
Patch-based Progressive 3D Point Set Upsampling

Wang Yifan1 Shihao Wu1 Hui Huang2*

Daniel Cohen-Or2,3 Olga Sorkine-Hornung1

1ETH Zurich 2Shenzhen University 3Tel Aviv University

Figure 1: We develop a deep neural network for 3D point set upsampling. Intuitively, our network learns different levels of detail in multiple steps, where
each step focuses on a local patch from the output of the previous step. By progressively training our patch-based network end-to-end, we successfully
upsample a sparse set of input points, step by step, to a dense point set with rich geometric details. Here we use circle plates for points rendering, which are
color-coded by point normals.

Abstract

We present a detail-driven deep neural network for point
set upsampling. A high-resolution point set is essential for
point-based rendering and surface reconstruction. Inspired
by the recent success of neural image super-resolution tech-
niques, we progressively train a cascade of patch-based up-
sampling networks on different levels of detail end-to-end.
We propose a series of architectural design contributions
that lead to a substantial performance boost. The effect
of each technical contribution is demonstrated in an abla-
tion study. Qualitative and quantitative experiments show
that our method significantly outperforms the state-of-the-
art learning-based [58, 59], and optimazation-based [23]
approaches, both in terms of handling low-resolution inputs
and revealing high-fidelity details. The data and code are
at https://github.com/yifita/3pu.

1. Introduction
The success of neural super-resolution techniques in im-

age space encourages the development of upsampling meth-
ods for 3D point sets. A recent plethora of deep learning
super-resolution techniques have achieved significant im-
provement in single image super-resolution performance [9,
27, 32, 47]; in particular, multi-step methods have been
shown to excel in their performance [11, 30, 62]. Dealing

* Corresponding author: Hui Huang (hhzhiyan@gmail.com)

with 3D point sets, however, is challenging since, unlike im-
ages, the data is unstructured and irregular [3,17,19,34,55].
Moreover, point sets are often a result of customer-level
scanning devices, and they are typically sparse, noisy and
incomplete. Thus, upsampling techniques are particularly
important, and yet the adaption of image-space techniques
to point sets is far from straightforward.

Neural point processing is pioneered by PointNet [41]
and PointNet++ [42], where the problem of irregularity and
the lack of structure is addressed by applying shared mul-
tilayer perceptrons (MLPs) for the feature transformation
of individual points, as well as a symmetric function, e.g.,
max pooling, for global feature extraction. Recently, Yu et
al. [59] introduced the first end-to-end point set upsampling
network, PU-Net, where both the input and the output are
the 3D coordinates of a point set. PU-Net extracts multi-
scale features based on PointNet++ [42] and concatenates
them to obtain aggregated multi-scale features on each in-
put point. These features are expanded by replication, then
transformed to an upsampled point set that is located and
uniformly distributed on the underlying surface. Although
multiscale features are gathered, the level of detail available
in the input patch is fixed, and thus both high-level and low-
level geometric structures are ignored. The method conse-
quently struggles with input points representing large-scale
or fine-scale structures, as shown in Figures 11 and 12.

In this paper, we present a patch-based progressive up-
sampling network for point sets. The concept is illustrated
in Figures 1 and 2. The multi-step upsampling breaks a,
say, 16×-upsampling network, into four 2× subnets, where

1

https://github.com/yifita/3pu

each subnet focuses on a different level of detail. To avoid
exponential growth in points and enable end-to-end training
for large upsampling ratios and dense outputs, all subnets
are fully patch-based, and the input patch size is adaptive
with respect to the present level of detail. Last but not least,
we propose a series of architectural improvements, includ-
ing novel dense connections for point-wise feature extrac-
tion, code assignment for feature expansion, as well as bi-
lateral feature interpolation for inter-level feature propaga-
tion. These improvements contribute to further performance
boost and significantly improved parameter efficiency.

We show that our model is robust under noise and sparse
inputs. It compares favorably against existing state-of-the-
art methods in all quantitative measures and, most impor-
tantly, restores fine-grained geometric details.

