## Computer Graphics - Exercise 1

## 20/02/2003

## **Question 1**

Let  $S_1$  and  $S_2$  be two line segments. The distance between the segments is defined as follows:

$$dist(S_1, S_2) = \min_{p \in S_1, q \in S_2} \|p - q\|.$$

- (a) Derive a formula for  $dist(S_1, S_2)$  as function of the endpoints of the two segments. Assume that the segments lie in the plane.
- (b) Same as (a) but for arbitrary segments in the 3D space.

## **Question 2**

Three points A, B, C in the plane are said to be a *left-turn* if the counter-clockwise angle from the vector  $\vec{v} = B - A$  to the vector  $\vec{w} = C - A$  is less than  $\pi$  (see Figure 1). Given a coordinate system in the plane, it can be easily verified that if  $A = (A_x, A_y)$ ,  $B = (B_x, B_y)$  and  $C = (C_x, C_y)$ , then (A, B, C) is a left-turn iff:

$$L(A, B, C) := (B_x - A_x)(C_y - A_y) - (B_y - A_y)(C_x - A_x) > 0.$$

- (a) Given two segments AB and CD in the plane. When do AB and CD intersect each other? Find a condition using left-turn tests on the endpoints (A, B, C and D).
- (b) Given a polygon  $P_1P_2...P_n$  in the plane (i.e. the edges of the polygon are the segments  $P_iP_{i+1}$  for i = 1, 2, ..., n 1) and a point Q. How to decide whether Q is inside the polygon or not using left-turn tests?

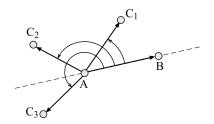



Figure 1:  $(A, B, C_1)$  and  $(A, B, C_2)$  are left-turns while  $(A, B, C_3)$  is not (it is a right-turn).