3D Geometry for Computer Graphics - Exercise 4

19/04/2004

- Following slide #27 "Finding the LS solution". Given matrix A ∈ ℝ^{n×k}, n ≥ k. Prove that if A has full rank (i.e., the columns of A are linearly independent) then the matrix A^TA is invertible.
- 2. By now we have learned two techniques to fit a linear subspace to a given set of points in \mathbb{R}^n (to fit a line to a set of points in the plane, to fit a plane to a set of points in \mathbb{R}^3 , etc.). The first technique was PCA and the second was least-squares fit. Explain the difference between the two methods, in terms of the error they minimize (and hence the output they produce) and in terms of the computational effort.