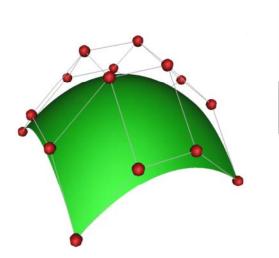
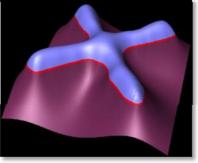
G22.3033-004, Spring 2009 Interactive Shape Modeling

Shape Representations

Course topics

- Shape representation
 - Points
 - Parametric surfaces
 - Implicits





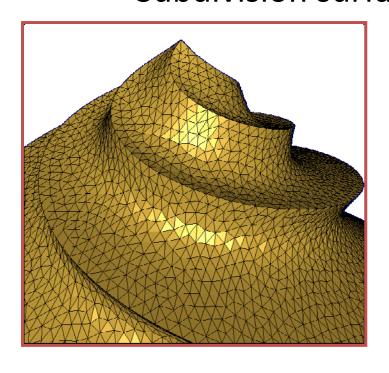
1/28/2009

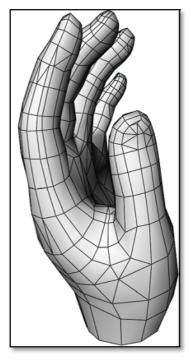


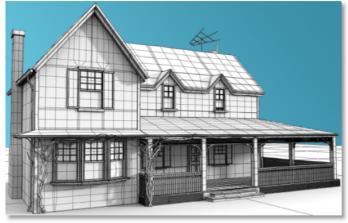
Olga Sorkine, NYU, Courant Institute

Course topics

- Shape representation
 - Polygonal meshes
 - Subdivision surfaces





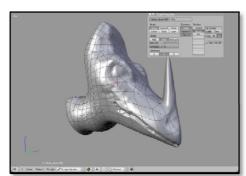


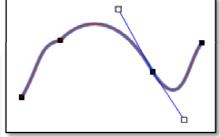
Olga Sorkine, NYU, Courant Institute

1/28/2009

Shape representation

- Where does the shape come from?
- Modeling "by hand":
 - Higher-level representations, amendable to modification, control
 - Parametric surfaces, subdivision surfaces, implicits

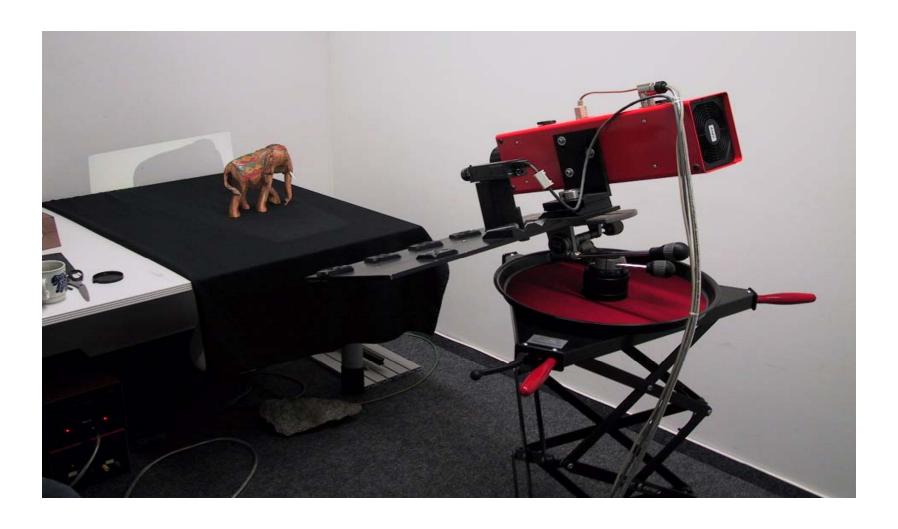




- Acquired real-world objects:
 - Discrete sampling
 - Points, meshes

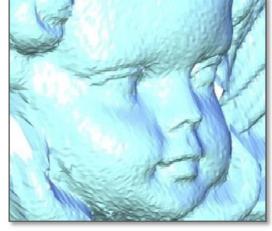
Shape acquisition

Sampling of real world objects



- Standard 3D data from a variety of sources
 - Often results from scanners
 - Potentially noisy





- Depth imaging (e.g. by triangulation
- Registration of multiple images

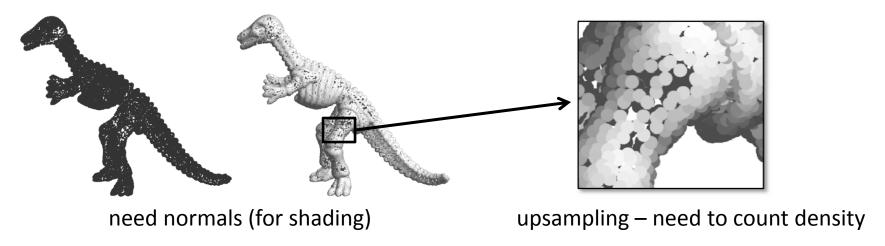


- points = unordered set of 3-tuples
- Often converted to other reps
 - Meshes, implicits, parametric surfaces
 - Easier to process, edit and/or render

To figure out neighborhoods

Neighborhood information

Why do we need neighbors?