2. Related work
Optimization-based approaches. Early optimization-

based point set upsampling methods resort to shape pri-
ors. Alexa et al. [2] insert new points at the vertices of the
Voronoi diagram, which is computed on the moving least
squares (MLS) surface, assuming the underlying surface is
smooth. Aiming to preserve sharp edges, Huang et al. [23]
employ an anisotropic locally optimal projection (LOP) op-
erator [22,36] to consolidate and push points away from the
edges, followed by a progressive edge-aware upsampling
procedure. Wu et al. [53] fill points in large areas of miss-
ing data by jointly optimizing both the surface and the inner
points, using the extracted meso-skeleton to guide the sur-
face point set resampling. These methods rely on the fitting
of local geometry, e.g., normal estimation, and struggle with
multiscale structure preservation.

Deep learning approaches. PointNet [41], along its
multiscale variant PointNet++ [41], is one of the most
prominent point-based networks. It has been success-
fully applied in point set segmentation [10, 40], genera-
tion [1,13,56], consolidation [14,45,58], deformation [57],
completion [15, 60] and upsampling [58, 59, 61]. Zhang et
al. [61] extend a PointNet-based point generation model [1]
to point set upsampling. Extensive experiments show its
generalization to different categories of shapes. However,
note that [1] is trained on the entire object, which lim-
its its application to low-resolution input. PU-Net [59],
on the other hand, operates on patch level, thus handles
high-resolution input, but the upsampling results lack fine-
grained geometry structures. Its follow-up work, the EC-
Net [58], improves restoration of sharp features by minimiz-
ing a point-to-edge distance, but it requires a rather expen-
sive edge annotation for training. In contrast, we propose
a multi-step, patch-based architecture to channel the atten-
tion of the network to both global and local features. Our
method also differs from the PU-Net and EC-Net in feature
extraction, expansion, and loss computation, as discussed in

Section 3.2 and 4.
Multiscale skip connections in deep learning. Mod-

ern deep convolutional neural networks (CNN) [29] pro-
cess multiscale information using skip-connections be-
tween different layers, e.g. U-Net [44], ResNet [16] and
DenseNet [20]. In image super-resolution, state-of-the-art
methods such as LapSRN [30] and ProSR [51] gain sub-
stantial improvement by carefully designing layer connec-
tions with progressive learning schemes [25, 50], which
usually contribute to faster convergence and better preser-
vation of all levels of detail. Intuitively, such multiscale
skip-connections are useful for point-based deep learning
as well. A few recent works have exploited the power
of multiscale representation [12, 24, 28, 37, 49] and skip-
connection [8,43] in 3D learning. In this paper, we focus on
point cloud upsampling and propose intra-level and inter-
level point-based skip-connections.

3. Method
Given an unordered set of 3D points, our network gen-

erates a denser point set that lies on the underlying sur-
face. This problem is particularly challenging when the
point set is relatively sparse, or when the underlying sur-
face has complex geometric and topological structures. In
this paper, we propose an end-to-end progressive learning
technique for point set upsampling. Intuitively, we train
a multi-step patch-based network to learn the information
from different levels of detail. As shown in Figures 2 and 3,
our model consists of a sequence of upsampling network
units. Each unit has the same structure, but we employ it
on different levels of detail. The information of all levels is
shared via our intra-level and inter-level connections inside
and between the units. By progressively training all network
units end-to-end, we achieve significant improvements over
previous works. We first present the global design of our
network and then elaborate on the upsampling units.

3.1. Multi-step upsampling network

Multi-step supervision is common practice in neural im-
age super-resolution [11,30,62]. In this section, we first dis-
cuss the difficulties in adapting multi-step learning to point
set upsampling, which motivates the design of our multi-
step patch-based supervision method. Next, we illustrate
the end-to-end training procedure for a cascade of upsam-
pling network units for large upsampling ratios and high-
resolution outputs.

Multi-step patch-based receptive field. Ideally, a point
set upsampling network should span the receptive field
adaptively for various scales of details to learn geometric
information from multiple scales. However, it is challeng-
ing to apply a multi-scope receptive field on a dense irregu-
lar point set due to practical constraints. In contrast to im-

Input

Upsampling Unit

Test output Ground truth T

Upsampling Unit Upsampling Unit

Figure 2: Overview of our multi-step patch-based point set upsampling network with 3 levels of detail. Given a sparse point set as input, our network
predicts a high-resolution set of points that agree with the ground truth. Instead of training an 8×-upsampling network, we break it into three 2× steps. In
each training step, our network randomly selects a local patch as input, upsamples the patch under the guidance of ground truth, and passes the prediction to
the next step. During testing, we upsample multiple patches in each step independently, then merge the upsampled results to the next step.

ages, point sets do not have the regular structure, and the
neighborhoods of points are not fixed sets. Neighborhood
information must be collected by, e.g., k-nearest neighbors
(kNN) search. This per-layer and per-point computation is
rather expensive, prohibiting a naive implementation of a
multi-step upsampling network to reach large upsampling
ratios and dense outputs. Therefore, it is necessary to op-
timize the network architecture, such that it is scalable to a
high-resolution point set.

