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Interactive Shape Modeling

Shape Reconstruction

Olga Sorkine, Courant Institute, NYU 2/5/2009



Course Topics

= Shape acquisition
= Scanning/imaging

® Reconstruction
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Scanning:
results in
range images

Registration:
bring all range
images to one
coordinate
system
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Postprocess:

* Topological and
geometric
filtering

* Remeshing

* Compression
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Touch probes

" Physical contact with the object
"= Manual or computer-guided

= Advantages:

= Can be very precise

= Can scan any solid surface
= Disadvantages:

= Slow, small scale

" Can’t use on fragile
objects
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Optical scanning

" |Infer the geometry from
light reflectance

= Advantages:

= | ess invasive than touch

" Fast, large scale possible

" Disadvantages:

= Difficulty with transparent
and shiny objects
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Optical scanning — active lighting
Time of flight laser

= Laser rangefinder (lidar)

= [Measures the time it takes
the laser beam to hit the object
and come back

= Scans one point at a time;
mirrors used to change beam
direction

d
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| laser g 2 T-oct.c
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Optical scanning — active lighting
Time of flight laser

= Accommodates large range — up to several
miles (suitable for buildings, rocks)

" Lower accuracy (light travels really fast)

Olga Sorkine, Courant Institute, NYU 2/5/2009 11



Optical scanning — active lighting

Triangulation laser

" Laser beam and camera
= Laser dot is photographed

" The location of the dot in the
iImage allows triangulation —so we get the
distance to the object

camera
(CCD) ~o_ lens
laser -
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Optical scanning — active lighting

Triangulation laser
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= Laser dot is photographed

" The location of the dot in the
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Optical scanning — active lighting

Triangulation laser

" Very precise (tens of microns)
"= Small distances (meters)
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Optical scanning — active lighting
Structured light

= Pattern of visible light is projected onto the object

* The distortion of the pattern, recorded by the
camera, provides geometric information

= \ery fast — 2D pattern at once, not single dots/lines

= Even in real time

= Complex distance calculation, prone to noise

Olga Sorkine, Courant Institute, NYU 2/5/2009 16



Optical scanning — passive

= No need for special lighting/radiation

= Two (or more) cameras

" Feature matching and triangulation
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Imaging

= Ultrasound, CT, MRI
" Discrete volume of density data
" First need to segment the desired object (contouring)
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Surface reconstruction

= How to create a single mesh?

= Surface topology?
= Smoothness?
= How to connect the dots?
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Continuous reconstruction
2D Example

= Given a set of scattered (scalar) data points
at positions p; in a 2D parameter domain

" The principles are applicable to arbitrary
parameter domain dimensions
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Continuous reconstruction
2D Example

» Goal: approximate function f from f, p,
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Radial Basis Functions
1D Example

" Independent of parameter domain dimension

" Function f represented as
=" Weighted sum of radial functions r
" |In the parameter domain positions P;

f(X)=ZZ_:Wi r(‘
B

P _XH)




Radial Basis Functions

Computing the coefficients

fj:Z‘Wir( tl.—th)

to compute the weights/coefficients w,

= Set

" Linear system of equations

[ 1(0) r(”to —le) r(”to —sz) o) (S
fQ\fl _’fOH) r(0) rQ\tl —sz) w| | A
r(”tZ _IOH) I’(”t2 _tlu) r(O) W, />

N ) L)




Global Approximation

= Given P, €R?, 7, €R,i=0,...,n
" P, - parameter domain positions

= f.- function values

= Compute polynomial curve f(p,)= f,, i=0,...,n

f(x)=a+bx+cx’
-

P -




Least Squares Approximation

" Error functional
T =)
" Polynomial basis of ldegree m in d dimensions
f(X)=b(x) c=b(x)-c
b(x) =[b,(x),.... 5, ()]  c=le,s..re ]

2

b(X) = i,x,y,xz,xy,yz]r
* Previous 1D quadratic Example £ (x)=c, +c,x+c.x°



Least Squares Approximation

= Solve for c by taking (partial) derivatives of J,
w.r.t. the unknowns and setting to zero