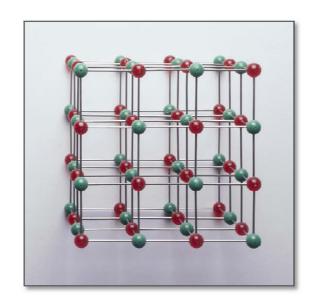


- Need sub-linear implementations of
 - k-nearest neighbors to point x
 - In radius search $\|\mathbf{p}_i \mathbf{x}\| < \varepsilon$

Spatial Data Structures

Commonly used for point processing

- Regular uniform 3D lattice
 - Simple point insertion by coordinate discretization
 - Simple proximity queries by searching neighboring cells



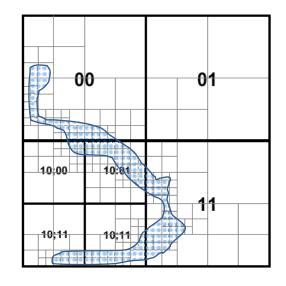
- Determining lattice parameters
 (i.e. cell dimensions) is nontrivial
- Generally unbalanced, i.e. many empty cells

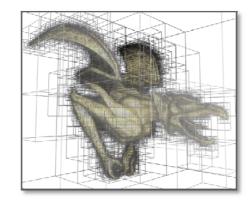
Spatial Data Structures

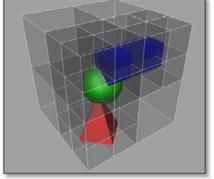
Commonly used for point processing

Octree

- Splits each cell into 8 equal cells
- Adaptive, i.e. only splits when too many points in cell
- Proximity search by (recursive) tree traversal and distance to neighboring cells
- Tree might not be balanced





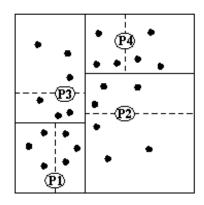


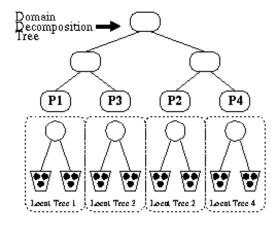
Spatial Data Structures

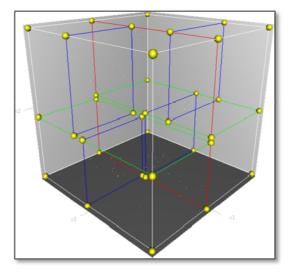
Commonly used for point processing

Kd-Tree

- Each cell is individually split along the median into two cells
- Same amount of points in cells
- Perfectly balanced tree
- Proximity search similar to the recursive search in an Octree
- More data storage required for inhomogeneous cell dimensions





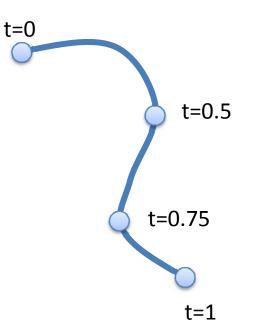


Curves are 1-dimensional parameterizations

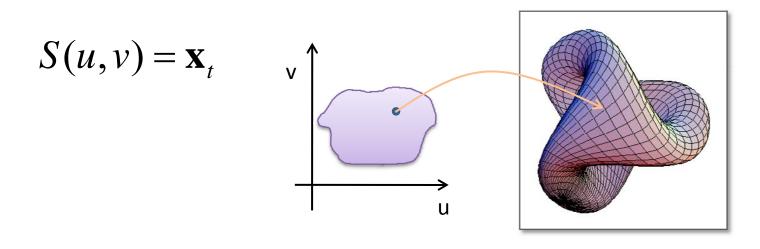
$$S(t) = \mathbf{x}_t$$

■ Planar curve: S(t) = (x(t), y(t))

■ Space curve: S(t) = (x(t), y(t), z(t))