Our key idea is to use a multi-step patch-based network,
and the patch size should be adaptive to the scope of recep-
tive fields at the present step. Note that in neural point pro-
cessing, the scope of a receptive field is usually defined by
the kNN size used in the feature extraction layers. Hence, if
the neighborhood size is fixed, the receptive field becomes
narrower as the point set grows denser. This observation
suggests that it is unnecessary for a network to process all
the points when the receptive field is relatively narrow. As
shown in Figure 2, our network recursively upsamples a
point set while at the same time reduces its spatial span.
This multi-step patch-based supervision technique allows
for a significant upsampling ratio.

Multi-step end-to-end training. Our network takes L
steps to upsample a set of points by a factor of 2L.
For L levels of detail, we train a set of subnet units
{U1, U2, . . . , UL}. We train such a sequence of upsam-
pling units by progressively activating the training of units;
it has been used in many multiscale neural image processing
works [25, 51].

More specifically, our entire training process has 2L− 1
stages, i.e., every upsampling unit has two stages except the
first one. We denote the currently targeted level of detail by
L̂. In the first stage of UL̂ we fix the network parameters
of units U1 to UL̂−1 and start the training of unit UL̂. In
the second stage, we unleash the fixed units and train all
the units simultaneously. This progressive training method
is helpful because an immature unit can impose destructive
gradient turbulence on the previous units [25].

We denote the ground truth model, prediction patch and
reference patch with T , P andQ respectively and use L̂ and

` to denote the targeted level of detail and an intermediate
level, as illustrated in Figure 2 and 6. In practice, we recur-
sively shrink the spatial scope by confining the input patch
to a fixed number of points (N). For more technical detail
about extracting such input patches on-the-fly and updating
the reference patches accurately, please refer to Section 3.3.

3.2. Upsampling network unit

Let us now take a closer look at an upsampling network
unit U`. It takes a patch from P`−1 as input, extracts deep
feature, expands the number of features, compresses the
feature channels to d-dimensional coordinates P`. In the
following, we explain each component in greater detail.

Feature extraction via intra-level dense connections.
We strive for extracting structure-aware features (N × C)
from an input point set (N×d). In neural image processing,
skip-connection is a powerful tool to leverage features ex-
tracted across different layers of the network [16,20,21,35].
Following PointNet++ [42], most existing point-based net-
works extract multiple scales of information by hierarchi-
cally downsampling the input point sets [33, 59]. Skip-
connections have been used to combine multiple levels of
features. However, a costly point correspondence search
must be applied prior to skip-connections, due to the vary-
ing point locations caused by the downsampling step.

We propose an architecture that facilitates efficient dense
connections on point sets. Inspired by the dynamic graph
convolution [46, 52], we define our local neighborhood in
feature space. The point features are extracted from a lo-
cal neighborhood that is computed dynamically via kNN
search based on feature similarity. As a result, our network
obtains long-range and nonlocal information without point
set subsampling.

As shown in Figure 5, our feature extraction unit is com-
posed of a sequence of dense blocks. In each dense block,
we convert the input to a fixed number (C ′) of features,
group the features using feature-based KNN, refine each
grouped feature via a chain of densely connected MLPs, and
finally compute an order-invariant point feature via max-
pooling.

...

Feature Interpolation Feature Interpolation

Feature
Extraction

Feature
Expansion

Level l -1

...Feature
Extraction

Feature
Expansion

Level l

...Feature
Extraction

Feature
Expansion

Level l + 1

Figure 3: Illustration of three upsampling network units. Each unit has the same structure but applied on different levels.

...
N×d N×C

Feature Expansion Unit
N×C

2N×1

2N×C 2N×(C+1)

-1

1

2N×(C+1) 2N×dFeature Extraction Unit

replicate

+

Figure 4: Illustration of one upsampling network unit.