§JL5/(9(_‘1 =0: Zzb X,, C j,] —

dJrs/dcr =0 22172 X;) Fe— fil =

8.]L5/(9(.‘/{ =0: Zsz X: C jf] —



Least Squares Approximation

® |n matrix-vector notation

Z2b X" C f:] —
2Z[b(x’)b( X)) e—b(x;)fi] = 0.
Zb(X;‘)b(X‘;)Tc — Zb(XJﬁ

i

= Solve for ¢ = [Zb x;)b(x;)'] 'Zb (x;) f



Least Squares Approximation

2D quadratic example

" Error functional and partial derivatives

f(X)=a+bu+byv+c, u’+c, uv+c, v
min Z(f(u )—fl) = min Z(a-l—b u+bv.+c u+c, uv,+c, v: —f)

(a,b,C)= (a,b,C)

/ﬁa a+bu +byv.+c, u’+c, uv,+c, v —fl):O

é’z /ﬁc —ZZV a+bu +byv,+c u’+c, uv. +c, v —fl.)zO



" Linear system of equations

Least Squares Approximation

2
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2D quadratic example

2
% V a ) (1)
2
uv: | b, u,
3
O B 3
2 2 _ i 2
vi Mi Cuu l ui
3
uivi Cuv Mivi
Y e Ve
Vi N\ Cw ) \ Vi /J



Least Squares Approximation

Results

Olga Sorkine, Courant Institute, NYU 2/5/2009 30



Least Squares Approximation

Normal equations

Method of Normal Equations. For a different but also very com-
mon notation, note that the solution for ¢ solves the
following (generally over-constrained) LSE (B¢ = f) in the least-
squares sense

b’ (x;) fi

_bT ('XN ) / N

using the method of normal equations

B'Be = B'f
c = (B'B)"'B't
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Weighted Least Squares

" Principle: local approximation at X by
weighting the squared errors based on
proximity N the parameter domain

(I i_XH)




Weighted Least Squares

Weighting functions
= Gaussian O(d)=e "
" /1is a smoothing parameter

= \Wendland function
O(d)=0A-d ! h)*(4d | h+1)
= Defined in [0, /] and
8(0) =1, 8(h)=0, 6'(h) =0 and 8"(h) =0

= Singular function
g o(d) = 1

d*+¢&°

= For small ¢, weights large near d=0 (interpolation)



Moving Least Squares

Parametric 1D example

" Principle: “construct” a global function from
infinitely many locally weighted functions

Zeq P _XH)

£0)= 1,00, min 3] /(p)-

=<




Moving Least Squares

Parametric 1D example

® The infinite set

1= 1,09, min 3 [ 1)~ £ ol

P _XH)

is continuously differentiable if and only if & is
continuously differentiable

A

[~




LS, MLS and Weight Functions

Linear polynomial fit

@]

= Global least squares XK

o

= MLS with approximating _{a\/\

weight function

1
= MLS with (near) 0d) =7
singular weight function \N

6’(d)=e i
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Implicit Surface Reconstruction



Distance Field Reconstruction

2D example

= |dea: construct a distance
field on the points @

" Implicit function ®
f(pi): 0 o— 0 @

for the points p,
" Trivial solution f =0 .

= Requires additional e
constraints



Distance Field Reconstruction
[Hoppe et al. 1992]

" Linear distance function l
per point \e o
" Direction is defined by \0
surface normal — o
fi(x):ni '(X_pz')
= Distance in space is the *—
minimum of all local
. . e
distance functions /]

7(6)=min /(x)=minn, (x-p,



Distance Field Reconstruction

Inside + outside point constraints

= Additional data to define
inside and outside T e

" Basic idea [Turk and + @ -
O’Brien 1999] - - _ e

" |[nsert additional value , o ~ -
constraints manually @

= These constraints can be @
_ +
added as soft constraints
with low(er) weight



Distance Field Reconstruction

Inside + outside point constraints

* This information can also N z
be obtained from \e +
+ /
surface normals e
f(p,+an)=«a +—e ot
= Some acquisition
] % : 7 o
devices provide . '+
normals £ o .
_|_
" If not, they must be +’/ 1

locally approximated



Distance Field Reconstruction

Inside + outside point constraints

®» This information can also
be obtained from o
surface normals o

f(pi+ Omi): a4

= Some acquisition
devices provide
normals

" |f not, they must be S I .............
locally approximated
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Distance Field Reconstruction