Surfaces are 2-dimensional parameterizations



$$S(u,v) = (x(u,v), y(u,v), z(u,v))$$

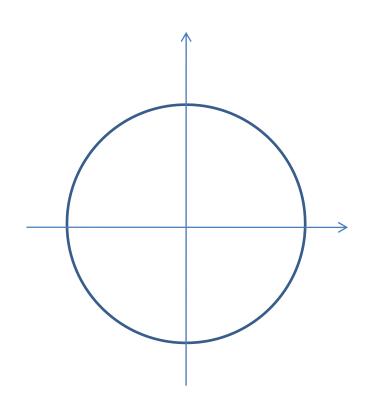
Examples

Explicit curve/circle in 2D

$$\mathbf{p}: R \to R^d, \quad d = 1, 2, 3, \dots$$

 $t \mapsto \mathbf{p}(t) = (x(t), y(t), z(t))$

$$\mathbf{p}(t) = r \cdot (\cos(t), \sin(t))$$
$$t \in [0, 2\pi)$$

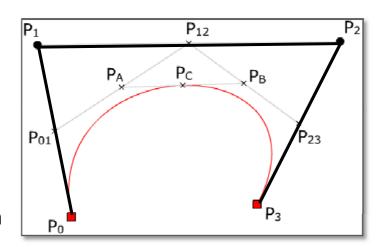


Examples

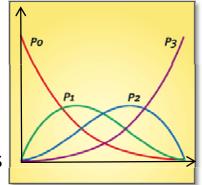
Bezier curves

$$S(t) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i}^{n}(t)$$

Curve and control polygon



$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$



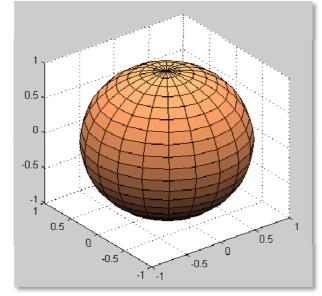
Basis functions

Parametric Surfaces

Examples

Sphere in 3D

$$S: \mathbb{R}^2 \to \mathbb{R}^d, d = 1, 2, 3, \dots$$



$$S(u,v) = r \cdot (\cos(u)\cos(v), \sin(u)\cos(v), \sin(v))$$
$$(u,v) \in [0, 2\pi) \times [-\pi/2, \pi/2]$$

Continuity and regularity

- Line segment $\mathbf{p}:[a,b] \rightarrow R^d, d=1,2,3,...$
 - The same segment can be parameterized differently

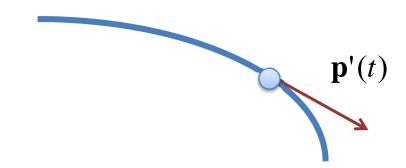
$$\mathbf{p}_1:[0,1] \to R^3, \mathbf{p}(t) = tP_1 + (1-t)P_2$$

 $\mathbf{p}_2:[0,1] \to R^3, \mathbf{p}(t) = t^2P_1 + (1-t^2)P_2$

Continuity and regularity

- A parametric curve is n-times continuously differentiable if the image \mathbf{p} is n-times continuously differentiable (C^n)
- The derivative $\mathbf{p}'(t)$ at position t is a tangent vector
- A curve is regular when \mathbf{p} is differentiable and $\mathbf{p'}(t) \neq \mathbf{0}$

$$\mathbf{p}'(t) = (x'(t), y'(t),...)$$

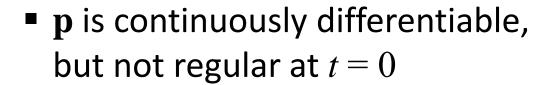


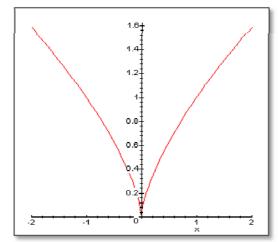
Continuity and regularity

Example

$$\mathbf{p}:[-2,2] \to R^3, \mathbf{p}(t) = (t^3, t^2, 0)$$

 $\mathbf{p}'(t) = (3t^2, 2t, 0) \implies \mathbf{p}'(0) = 0$





 The regularity of a curve can be expressed as its visual smoothness

Arc length parameterization

A curve is parameterized by arc length when

$$\|\mathbf{p}'(t)\| = 1, \ t \in [a,b]$$

- Any regular curve can be parameterized by arc length
- For arc length parameterized curves:

$$T(s) \coloneqq \mathbf{p}'(s)$$
 Tangent vector $K(s) \coloneqq \mathbf{p}''(s)$ Curvature vector $\kappa(s) \coloneqq \|\mathbf{p}''(s)\|$ Curvature (scalar)

Curvature (scalar)

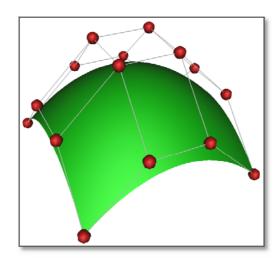
Parametric Surfaces

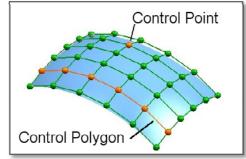
Tensor product surfaces

Curve swept by another curve

$$S(u,v) = \sum_{i,j} \mathbf{p}_{ij} B_i(u) B_j(v)$$

$$S(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{ij} B_{i}^{m}(u) B_{j}^{n}(v)$$

