Computer Graphics - Exercise 2 Reminder of Linear Algebra Basics

20/03/2003

Question 1

Let *V* be a vector space with inner product. Prove that if $\{v_1, v_2, ..., v_k\} \in V$ is a set of (pairwise) orthogonal vectors then $\{v_1, v_2, ..., v_k\}$ are linearly independent.

Question 2

Prove that if A is an orthogonal matrix then det $A = \pm 1$.

Question 3

True or not true? A linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is 1-1 \Leftrightarrow a matrix representing A with respect to some basis of \mathbb{R}^n is non-singular.

Question 4

Let *A* be a square matrix. Prove that if $\lambda_1, \lambda_2, ..., \lambda_k$ are *distinct* eigenvalues of *A* then corresponding eigenvectors are linearly independent.

Question 5

Prove that if *A* is a symmetric matrix and λ, μ are its eigenvalues ($\lambda \neq \mu$) then corresponding eigenvectors are orthogonal (i.e. if $Av = \lambda v$ and $Aw = \mu w$ then $\langle v, w \rangle = 0$).