Radial basis functions (RBFs)

= Similar to parametric case

" Given points and normals p ., N,
construct a function with

f(pi): 0, f(pi -I-Oll’]l.): 04

= Possible solution: Gaussian RBFs

)= wel
et S




Distance Field Reconstruction
Moving least squares (IMLS)

= Given points and normals p;, N,
construct a function with

f(pi): 0, f(pi T ni): o
using the moving least squares technique

1= 400 min 7@, -/ e, <))




MLS Distance Field

1D example
" One dimensional Implicit function
#(X)
X
® b ) [ —— Approximation

« Constraint — fX) Weighting




MLS Distance Field

1D slice of a 2D height field

Andrew Nealen, Rutgers, 2009
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MLS Distance Field

1D example

= Adding inside + outside constraints
AX)

® b ) [ —— Approximation
« Constraint — fX) Weighting




MLS Distance Field

1D example

" Linear polynomial fit (uniform weights)
AX)

I

® D - |, — Approximation
« Constraint — fX) Weighting

Olga Sorkine, Courant Institute, NYU 2/5/2009 48




MLS Distance Field

1D example

" Linear polynomial fit (Gaussian weights)
AX)

O\

® D - |, — Approximation
« Constraint — fX) Weighting
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MLS Distance Field

1D example

" Linear polynomial fit (Gaussian weights)

#(X)
I
| >~ fo (pz)_ﬁ
I
X
) I ®
|
® b —p . ——— Approximation

e Constraint

— X Weighting
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MLS Distance Field

1D example

" Quadratic polynomial fit (Gaussian weights)

/%)

’\F- fo(plz_ﬁ

X

® b - [

e Constraint

— Approximation
— X Weighting
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MLS Distance Field

1D example

" Constant polynomial fit (Gaussian weights)
AX)

—rt——— > X
o | .
|
® b —p — Approximation
« Constraint — fX) Weighting
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MLS Distance Field

1D example

" Constant polynomial fit (Gaussian weights)
AX)

—
—i—*;——;_b X
® I °
I
® b —p — Approximation
« Constraint — fX) Weighting
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MLS Distance Field

1D example

= MLS approximation results
AX)

Surface points

® D —pp ; —— Approximation
. Constraint — fX)

Weighting
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MLS Distance Field

1D example

= Discrete evaluation with marching cubes (3D)

/(X)

I I I I I I I I

I I I I I I I I

|+ | + | - | - | - |4 | + | +

I I I I : : I :

I I I ¢ I

I I | I ? . I I I

I I | I I I X
. I | I I

I

® b —p 1, — Approximation

« Constraint — fX) Weighting




MLS Distance Field

1D example

= Discrete evaluation with marching cubes (3D)
-AX)

| Surface points

|
+ |-
|

I

I

| - +
I

I

P R

® b ) [ —— Approximation
« Constraint — fX) Weighting

Olga Sorkine, Courant Institute, NYU 2/5/2009 56




MLS Distance Field

1D example

= Discrete evaluation with marching cubes (3D)

-f(X) Surface points
| linear interpolatibn

I I
I I |
| + | - |+
I I |
I I |
I . I
I I

® b ) [ —— Approximation
« Constraint — fX) Weighting
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MLS Distance Field

2D lllustration




MLS Distance Field

Extensions

= Point constraints vs. true normal constraints

o o M 3 > ' iy - |

= Details: shen, C., 0'Brien, J. F., Shewchuk J. R., "Interpolating and

Approximating Implicit Surfaces from Polygon Soup." Proceedings of ACM
SIGGRAPH 2004, Los Angeles, California, August 8-12.



