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Course topics

= Shape representation

= Points
= Parametric surfaces

" Implicits
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Course topics

= Shape representation
" Polygonal meshes
= Subdivision surfaces
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Shape representation

= Where does the shape
come from?

= Modeling “by hand”:

"= Higher-level representations, |
amendable to modification,

control

= Parametric surfaces,
subdivision surfaces, implicits

= Acquired real-world objects:
= Discrete sampling
= Points, meshes
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Points
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Shape acquisition

Sampling of real world objects




Points

= Standard 3D data from a variety of sources

= Often results from scanners

= Potentially noisy

" Depth imaging (e.g. by
triangulation

= Registration of multiple images
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Points

" points = unordered set of 3-tuples
= Often converted to other reps

= Meshes, implicits, parametric surfaces
= Easier to process, edit and/or render

= Efficient point processing and modeling
requires a spatial partitioning data structure

= To figure out neighborhoods
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Points

Neighborhood information

= Why do we need neighbors?

need normals (for shading) upsampling — need to count density

" Need sub-linear implementations of

= k-nearest neighbors to point X
" In radius search Hpi —XH <é&
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Spatial Data Structures

Commonly used for point processing

= Regular uniform 3D lattice

Simple point insertion b BInen

= Simple point insertion by | _
coordinate discretization R ?}*"

= Simple proximity queries by )

searching neighboring cells 3

" Determining lattice parameters
(i.e. cell dimensions) is nontrivial

" Generally unbalanced, i.e. many empty cells
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Spatial Data Structures

Commonly used for point processing

= QOctree
= Splits each cell into 8 equal cells D00 o
. : 18
= Adaptive, i.e. only splits when fisenemy
too many points in cell .

= Proximity search by (recursive)
tree traversal and distance to 1041041
neighboring cells

—
-‘

\EH N

" Tree might not be balanced
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Spatial Data Structures

Commonly used for point processing

= Kd-Tree T | B O
= Each cell is individually ) Tle et
split along the median [ *®." "
into two cells .’ " .
= Same amount of points [

in cells

= Perfectly balanced tree

= Proximity search similar to the recursive
search in an Octree

= More data storage required for
inhomogeneous cell dimensions
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Parametric Curves and Surfaces

" Curves are 1-dimensional parameterizations
S(t) = X t=0

= Planar curve: S(t)=(x(t),y())

= Space curve: S(1)=(X(t), y(1),z(t))




Parametric Curves and Surfaces

= Surfaces are 2-dimensional parameterizations

7

S(U,v) =X, 1

\Y

S(u,v)=(x(u,v), y(u,v), z(u,v))
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Parametric Curves

Examples

= Explicit curve/circle in 2D

p:R—>RY d=123,...

te p(t) = (x(), y(0), (1)) K \
p(t) =r-(cos(t), sin(t)) J
t €[0, 2m)
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Parametric Curves and Surfaces

Examples

® Bezier curves

S(t=3p, B'(1)

Curve and
control polygon

Basis functions

Olga Sorkine, NYU, Courant Institute 1/28/2009



Parametric Surfaces

Examples

= Spherein 3D

S:R*—>R%d=123,...

S(u,v) =r-(cos(u)cos(V), sin(u)cos(v), sin(v))
(u,v) €[0, 2m)x[-m/2, w/2]
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Parametric Curves

Continuity and regularity

" Line segment  p:[ab]—>R%d=123,...

= The same segment can be
parameterized differently

P, : [091] — R3,p(t) — tPl + (l - t)Pz
P, :[0,1] — R3>p(t) = 1:2|:)1 +(1- tz)Pz

P/Pz

1



Parametric Curves

Continuity and regularity

= A parametric curve is n-times continuously differentiable if
the image p is n-times continuously differentiable (C")

* The derivative p’(t) at position tis a tangent vector
= A curve is regular when p is differentiable and p’(t) #0

p'(t) = (X'(1), y'(D),...)

p'(t)



Parametric Curves

Continuity and regularity

p:[-2,2]1> R’,p(t) = (t’,t*, 0)
p'(t) = (3t*,2t,0) = p'(0)=0

" pis continuously differentiable, | |

but not regularatt=0

" The regularity of a curve can be expressed as its
visual smoothness



Parametric Curves

Arc length parameterization

= A curve is parameterized by arc length when

Ip'(t)| =1, te[a,b]

" Any regular curve can be parameterized by
arc length

" For arc length parameterized curves:

T(S)=p'(s) Tangent vector
K(S) =p"(s) Curvature vector
K(S) =

p"(S)H Curvature (scalar)



Parametric Surfaces

Tensor product surfaces

= Curve swept by another curve
S(U,V) = Zpij B, (U)B;(v)
1]
= Bezier surface:

S(U,V) = iipij B;" (U)B?(V)

i=0 j=0
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Parametric Surfaces

Tensor product surfaces

=" Example: Bezier surfaces

= Surface lies in convex hull
of control points

= Surface interpolates the

four corner control points

" Boundary curves are
Bezier curves defined only |
by control points on the boundary | couolpoygon <

= Other: B-Spline patches, NURBS, etc...

