={p-0O|p en}isalinear subspace of R

A
z

\

.




Linear algebra recap

Linear independence

* The vectors {V,, V,, ..., V. } are a linearly
independent set if:

aV,+aV,+..+aVv,=0 < o=0VI

= |t means that none of the vectors can be
obtained as a linear combination of the
others.



Linear algebra recap

Linear independence

= Parallel vectors are always dependent:

//z v=24w = v+ (-24)w=0

w

* Orthogonal vectors are always independent.



Linear algebra recap
Basis of a vector space V
= {V,,V,, ...,V }are linearly independent
= {V,,V,, ..., V,} span the whole vector space V:
V= {0[1V1 + oV, ...+ oV, | O is scalar}

" Any vector in V is a unique linear combination
of the basis.

= The number of basis vectors is called the
dimension of V.



Linear algebra recap

" Grayscale NxM images:

= Each pixel has value
between 0 (black)
and 1 (white)

* The image can be
interpreted as
N-M
a vector € R
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Basis example

gl [ T PP F | . |
k

4 I IEEFTYEE  .'Ee
AdTREEEE \EanEEr
BIEVES” \Jreaen

| B (BT |

| Al
B L @S> 4d¥
B EA&ERN ‘IIII=

H BN & AN
i EfEv4 T AF
B HAsE - mr

| N [ ||

N AERUREE use -
Il BENAEE Y O AN
1| EENEYT T w2
i ERYESTT w4ee

M




Linear algebra recap
The “standard” basis (4x4)
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Linear algebra recap

The “standard” basis (4x4) — linear combinations
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= Used for JPEG en
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Linear algebra recap
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Linear algebra recap

Orthogonal matrices (orthonormal basis)

" Matrix A (nxn) is orthogonal if A=A
= Follows: AA' = A'A=|
= The rows of A are orthonormal vectors!

|_‘<
I\)<
1
<
_|
<
1
O

——Jc==2 L J U U

= Vp =1 = |vil[=1; (v, vp=0



Linear algebra recap

Orthogonal transformations

" Ais orthogonal matrix = A represents a
linear transformation that preserves dot
product (i.e., preserves lengths and angles):

(Av)' (Aw) = v'A'Aw = v'w

* Therefore, ||Av|| = [|v|| and %

Z(AV,Aw) = Z(V,W) ey

-=7
AN
\ 7
v ‘

O



Linear algebra recap

Eigenvectors and eigenvalues

A is a square nNxn matrix

V is called eigenvector of A if: _
= Av = AV (Ais ascalar) AV B ﬂ’v
= v=0

The scalar Ais called eigenvalue

Av = Av = A(av) = A(a V) = aV is also eigenvector
Av = Av, Aw = Aw = A(v+w) = A(V+Ww)

Therefore, eigenvectors of the same A form a linear
subspace.



Linear algebra recap

Eigenvectors and eigenvalues

= An eigenvector spans an axis (subspace of dimension 1) that
remains the same under the transformation A.

= Example — the axis of rotation:

Eigenvector of the
rotation transformation T




Linear algebra recap
Spectrum and diagonalization
" The set of all the eigenvalues of A is called
the spectrum of A.

» Ais diagonalizable if A has n independent
eigenvectors. Then:|AV = VD

AVl — Alvl 4 N\ 4

Av, = A,V,

: A V1| | V2 Vol |7 | M [V2
Av, = AV, L 1) L




Linear algebra recap

Spectrum and diagonalization

= Therefore, A = VDV_l, where D is diagonal

= Arepresents a scaling along the eigenvector
axes!

Av, = 4V,
Av, = A,V,

Av. =4V,




Linear algebra recap

Symmetric matrices

= If Ais symmetric, the eigenvectors are
orthogonal and there’s always an eigenbasis.
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Principal Component Analysis

Basic idea

= PCA finds an orthogonal basis that best represents
given data set

y| Y

= PCA finds a best approximating line/plane/axes...
(in terms of Xdistances?)

Olga Sorkine, NYU, Courant Institute 2/12/2009



Principal Component Analysis

Basic idea

= PCA finds an orthogonal basis that best represents
given data set

158 1 I 1 I 1

198 T 3D point set in
sp | ST - standard basis

A

-58 "

-1@8 -

-158 1 | | 1 1
-158-188-5@ d 5/ 188 15@a

= PCA finds a best approximating line/plane/axes...
(in terms of Zdistances?)