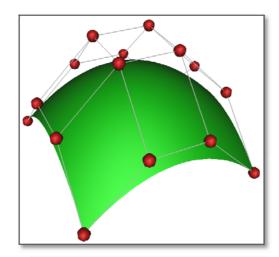


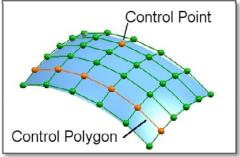


Parametric Surfaces

Tensor product surfaces

- Example: Bezier surfaces
 - Surface lies in convex hull of control points
 - Surface interpolates the four corner control points
 - Boundary curves are
 Bezier curves defined only
 by control points on the boundary



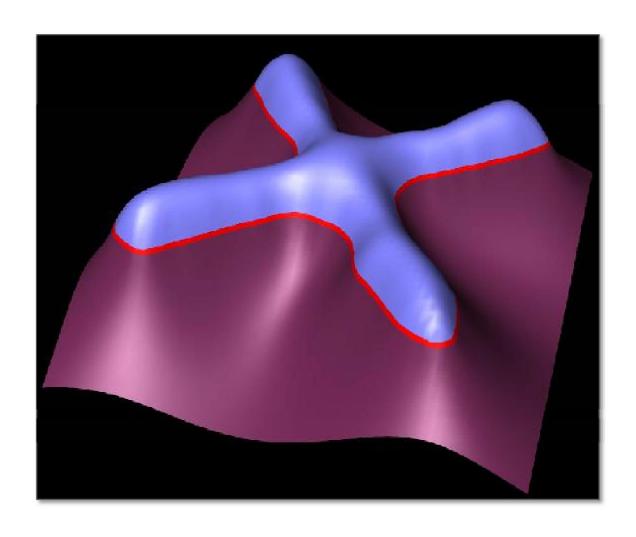


Other: B-Spline patches, NURBS, etc...

- Advantages
 - Easy to generate points on the curve/surface
 - Separates x/y/z components

- Disadvantages
 - Hard to determine inside/outside
 - Hard to determine if a point is on the curve/surface

Illustration



Definition

■ Definition
$$g: \mathbb{R}^3 \to \mathbb{R}$$

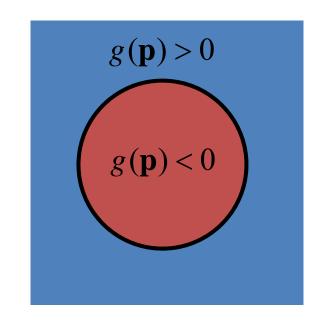
$$K = g^{-1}(0) = \{ \mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0 \}$$

Space partitioning

$$\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) < 0\}$$
 Inside

$$\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) = 0\}$$
 Curve/Surface

$$\{\mathbf{p} \in \mathbb{R}^3 : g(\mathbf{p}) > 0\}$$
 Outside

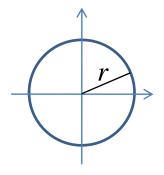


Examples

Implicit circle and sphere

$$f: R^2 \to R$$
$$K = \{ \mathbf{p} \in R^2 : f(\mathbf{p}) = 0 \}$$

$$f(x,y) = x^2 + y^2 - r^2$$



$$g: \mathbb{R}^3 \to \mathbb{R}$$

$$K = \left\{ \mathbf{p} \in R^3 : g(\mathbf{p}) = 0 \right\}$$

$$g(x,y,z) = x^2 + y^2 + z^2 - r^2$$

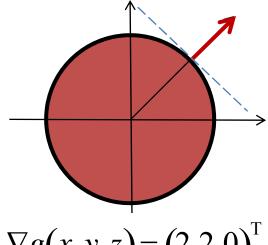
Gradient

The normal vector to the surface (curve) is given by the gradient of the (scalar) implicit function

$$\nabla g(x, y, z) = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)^{1}$$