Olga Sorkine, NYU, Courant Institute 1/28/2009



Parametric Curves and Surfaces

= Advantages
= Easy to generate points on the curve/surface
= Separates x/y/z components

" Disadvantages
= Hard to determine inside/outside

" Hard to determine if a point is on the
curve/surface



Implicit Curves and Surfaces



Implicit Curves and Surfaces

Illustration

ll
i

| I
|
I
I
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Implicit Curves and Surfaces

Definition

= Definition g:R’—>R
K=g"(0)={p R :g(p)=0}

= Space partitioning

(peR’:g(p)<0} Inside
{peR’:g(p)=0} Curve/Surface
{PeR’:9(p)>0} Outside
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Implicit Curves and Surfaces

Examples
" Implicit circle and sphere
f:R* >R g:R’—>R
K={peR: f(p)=0} K={peR:g(p)=0}
f(x,y)=x>+y>—r° g(X,y,2)=X"+y*+2°—r°

(5 @
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Implicit Curves and Surfaces
Gradient

= The normal vector to the surface (curve) is
given by the gradient of the (scalar) implicit

function .
od oqg O

Vg(x,y,2)=( J 9 gj
OX oy 0z

= Example
g(x,y,z)=x>+y>+2° -1’

vg(x,y,z)=(2x,2y,2z2)
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Implicit Curves and Surfaces

Smooth set operations

= Standard operations: union and intersection

&8 ), U 9i(p)=ming;(p)
w 9i(p) =maxg;(p)

" |n many cases, smooth blending is desired
= Pasko and Savchenko [1994]

( )
gu f=1Llg+ f—+/g”+ f2-2agf

1
I+
)

/
g f=rlg+f+yg>+ f2-2agf

1
l+o
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Implicit Curves and Surfaces

Smooth set operations

= Examples

a=0 a =1

= For o= 1, this is equivalent to min and max

. g+f |g-—f .
EE}gUf:%(ng_ (g—f)z): 5 —‘ 5 ‘:mm(g,f)

. +f |g-f
gg}gmfzg(g+f+w/(g—f)2)=g +‘ 5 ‘zmax(g,f)

2
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Implicit Curves and Surfaces
Blobs

= Suggested by Blinn [1982]

= Defined implicitly by a potential function around a
p0|nt pl' gl(p): aie_bi HP—IO.H

= Set operations by simple addition/subtraction
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Implicit Curves and Surfaces

= Advantages
= Easy to determine inside/outside

" Easy to determine if a point is on the
curve/surface

" Disadvantages
* Hard to generate points on the curve/surface
= Does not lend itself to (real-time) rendering



Polygonal Meshes



Polygonal Meshes

" Boundary representations of objects
= Surfaces, polyhedrons

" How are these objects stored?
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» Agraphis a pair G=(V, E)
= V is aset of ndistinct vertices
Vg, Viy evy Vo g
= Eisasetof edges (v, Vj)
» [f VcRIwithd > 2, then
G=(V, E) is a geometric graph
* The degree or valence of a

vertex describes the number
of edges incident to this vertex

Definitions

Geometric graph

| [\‘
\ﬂ\\/ \




Definitions
Edges

Two edges are neighbors if they share a

common vertex

Edges are generally not oriented, and are

noted as (v, Vj)

Halfedges are edges with added orientation

An edge is comprised of two halfedges

<€

>




Definitions
Polygon

" A geometric graph Q=(V,E) with
Ez{(V09 Vl)l (Vla V2)1 Ry (Vn_29 Vn_l)} is a pO/ygon
Pe Ps

= A polygon is Po® P Ps

= Planar, if all vertices lie on a plane Ps
* Closed, if py= P,

= Simple, if the polygon does not self-intersect



Definitions

Polygonal mesh

= Afinite set M of closed, simple polygons Q; is
a polygonal mesh if:

" The intersection of enclosed regions Pl
of any two polygons in M is empty T~

<

" The intersection of two polygons in /\ //_l
M is either empty, a vertex veV or <//I\\
an edge ecE

" Every edge belongs to at least one polygon



Definitions

Polygonal mesh

" The set of all edges that belong to
only one polygon is termed the

boundary of the polygonal mesh, and I//A
is either empty or forms closed loops I\\

» |f the set of edges that belong to
only one polygon is empty, then the polygonal mesh
is closed

" The set of all vertices and edges in a
polygonal mesh form a graph




Definitions
Polyhedron

= A polygonal mesh is a polyhedron if
= Each edge is part of two polygons (it is closed)