Tessellation of implicit surfaces



Tessellation

= Want to approximate an implicit surface with a mesh

= For rendering, further processing

= Can‘t explicitly compute all the roots
= |nfinite amount (the whole surface)

= The expression of the implicit function may be complicated

= Solution: find approximate roots by trapping the implicit
surface in a grid (lattice)

Olga Sorkine, Courant Institute, NYU 2/5/2009
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Tessellation
2D grid

= 16 different configurations in 2D

= 4 equivalence classes (up to rotational and reflection
symmetry + complement)

sjsisgs
SESRSEs



Tessellation
2D grid

= 16 different configurations in 2D

= 4 equivalence classes (up to rotational and reflection
symmetry + complement)

@
EIICIIBEfl

case 1 case 2 case 3 case 4



Tessellation

2D grid, consistency

= Case 4 is ambiguious:

=  Always pick consistently to avoid problems with the resulting
mesh

Olga Sorkine, Courant Institute, NYU 2/5/2009 64



Tessellation
2D triangle grid

= No ambiguity if we have triangles instead of squares
= However, it is still unknown what the true surface is!

AN AN NN LN LN
T 1T T 1
| I I I
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Tessellation
3D — Marching Cubes
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Tessellation
3D — Marching Cubes

" Marching Cubes (Lorensen and Cline 1987)

1.

2.

Olga Sorkine

Load 4 layers of the grid
Into memory a4

Create a cube whose // Y
vertices lie on the two Layerkel . t 44 U
middle layers //

Classify the vertices of Layefk
the cube according to the
implicit function (inside,
outside or on the surface)
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Tessellation
3D — Marching Cubes

4. Compute case index. We have 28= 256 cases (0/1 for each of
the eight vertices) — can store as 8 bit (1 byte) index.

index = [Vvy [V, ]vs]va Vs ve[ v, ve] index = [0]o]1]o]Jo]oJo]1][=33
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Tessellation

3D — configurations

= We have 14 equivalence classes (by rotation, reflection and
complement)

/

et
pEigySiysEi
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Tessellation
3D — Marching Cubes

5. Using the case index, retrieve the connectivity in the look-up
table

= Example: the entry for index 33 in the look-up table indicates
that the cut edges are e ; e,; ec; e;; egand e, ; the output
triangles are (e,; ey; e,4) and (es; e4p; €;)-

Z

Ifé“ index = [0Jo]1]oJoJoJo]1]=33
A J




Tessellation
3D — Marching Cubes

6. Compute the position of the cut vertices by linear
interpolation:

V.=av, +(1-a)v,
__ )
FWvy)-1v,)

7. Compute the vertex normals

8. Move to the next cube

Aktueller Wirfel

Neu zu behandelnde Kante
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Tessellation

3D — configurations, consistency

= Have to make consistent choices for neighboring
cubes

" Prevent “ holes”in the triangulation

Y

s
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Tessellation
Grid-Snapping

= Problems with short triangle edges

= When the surface intersects the cube close to a corner, the resulting
tiny triangle doesn‘t contribute much area to the mesh

= When the intersection is close to an edge of the cube, we get skinny
triangles (bad aspect ratio)
= Triangles with short edges waste resources but don‘t
contribute to the surface mesh representation




Tessellation
Grid-Snapping

= Solution: threshold the distances between the created
vertices and the cube corners

" When the distance is smaller than d,, we snap the vertex to
the cube corner

= |f more than one vertex of a triangle is snapped to the same
point, we discard that triangle altogether

=
-
=
|
|.

P

Fad

el
T
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Tessellation
Grid-Snapping

= With Grid-Snapping one can obtain significant reduction of
space consumption

Parameter |0 0,1 (0,2 0,3 0,4 0,46 |0,49

5
Vertices 1446 (1398 | 1254 (1182 |1074 [830 |830
Reduction |0 3,3 13,3 |18,3 [25,7 (42,6 [42,6




Tessellation

Sharp corners and sharp edges

= (Kobbelt et al. 2001):

®» Evaluate the normals

* When they significantly differ, create additional

vertex

Y
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