Principal Component Analysis

Applications

" An axis-aligned bounding box: agrees with the
standard axes

minX | o maxX X




Principal Component Analysis

Application: oriented bounding box

* Tighter fit
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Principal Component Analysis

Application: oriented bounding box

= Axis aligned bounding box




Principal Component Analysis

Application: oriented bounding box

" Oriented bounding box by PCA
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Principal Component Analysis

Application: oriented bounding box

=  Serve as very simple “approximation” of the object
= Fast collision detection, visibility queries
= Whenever we need to know the dimensions (size) of the object

m  The models consist of
thousands of polygons

m To quickly test that they
don’t intersect, the
bounding boxes are
tested

m  Sometimes a hierarchy
of BB’s is used

m The tighter the BB —the
less “false alarms” we
have

Olga Sorkine, NYU, Courant Institute 2/12/2009



Principal Component Analysis

ing

local frame fitti

Application

2/12/2009
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Principal Component Analysis

Application: estimate normals
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Principal Component Analysis

Application: shape alignhment

= 3D search engines (see
http://shape.cs.princeton.edu/)
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Principal Component Analysis

Application: shape alignhment

= Can use PCA to find canonical axes and scale
for shape comparison

Translation Scale Rotation
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Notations

= Denote our data points by Xy, X, ..., X, € R

n
" Centerof mass: |m = L% x, o
n |
=1

= \/ectors from the centroid:

Yi=Xi—m




The origin of the new axes

" The origin of the new axes will be the center
of mass m

= |t can be shown that: g

n
m = ar(‘:;minzn"Hxi - x| m = %ZI X
X =1




Variance of projected points

= Let us measure the variance (scatter) of our points in different directions
= Let’s look at a line L through the center of mass m, and project our points
X; onto it. The variance of the projected points X'; is:

var(L) =4 > I -mf
=1

Want to find directions
of maximal/minimal variance

L

Original set Small variance Large variance

Olga Sorkine, NYU, Courant Institute 2/12/2009



Variance of projected points

* Given adirectionv, ||v|| =1
* Line L through min the direction of vis L(t) = m + vt.

X = mil = (v, x —m) /vl = (v, ) = vy =y




Variance of projected points

= So, n

var(L)=2%»" _

-l =33 b =1

2
YTVH =

_ %(YTV)T (YTv)z Lv'YY'v=v'Sv.

S=(ln)YY'

Scatter matrix

where Y is a dxn matrix with y, = X, —m as columns.

= The scatter matrix S measures the variance of our points



Directions of maximal variance

= So, we have: var(L)=v'Sv
* Theorem:
et f:{veR" | ||v|]|=1} >R,
f(v) = V'SV (and S is a symmetric matrix).

Then, the extrema of f are attained at the eigenvectors of S.

= So, eigenvectors of S are directions of maximal/minimal
variance!



Directions of maximal variance

Find extrema of v' Sv

side condition v'v=1

Lagrange Multipliers: VI + AVg =0
V(V'SV)+ AV(v'v-1)=0
SV+Av=0
SV =—-AvV

This is the definition of an eigenvector of S



Summary so far

We take the centered data vectors y,, Y, ..., ¥, € R
Construct the scatter matrixS=YY'

S measures the variance of the data points
Eigenvectors of S are directions of maximal variance.



Scatter matrix eigendecomposition

" Sis symmetric
= S has eigendecomposition: S = VDV'

4 A

The eigenvectors form
orthogonal basis



Principal components

" Eigenvectors that correspond to big
eigenvalues are the directions in which the
data has strong components (= large
variance).

" |f the eigenvalues are more or less the same —
there is no preferable direction.

= Note: the eigenvalues are always non-
negative. Think why...



Principal components

= There’s no preferable
direction

= Slooks like this:

ﬂ’ T
Vv Vv
A

= Any vectoris an
eigenvector

Olga Sorkine, NYU, Courant Institute

There’s a clear preferable
direction

S looks like this:
ﬂ“ T
V V
y7i

L is close to zero, much
smaller than A
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How to use what we got

Oriented bounding box

* For finding oriented bounding box or
alignment — we simply compute the bounding
box with respect to the axes defined by the
eigenvectors. The origin is at the centroid m.
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How to use what we got

Local frame/normal estimation

= Sort the eigenvectors by ascending
eigenvalues

" The eigenvector with A = 0 is the normal

normal
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How to use what we got

Dimensionality reduction / approximation

®°
&
o
(o]
X
This line segment approximates the The projected data set approximates
original data set the original data set
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How to use what we got

Dimensionality reduction / approximation

= Each image is 64x64
= \ector in R®4%4

= Butin fact all the
faces live on a low-
dimensional subspace

= Can find meaningful axes
with PCA and other
methods
= face pose
= expression
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How to use what we got

Dimensionality reduction / approximation

" |n general dimension d, the eigenvalues are
sorted in descending order:

242 2 A
" The eigenvectors are sorted accordingly.

* To get an approximation of dimension d < d,
we take the d’ first eigenvectors and look at
the subspace they span (d’=1isaline,d’'=2
is a plane...)



How to use what we got

Dimensionality reduction / approximation

" To get an approximating set, we project the
original data points onto the chosen subspace:
Xi =M+ qVy+ &V, +...+ g Vg +...FayVvy
Projection:

X' =m+ oV + oV, +...+ a4 V0V, +...+ 0-vy

— _
—~




Technical remarks:

= 1L >0,1=1,...,d (such matrices are called positive semi-
definite). So we can indeed sort by the magnitude of 4,
* Theorem: 4,20 < (Sv,v)=>0 Vv
Proof: S =VDV' = (Sv, V) = v'Sv=v'VDV'v =
= (VTV)T D (VTv) =w'Dw=
= AW,° + LW, + L AWy,

Therefore, 4, >0 < (Sv,v)>0 Vv