" Every vertex veV is part of finite, cyclic ordered
set of polygons {Q.}

= The polygons incident to a vertex V can be ordered,
such that Q;and Q; share an edge incident to v

N R %

" The union of all polygons forms a single connected
component



Definitions
Manifold

= Asurface is a 2-manifold if it is everywhere
locally homeomorphic

to a disk ‘q( "

= Examples for a non-manifold vertex and a
non-manifold edge

o 2% %B
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Definitions
Polyhedron

" The union of all polygonal areas is the surface
of the polyhedron

" The polygonal areas of a polyhedron are also
known as faces

= Every polyhedron partitions space into two
areas; inside and outside the polyhedron
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Definitions

Orie

ntation

= Every face of a polygonal mesh is orientable

» by defining “clockwise” (as opposed to

“counterclockwise”). Two possible orientatio
y 6 In

* Defines the sign of the

s 16
surface normal :

" Two neighboring facets 0“3 !

ns

6
S

are equally oriented, if the edge directions of

the shared edge (induced by the face

orientations) are opposing Q I

(-




Definitions
Orientability

= A polygonal mesh is orientable, if the incident
faces to every edge can be equally oriented

» |f the faces are equally oriented for every edge,
the mesh is oriented

= Notes Klein bottle
= Every non-orientable closed mesh
embedded in R? intersects itself
" The surface of a polyhedron is Mabius strip

always orientable Q
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Fuler-Poincaré Formula

= Relation between #vertices, #edges and #faces
of a polygonal mesh

= Example; v = #vertices
e = #edges

f = #faces

v=28 v=2_8
e =12 e = 12+1
f=6 f =6+1




Euler-Poincaré Formula

= Theorem (Euler): The sum
Y(M)=v—e+f
is constant for a given topology, no matter

which mesh we choose

" |[f M has one boundary loop:
Y(M)=v—e+f=1

= |[f M is homeomorphic to a sphere:
r(M)=v—e+f=2



Euler-Poincaré Formula
Usage

" Let‘s count the edges and faces in a closed triangle
mesh:

= Ratio of edges to faces: e =3/2 f
= each edge belongs to exactly 2 triangles
= each triangle has exactly 3 edges

= Ratio of vertices to faces: f ~ 2v
" 2=v—e+f=v-3/2f+f
" 2+f/2=v

= Ratio of edges to vertices: e ~ 3v
= Average degree of a vertex: 6

= 2 vertices incident on each edge



Euler-Poincaré Formula

Genus

" Theorem: if a polyhedron M is homeomorphic
to a sphere with g handles (“holes”) then

Y(M)=v—e+f=2(1-g)

" ojs called the genus of M /jj

This is not a handle,
it’s a boundary loop




Euler-Poincaré Formula

Example: simple torus

v—e+f=2(1-g)
8—16+8=2(1-1)




Euler-Poincaré Formula

Generalization

= Theorem: Let
= v-— #vertices
=" e— #edges
= f— #faces
" c— #connected components
= h— # boundary loops

= g— #handles (the genus)

then: v—-e+f-h=2(c—g)

(=) ==




Data structures for meshes

Indexed Face Set

Vertex list Face list

7(012) 6(1,1,1) (Coordinate3) (IndexedFaceSet)

4 (0,0,1) ,0,1)

0.0 0.0 0.0
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
0.0 00 1.0
1.0 0.0 1.0
1.0 1.0 1.0
00 1.0 1.0

2 (1,1,0)

~U3010
n“.

0(0,0,0) 1 (1,0,0)

ahwWNRERO
NwNR OO
GO WN R
oON~NOOOIN
~N~No U~ W

~N~No o b~ WN - O




Data structures for meshes

Space requirements

= Coordinates/attributes 3x16+k bits/vertex

vertex 1 X y
vertex 2 X y
vertex 3 | Y

N[N N
o | 03|

= Con nectivity 3xlog,(V) bits/triangle
2

Triangle 1

Triangle 2

Triangle 3

|
3
4
Triangle 4 |7
6
8

Triangle 5

= oo| S | | w

Lh) Lh| Lnlbd| b

Triangle 6

= When uncompressed, connectivity dominates
= Reminder: f=2v... so after 256 vertices



Data structures for meshes

Indexed Face Set — Problems

" |[nformation about neighbors is not explicit

= Finding neighboring vertices/edges/faces etc. costs O(v)
time!