Example

$$g(x, y, z) = x^{2} + y^{2} + z^{2} - r^{2}$$
$$\nabla g(x, y, z) = (2x, 2y, 2z)^{T}$$



$$\nabla g(x,y,z) = (2,2,0)^{\mathrm{T}}$$

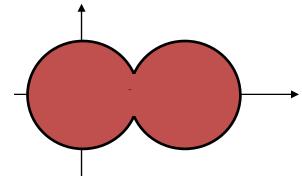
Smooth set operations

Standard operations: union and intersection



$$\bigcup_{i} g_{i}(\mathbf{p}) = \min g_{i}(\mathbf{p})$$
$$\bigcap_{i} g_{i}(\mathbf{p}) = \max g_{i}(\mathbf{p})$$

$$\bigcap_{i} g_{i}(\mathbf{p}) = \max g_{i}(\mathbf{p})$$

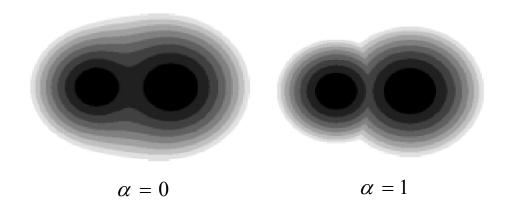


- In many cases, smooth blending is desired
 - Pasko and Savchenko [1994]

$$g \cup f = \frac{1}{1+\alpha} \left(g + f - \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$
$$g \cap f = \frac{1}{1+\alpha} \left(g + f + \sqrt{g^2 + f^2 - 2\alpha g f} \right)$$

Smooth set operations

Examples



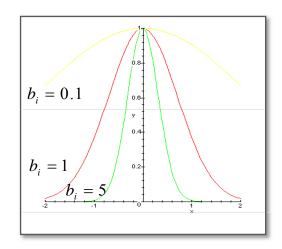
• For $\alpha = 1$, this is equivalent to min and max

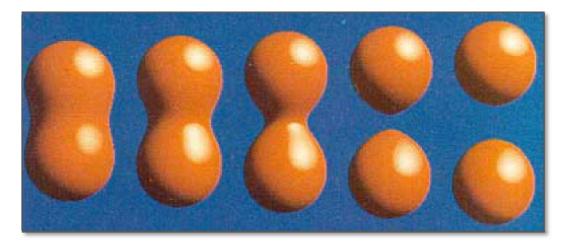
$$\lim_{\alpha \to 1} g \cup f = \frac{1}{2} \left(g + f - \sqrt{(g - f)^2} \right) = \frac{g + f}{2} - \frac{|g - f|}{2} = \min(g, f)$$

$$\lim_{\alpha \to 1} g \cap f = \frac{1}{2} \left(g + f + \sqrt{(g - f)^2} \right) = \frac{g + f}{2} + \frac{|g - f|}{2} = \max(g, f)$$

Blobs

- Suggested by Blinn [1982]
 - Defined implicitly by a potential function around a point \mathbf{p}_i : $g_i(\mathbf{p}) = a_i e^{-b_i \|\mathbf{p} \mathbf{p}_i\|^2}$
 - Set operations by simple addition/subtraction





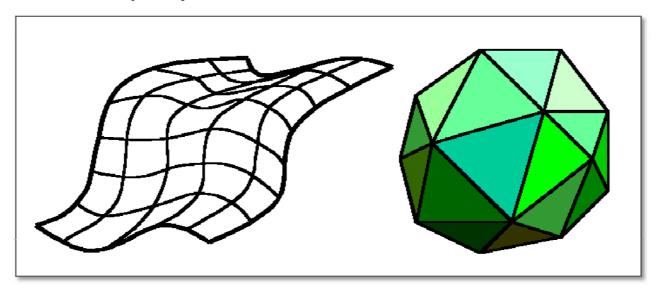
- Advantages
 - Easy to determine inside/outside
 - Easy to determine if a point is on the curve/surface

- Disadvantages
 - Hard to generate points on the curve/surface
 - Does not lend itself to (real-time) rendering

Polygonal Meshes

Polygonal Meshes

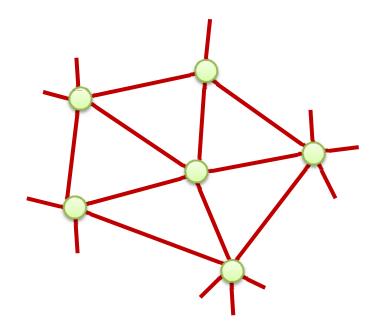
- Boundary representations of objects
 - Surfaces, polyhedrons



How are these objects stored?

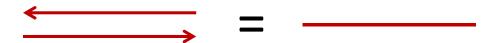
Geometric graph

- A graph is a pair G=(V, E)
 - V is a set of n distinct vertices $\mathbf{v}_0, \mathbf{v}_1, ..., \mathbf{v}_{n-1}$
 - E is a set of edges $(\mathbf{v}_i, \mathbf{v}_j)$
- If $V \subset \mathbb{R}^d$ with $d \ge 2$, then G=(V, E) is a *geometric graph*
- The degree or valence of a vertex describes the number of edges incident to this vertex



