3D Geometry for Computer Graphics - Exercise 2 Solution

1. Let V be a vector space with inner product. Prove that if $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\} \in V$ is a set of (pairwise) orthogonal vectors then $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ are linearly independent.

Solution: Suppose that

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = 0. \tag{1}$$

Multiply both sides by \mathbf{v}_i for some $i \in \{1, 2, \dots, k\}$:

$$\alpha_1 < \mathbf{v}_1, \mathbf{v}_i > +\alpha_2 < \mathbf{v}_2, \mathbf{v}_i > + \ldots + \alpha_k < \mathbf{v}_k, \mathbf{v}_i > = 0$$

Since $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0$ for all $j \neq i$, we are left with

$$\alpha_i < \mathbf{v}_i, \mathbf{v}_i >= 0$$
$$\alpha_i \|\mathbf{v}_i\|^2 = 0$$

For all $i, \mathbf{v}_i \neq 0$, so $\|\mathbf{v}_i\| \neq 0$, thus it follows that $\alpha_i = 0$. Therefore, assumption (1) leads to $\alpha_i = 0 \forall i$, and then the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ are linearly independent by definition.

Prove that if A is an orthogonal matrix then det(A) = ±1.
Solution: if A is orthogonal then A⁻¹ = A^T. Then:

$$1 = \det(I) = \det(AA^{-1}) = \det(A)\det(A^{-1}) = \det(A)\det(A^{T}) = \det(A)\det(A).$$

We have use the facts that det(AB) = det(A) det(B) and that $det(A) = det(A^T)$. We get that $(det(A))^2 = 1$, so det(A) = 1 or det(A) = -1.

3. True or not true? A linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is 1-1 \Leftrightarrow a matrix representing A with respect to some basis of \mathbb{R}^n is non-singular.

Solution: True.

 $[\Rightarrow]$ A is 1-1 means: if $A\mathbf{v} = A\mathbf{u}$ then $\mathbf{v} = \mathbf{u}$. Suppose A is singular. This means the column-vectors of A are linearly dependent. Denote the columns by $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$. There exist $\alpha_1, \alpha_2, \dots, \alpha_n$, not all zero, such that

$$\alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \ldots + \alpha_k \mathbf{a}_k = 0.$$

We know that not all \mathbf{a}_i are zero (otherwise A were the zero matrix, which is not 1-1). So, the vector $\mathbf{v} = \alpha_1 \mathbf{a}_1 + \alpha_2 \mathbf{a}_2 + \ldots + \alpha_k \mathbf{a}_k$ is not zero. Then we have $A\mathbf{v} = 0$ and also A0 = 0, which contradicts the fact that A is 1-1 transformation.

[\Leftarrow] Assume A is non-singular. Then for any vector **b** there is only one **x** such that $A\mathbf{x} = \mathbf{b}$. In particular, $A\mathbf{x} = 0 \rightarrow \mathbf{x} = 0$. So, if $A\mathbf{v} = A\mathbf{u}$ then $A\mathbf{v} - A\mathbf{u} = 0 \rightarrow A(\mathbf{v} - \mathbf{u} = 0 \rightarrow \mathbf{v} - \mathbf{u} = 0 \rightarrow \mathbf{v} = \mathbf{u}$. Thus, A is 1-1.

4. Let A be a square matrix. Prove that if $\lambda_1, \lambda_2, \ldots, \lambda_k$ are *distinct* eigenvalues of A then corresponding eigenvectors are linearly independent.

Solution: We'll prove by induction. One vector is always independent (assuming it's not zero, and eigenvectors are non-zero by definition). Suppose we proved that any group of k - 1 eigenvectors that correspond to distinct eigenvalues, is linearly independent. Let's prove for k vectors. Assume

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_k \mathbf{v}_k = 0. \quad (*)$$

Apply A to both sides:

$$A(\alpha_1 \mathbf{v}_1) + A(\alpha_2 \mathbf{v}_2) + \ldots + A(\alpha_k \mathbf{v}_k) = 0. \quad (**)$$
$$\lambda_1 \alpha_1 \mathbf{v}_1 + \lambda_2 \alpha_2 \mathbf{v}_2 + \ldots + \lambda_k \alpha_k \mathbf{v}_k = 0.$$

Multiply (*) by λ_i :

$$\lambda_i \alpha_1 \mathbf{v}_1 + \lambda_i \alpha_2 \mathbf{v}_2 + \ldots + \lambda_i \alpha_k \mathbf{v}_k = 0. \quad (* * *)$$

Subtract (* * *) from (**):

$$(\lambda_1 - \lambda_i)\alpha_1 \mathbf{v}_1 + \ldots + (\lambda_{i-1} - \lambda_i)\alpha_{i-1} \mathbf{v}_{i-1} + (\lambda_{i+1} - \lambda_i)\alpha_{i+1} \mathbf{v}_{i+1} + \ldots + (\lambda_k - \lambda_i)\alpha_k \mathbf{v}_k = 0.$$

We arrive at a linear combination of k - 1 eigenvectors that gives zero. By induction, we know the vectors are independent, so all the coefficients $(\lambda_j - \lambda_i)\alpha_j$ must be zero. But $\lambda_j \neq \lambda_i$, so $\alpha_j = 0$ for all $j \neq i$. Substitution of $\alpha_j = 0$ in (*) gives us $\alpha_i \mathbf{v}_i = 0$, and then follows that α_i must be zero as well.

Prove that if A is a symmetric matrix and λ, μ are its eigenvalues (λ ≠ μ) then corresponding eigenvectors are orthogonal (i.e. if Av = λv and Aw = μw then < v, w >= 0).

Solution:

Thus,

$$\mathbf{v}^T A \mathbf{w} = \mathbf{v}^T \mu \mathbf{w} = \mu \mathbf{v}^T \mathbf{w}$$
$$\mathbf{w}^T A \mathbf{v} = \mathbf{w}^T \lambda \mathbf{v} = \lambda \mathbf{w}^T \mathbf{v}$$

Since $A = A^T$, we have:

$$(\mathbf{w}^T A \mathbf{v})^T = \mathbf{v}^T A^T \mathbf{w} = \mathbf{v}^T A \mathbf{w}.$$

$$\lambda - \mu) \mathbf{v}^T \mathbf{w} = 0.$$

 $\mathbf{v}^T \mathbf{w} = 0 \Rightarrow \langle \mathbf{v}, \mathbf{w} \rangle = 0.$

Since $\lambda \neq \mu$, we arrive at

6. **Computer-science question**: Suppose you are implementing a matrix library. You want to be prepared to handle operations on big matrices. As mentioned in class, if *A* is a matrix and b is a column-vector, then the entries of *A*b are scalar products of b with the rows of *A*. Alternatively, we can look at *A*b as a linear combination of the columns of *A*, where the coefficients of the linear combination are the entries of b. When is the first interpretation more computationally-advantageous, and when is the second? Hint: matrices are usually stored in the computer as arrays of numbers. They can be stored by rows or by columns. Think what happens when the matrix *A* is very big, in terms of access to its elements during the computation of *A*b.

Answer: If A is stored by columns, it's better to use the second method (column-oriented multiplication). If A is stored by rows, it's better to use the first method (rows-oriented). This is because this way we will access the elements of A sequentially, in the same order as they are stored in memory (i.e. we will scan all the columns one-by-one, or, respectively, the rows). Consecutive access to memory is better than random (scattered) – it usually reduces paging and allows more efficient caching.