= | ocal mesh modifications cost O(v)

S| s
e N B %

>
DN RN

= Breadth-first search costs O(k*v) where k = # found
vertices



Data structures for meshes
Neighborhood relations [Weiler 1985]

= All possible neighborhood relationships:
VV

W X N O UL A WDHN R

Vertex —Vertex
Vertex - Edge
Vertex —Face
Edge  — Vertex

Edge  —Edge
Edge - Face
Face — Vertex
Face — Edge
Face — Face

VE
VF
EV
EE
EF
FV
FE
FF

VvV VE VF
EV EE EF
> 000
B FV FE FF

AN

V3

D



Data structures for meshes

Half-edge data structure

= Half-edge has:

= Pointer to twin h-e

= Pointer to origin vertex / T~
~—— /

= Pointer to next h-e /
" Pointer to previous h-e / \
AN

!
= Pointer to incident face \ 1/

= \ertex has:
" Pointer to one emanating h-e \ |_—
= Face has:

= Pointer to one of its enclosing h-e



Data structures for meshes

Half-edge data structure

Vertexlist Face
v coord he f e
22 0 0.0 00 0.0 0
21
v /:—7“ 1 1.0 00 00 1 0 e0
/ / Ve ,7 2 10 10 00 2 1 e8
{20 3 00 1.0 00 3 2 e4
Vyq Ve > 4 0.0 00 1.0 4 3 c16
5 1.0 0.0 1.0 9
A > 6 1.0 1.0 1.0 13 4 el2
FUUUURURRRUURRRIN ST ° 7 0.0 1.0 1.0 16 5 e20
Vs /Vz
y Half-Edgelist
V, A

he vstart next prev opp he vstart next prev opp

0 0 1 3 6 12 2 13 15 10
1 1 2 0 11 13 6 14 12 22
22 3 1 15 14 7 15 13 19
3 3 0 2 18 15 3 12 14 2
4 4 5 720 16 7 17 19 21
5 5 6 4 88 17 4 18 16 7
6 1 75 0 18 0 19 17 3
70 4 6 17 19 3 16 18 14
8§ 1 9 11§ 20 5 21 23 4
9 5 10 & 23 21 4 22 20 16
10 6 9 12 22 7 23 21 13
11 2 § 10 I 23 6 20 22 9



Data structures for meshes

Half-edge data structure

= Each atomic insertion into the data structure (i.e., vertex,
edge or face insertion) requires constant space and time

2

HE
1 1
| 1 Triangle face:
prev = next->next
Vv F



Data structures for meshes

Half-edge data structure

= All basic queries take constant O(1) time!

" |n particular, the query time is independent of the model

size ‘ ‘
f, ‘ f,
AN 4
./
@ O



Data structures for meshes

Half-edge data structure

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q-append(he);

iIT (he.opposite = null)
q-append(he.opposite);

while (! g.i1sEmpty()) {

he=q.first();

// do work

iIT (he.next.opposite = null)
q-append(he.next.opposite);

IT (he.next.next.opposite = null)
q-append(he.next.next.opposite)



Data structures for meshes

Half-edge data structure

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q-append(he);

iIT (he.opposite = null)
q-append(he.opposite);

while (! g.i1sEmpty()) {

he=q.first();

// do work

iIT (he.next.opposite = null)
q-append(he.next.opposite);

IT (he.next.next.opposite = null)
q-append(he.next.next.opposite)



Data structures for meshes

Half-edge data structure

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q-append(he);

iIT (he.opposite = null)
q-append(he.opposite);

while (! g.i1sEmpty()) {

he=q.first();

// do work

iIT (he.next.opposite = null)
q-append(he.next.opposite);

IT (he.next.next.opposite = null)
q-append(he.next.next.opposite)



Data structures for meshes

Half-edge data structure

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q-append(he);

iIT (he.opposite = null)
q-append(he.opposite);

while (! g.i1sEmpty()) {
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// do work

iIT (he.next.opposite = null)
q-append(he.next.opposite);

IT (he.next.next.opposite = null)
q-append(he.next.next.opposite)



Data structures for meshes

Half-edge data structure

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q-append(he);

iIT (he.opposite = null)
q-append(he.opposite);

while (! g.i1sEmpty()) {

he=q.first();

// do work

iIT (he.next.opposite = null)
q-append(he.next.opposite);

IT (he.next.next.opposite = null)
q-append(he.next.next.opposite)



Data structures for meshes

Half-edge data structure

= Example: efficient breadth-first search

//q: Queue (FIFO) of HalfEdges

HalfEdge he;

q-append(he);

iIT (he.opposite = null)
q-append(he.opposite);

while (! g.i1sEmpty()) {

he=q.first();

// do work

iIT (he.next.opposite = null)
q-append(he.next.opposite);

IT (he.next.next.opposite = null)
q-append(he.next.next.opposite)



Data structures for meshes

Criteria for design

Maximal number of vertices (i.e., how large are the models?)
Available memory size

Required operations

= Mesh updates (edge collapse, edge flip)
= Neighborhood queries

Distribution of operations (what are the most
common/frequent ones?)

How can we compare different data structures?