Edges

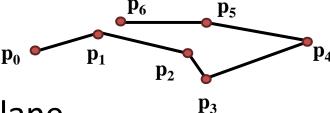
- Two edges are neighbors if they share a common vertex
- Edges are generally not oriented, and are noted as $(\mathbf{v}_i, \mathbf{v}_j)$
- Halfedges are edges with added orientation
- An edge is comprised of two halfedges



Polygon

■ A geometric graph Q=(V,E) with $E=\{(\mathbf{v}_0, \mathbf{v}_1), (\mathbf{v}_1, \mathbf{v}_2), ..., (\mathbf{v}_{n-2}, \mathbf{v}_{n-1})\}$ is a *polygon*

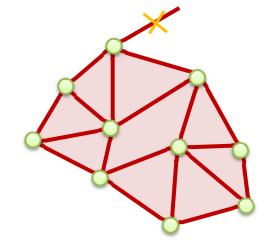
A polygon is



- Planar, if all vertices lie on a plane
- Closed, if $\mathbf{p}_0 = \mathbf{p}_{n-1}$
- Simple, if the polygon does not self-intersect

Polygonal mesh

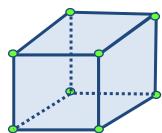
- A finite set M of closed, simple polygons Q_i is a **polygonal mesh** if:
 - The intersection of enclosed regions of any two polygons in M is empty
 - The intersection of two polygons in M is either empty, a vertex $\boldsymbol{v}{\in}V$ or an edge $\boldsymbol{e}{\in}E$



Every edge belongs to at least one polygon

Polygonal mesh

- The set of all edges that belong to only one polygon is termed the boundary of the polygonal mesh, and is either empty or forms closed loops
- If the set of edges that belong to only one polygon is empty, then the polygonal mesh is closed
- The set of all vertices and edges in a polygonal mesh form a graph



Polyhedron

- A polygonal mesh is a polyhedron if
 - Each edge is part of two polygons (it is closed)
 - Every vertex $v \in V$ is part of finite, cyclic ordered set of polygons $\{Q_i\}$
 - The polygons incident to a vertex \mathbf{v} can be ordered, such that Q_i and Q_i share an edge incident to \mathbf{v}

 The union of all polygons forms a single connected component

Manifold

A surface is a 2-manifold if it is everywhere

locally homeomorphic

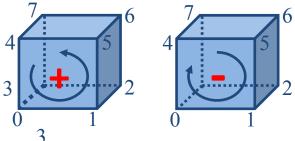
to a disk

Polyhedron

- The union of all polygonal areas is the surface of the polyhedron
- The polygonal areas of a polyhedron are also known as faces
- Every polyhedron partitions space into two areas; inside and outside the polyhedron

Orientation

- Every face of a polygonal mesh is orientable
 - by defining "clockwise" (as opposed to "counterclockwise"). Two possible orientations
 - Defines the sign of the surface normal



Two neighboring facets 0 3 1 0 1 are equally oriented, if the edge directions of the shared edge (induced by the face orientations) are opposing

Orientability

 A polygonal mesh is orientable, if the incident faces to every edge can be equally oriented

If the faces are equally oriented for every edge, the mesh is *oriented*

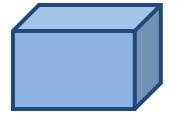
- Notes
 - Every non-orientable closed mesh embedded in R³ intersects itself
 - The surface of a polyhedron is always orientable

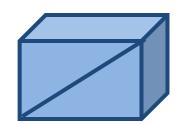
Klein bottle

Möbius strip

 Relation between #vertices, #edges and #faces of a polygonal mesh

Example:





$$v = 8$$

 $e = 12+1$
 $f = 6+1$

Theorem (Euler): The sum

$$\chi(M) = v - e + f$$

is **constant** for a given topology, no matter which mesh we choose

If M has one boundary loop:

$$\chi(M) = v - e + f = 1$$

If M is homeomorphic to a sphere:

$$\chi(M) = v - e + f = 2$$

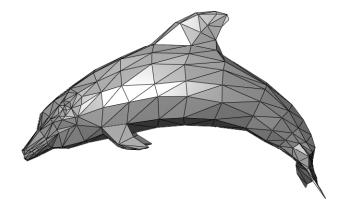
Usage

- Let's count the edges and faces in a closed triangle mesh:
 - Ratio of edges to faces: e = 3/2 f
 - each edge belongs to exactly 2 triangles
 - each triangle has exactly 3 edges
 - Ratio of vertices to faces: f ~ 2v

$$2 = v - e + f = v - 3/2 f + f$$

$$-2 + f/2 = v$$

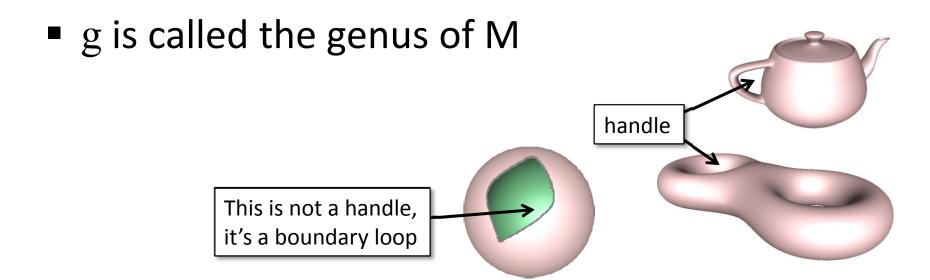
- Ratio of edges to vertices: e ~ 3v
- Average degree of a vertex: 6
 - 2 vertices incident on each edge



