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General

The purpose of the following document is to introduce you to the mathematical
tool that you will implement for editing meshes. In the following, we will denote
the given triangle mesh by � � ����� where � is the set of vertices and � is the
set of edges. � represents a 2-manifold, that is, the graph of � is planar (each
triangle in the mesh has at most two neighbours).

1 The Æ-coordinates and Laplacian matrix

Let � be a given triangular mesh with � vertices. Each vertex � � � is con-
ventionally represented using absolute Cartesian coordinates, denoted by �� �
���� 	�� 
��. We define the relative or Æ-coordinates of �� to be the difference
between the absolute coordinates of �� and the center of mass of its immediate
neighbors in the mesh,
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where �� is the number of immediate neighbors of � (the degree or valence of �)
and �� is �’s � th neighbor (��� ��� � �).

The transformation of the vector of absolute Cartesian coordinates to the vec-
tor of relative coordinates can be represented in matrix form. Let 
 be the adja-
cency (connectivity) matrix of the mesh:
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and let � be the diagonal matrix such that ��� � ��. Then the matrix transforming
the absolute coordinates to relative coordinates (scaled by �) is � � � � 
,
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That is, �� � �Æ���, �	 � �Æ���, and �
 � �Æ���, where � is an �-vector con-
taining the � absolute coordinates of all the vertices (that is, � � ���� ��� � � � � ���

	 )
and so on. Without loss of generality, we now focus on the vectors � and Æ � �Æ ���.

The matrix � is called the Laplacian of the mesh. The Laplacian is symmetric,
singular and positive semidefinite. The singularity stems from the fact that the
system �� � Æ has an infinite number of solutions which differ from each other
by a vector that is constant on each connected component of the mesh. Note that
the elements of each row of � sum up to zero. Thus, we can actually recover �
from Æ if we know, in addition to Æ, the Cartesian coordinate of one �� in each
connected component. The known vertex position is called anchor point.

2 Anchor points

Assume for rest of this document that we are working with a mesh that contains
one connected component. Suppose we have computed the Æ-coordinates of our
mesh. We can now use them to manipulate the shape of the mesh in the following
way: we choose a vertex to be a special anchor point and alter its position (that
is, change its Cartesian coordinates). Then, we restore the Cartesian coordinates
of the rest of the mesh by solving for � (and 	, 
): �� � Æ���. However, � is
singular, so we need to use our anchor point to find a unique solution. We add the
information about the anchor as an additional row in the � matrix. The new row
will contain 1 at the anchor vertex position and 0 everywhere else (see Figure 1).
We also add the � coordinate of the anchor to the solution vector Æ.

What we obtain is a new linear system: ��� � �Æ, where �� is the extended
� matrix and �Æ is the extended solution vector. Now the system contains more
equations than variables, and it can be uniquely solved in the least-squares sense.
That is, there is a unique � that minimizes � ��� � �Æ�. It can be easily shown that

� �
�
��	 ��

�
�� ��	 �Æ.

You may ask why not simply substitute the anchor point and solve the usual
linear system �� � Æ. The answer is that this way we loose the “smoothness”
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condition at the anchor vertex because we essentially remove from the system the
equation Æ� � �� �

�
��

	��
��� ��� , for � that is anchor vertex. This way the resulting

mesh will have a “spike” at the anchor vertex. On the other hand, the least-squares
solution keeps that equation and thus the resulting mesh should be smooth at the
anchor as well.

3 Editing using extended Laplacian matrix

When only one anchor vertex is used, and we move it around, the entire mesh
surface will move. Thus, this produces a global effect. If we want to make more
local changes, we need to “nail” down the parts of mesh that we do not wish to
change. This can be done by adding more anchor vertices to the system, whose
positions we do not change (unlike the special anchor that we do move). This
way, our system will become “more rectangular”. In the extreme case, when we
want to make only a small local change, we constrain almost all the vertices of the
mesh, and obtain a system that is nearly �� � �. On the other hand, most of the
vertices are “known”, that is, we have a good initial guess for the solution.

The editing system should define a certain hierarchy over the vertices of the
mesh, and let the user to choose which level in the hierarchy he wants. The user
is allowed to move the vertices that belong to the current level, and they serve as
anchors (all the rest of the vertices are not constrained). So, in the coarsest level
we have few anchors and a global shaping is achieved. In the finest level, all the
vertices are anchors, and a local editing effect is achieved.

You can see that in the above suggestion the hierarchy over the vertices serves
only as means to choose the set of anchors. You may want to think of a way to
exploit a real mesh hierarchy to speed up the computation. A real hierarchy means
to build several levels of detail for the mesh, such as a progressive mesh [1].

For implementing the editing system you need a least-squares solver. There
are many packages available, such as the one developed by Prof. Sivan Toledo and
his group (you can find the link on the assignment homepage). You can also im-
port code from MATLAB. Note that when you solve a “very rectangular” system,
you may want to use an iterative solver because you can provide it with a very
good initial guess (you know the positions of all the constrained vertices, and they
are a good approximation for the final solution). This may considerably speed up
the computation on the finer levels.
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Figure 1: A small example of a triangular mesh and its associated Laplacian matrix (top
right). Second row: a 2-anchor invertible Laplacian and a �-anchor rectangular Laplacian.
The anchors are denoted in the mesh in red.
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