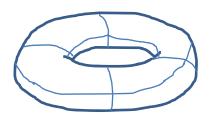
Genus

■ Theorem: if a polyhedron M is homeomorphic to a sphere with g handles ("holes") then

$$\chi(M) = v - e + f = 2(1 - g)$$



Example: simple torus



$$v-e+f=2(1-g)$$

 $8-16+8=2(1-1)$

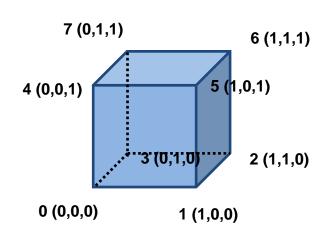
Generalization

- Theorem: Let
 - v # vertices
 - e # edges
 - f − # faces
 - c − # connected components
 - h − # boundary loops
 - g − # handles (the genus) then:

$$v - e + f - h = 2 (c - g)$$



Indexed Face Set



Vertex list (Coordinate3) 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0

1.0

1.0

1.0

0.0

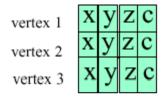
1.0

Face list (IndexedFaceSet)							
0	0	1	2	3			
1	0	1	5	4			
2	1	2	6	5			
3	2	3	7	6			
4	3	0	4	7			
5	4	5	6	7			

Space requirements

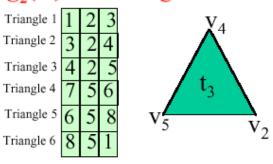
Coordinates/attributes

3x16+k bits/vertex



Connectivity

3xlog₂(V) bits/triangle



- When uncompressed, connectivity dominates
 - Reminder: f = 2v... so after 256 vertices

Indexed Face Set – Problems

- Information about neighbors is not explicit
 - Finding neighboring vertices/edges/faces etc. costs O(v) time!
 - Local mesh modifications cost O(v)

Breadth-first search costs O(k*v) where k = # found vertices

Neighborhood relations [Weiler 1985]

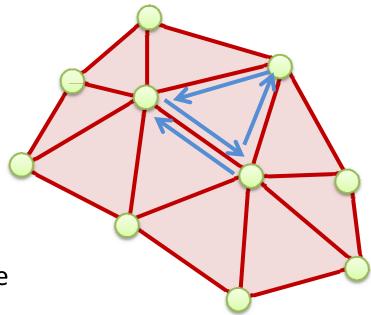
• All possible neighborhood relationships:

	-	•		•			
1.	Vertex	– Vertex	VV				
2.	Vertex	– Edge	VE				
3.	Vertex	– Face	VF				
4.	Edge	Vertex	EV		VV	VE	VF
5.	Edge	– Edge	EE				
6.	Edge	– Face	EF				
7.	Face	Vertex	FV		EV	EE	EF
8.	Face	– Edge	FE	\bigcirc			
9.	Face	– Face	FF	E	FV	FF	EE
					Г۷	FE	FF
			λ	// 	F_		
					7		

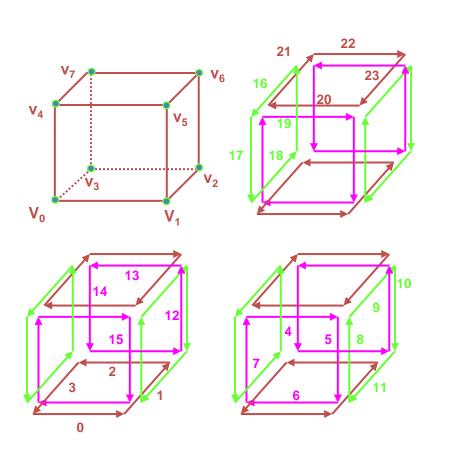
Half-edge data structure

Half-edge has:

- Pointer to twin h-e
- Pointer to origin vertex
- Pointer to next h-e
- Pointer to previous h-e
- Pointer to incident face
- Vertex has:
 - Pointer to one emanating h-e
- Face has:
 - Pointer to one of its enclosing h-e



Half-edge data structure



Vertexlist

v		he		
0	0.0	0.0	0.0	0
1	1.0	0.0	0.0	1
2	1.0	1.0	0.0	2
3	0.0	1.0	0.0	3
4	0.0	0.0	1.0	4
5	1.0	0.0	1.0	9
6	1.0	1.0	1.0	13
7	0.0	1.0	1.0	16

Face

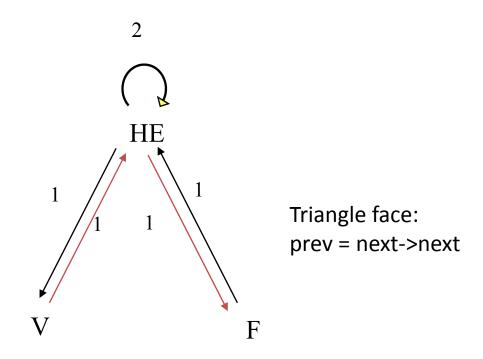
f	e
0	e0
1	e8
2	e4
3	e16
4	e12
5	e20

Half-Edgelist

he	vstart	next	prev	opp	he	vstart	next	prev	opp
0	0	1	3	6	12	2	13	15	10
1	1	2	0	11	13	6	14	12	22
2	2	3	1	15	14	7	15	13	19
3	3	0	2	18	15	3	12	14	2
4	4	5	7	20	16	7	17	19	21
5	5	6	4	8	17	4	18	16	7
6	1	7	5	0	18	0	19	17	3
7	0	4	6	17	19	3	16	18	14
8	1	9	11	5	20	5	21	23	4
9	5	10	8	23	21	4	22	20	16
10	6	11	9	12	22	7	23	21	13
11	2	8	10	1	23	6	20	22	9

Half-edge data structure

 Each atomic insertion into the data structure (i.e., vertex, edge or face insertion) requires constant space and time

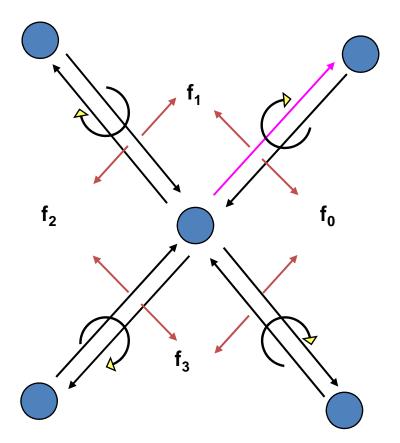


Half-edge data structure

• All basic queries take constant O(1) time!

In particular, the query time is independent of the model

size

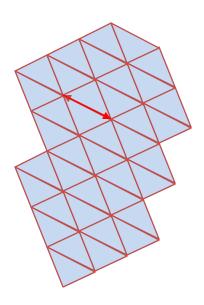


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges

HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);

while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```

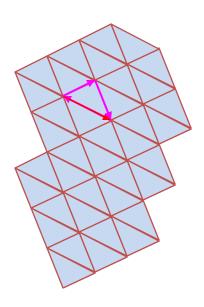


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges

HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);

while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```

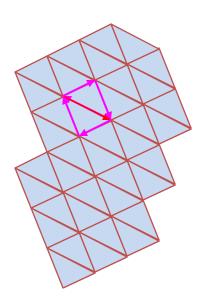


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges

HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);

while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```

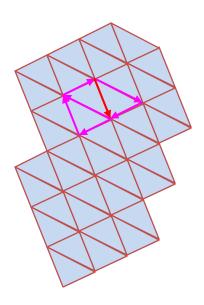


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges

HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);

while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```

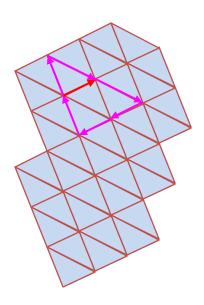


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges

HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);

while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```

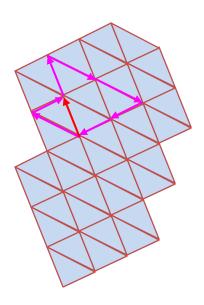


Half-edge data structure

```
//q: Queue (FIFO) of HalfEdges

HalfEdge he;
q.append(he);
if (he.opposite != null)
    q.append(he.opposite);

while (! q.isEmpty()) {
    he=q.first();
    // do work
    if (he.next.opposite != null)
        q.append(he.next.opposite);
    if (he.next.next.opposite != null)
        q.append(he.next.next.opposite)
}
```



Criteria for design

- Maximal number of vertices (i.e., how large are the models?)
- Available memory size
- Required operations
 - Mesh updates (edge collapse, edge flip)
 - Neighborhood queries
- Distribution of operations (what are the most common/frequent ones?)
- How can we compare different data structures?