Feature extraction unit with dense connection

duplicate K

N×C' N×K×
(G+C')

N×d NxK×C' N×K×
(2G+C')

N×(2G+C'+3)

duplicate K

N×C' N×K×
(G+C')

N×K×C' N×K×
(2G+C')

N×CN×(4G+2C'+3)

... ...

m
ax
 p
oo
lin
g

m
ax
 p
oo
lin
g

fe
at
ur
e
KN
N

co
m
pr
es
si
on

fe
at
ur
e
KN
N

Figure 5: Illustration of the feature extraction unit with dense connections.

We introduce dense connections both within and be-
tween the dense blocks. Within the dense blocks, each
MLP’s output, i.e., a fixed number (G) of features, is passed
to all subsequent MLPs; between the blocks, the point fea-
tures produced by each block are fed as input to all follow-
ing blocks. All these skip-connections enable explicit in-
formation re-use, which improves the reconstruction accu-
racy while significantly reducing the model size, as demon-
strated in Section 4. Overall, our 16×-upsampling network
with four 2×-upsampling units has much fewer network
parameters than a 4×-upsampling PU-Net [59]: 304K vs.
825K.

Feature expansion via code assignment. In the feature
expansion unit, we aim to transform the extracted features
(N × C) to an upsampled set of coordinates (2N × d).

PU-Net [59] replicates the per-point features and then
processes each replicant independently by an individual
set of MLPs. This approach may lead to clustered points
around the original points positions, which is alleviated by
introducing a repulsion loss. Instead of training the network
to disentangle the replicated features in-place, we explicitly
offer the network the information about the position varia-
tion.

In conditional image generation models [39], a category-
variable is usually concatenated to a latent code to gener-
ate images of different categories. Similarly, we assign a
1D code, with value −1 and 1, to each of those duplicated
features to transform them to different locations, as shown

in Figure 4. Next, we use a set of MLPs to compress the
2N × (C + 1) features to 2N × d residuals, which we add
to the input coordinates to generate the output points.

Our experiments show that the proposed feature expan-
sion method results in a well distributed point set without
using an additional loss. Also, the number of network pa-
rameters is independent of the upsampling ratio, since all
expanded features share the consecutive MLPs.

Our feature expansion method is also related to recent
point cloud generative models FoldingNet [56] and Atlas-
Net [13], where the coordinates of a 2D point are attached
to the learned features for point generation. Here, we show
that the choice of an attached variable can be as simple as a
1D variable.

Inter-level skip connection via bilateral feature interpo-
lation. We introduce inter-level skip-connections to en-
hance the communication between the upsampling units,
which serves as bridges for features extracted with differ-
ent scopes of the receptive fields, as shown in Figure 3.

To pass features from previous levels the current level,
the key is a feature interpolation technique that constructs
corresponding features from the previous upsampling unit,
as the upsampling and patch extraction operations change
the point correspondence. Specifically, we use bilateral in-
terpolation. For the current level `, we denote by pi and fi
the coordinates of the i-th point and its features generated
by the feature extraction unit respectively, and N ′i denotes
the spatial kNN of pi from level `′. the interpolated feature
for f̃i can be written as:

f̃i =

∑
i′∈N ′i

θ(pi, pi′)ψ(fi, fi′)fi′∑
i′∈N ′i

θ(pi, pi′)ψ(fi, fi′)
, (1)

with the joint weighting functions: θ(p1, p2) =

e
−
(
‖p1−p2‖

r

)2

, ψ(f1, f2) = e
−
(
‖f1−f2‖

h

)2

. The width pa-
rameters r and h are computed using average distance to
the closest neighbor.

One way to implement the inter-level connection is to in-
terpolate and concatenate f̃i from all previous layers, i.e.,
use dense links the same as those within the feature ex-
traction units. However, doing so would result in a very
wide network, with `C features in level ` (typically C =
216), causing scalability issues and optimization difficul-
ties [51]. Instead, we apply residual skip-connections, i.e.,

Figure 6: Extraction of patches for L̂ = 3 during training. In this example,
since there are only a small number of input points in 2D data, the first level
contains the whole input shape (N = |P0|).

fi = f̃i+fi. By applying such residual links per-level, con-
textual information from coarser scales can be propagated
through the entire network and incorporated for the restora-
tion of finer structures. We learn through experiments that
both dense links and residual links contribute positively to
the upsampling result, but the latter has better performance
in terms of memory efficiency, training stability and recon-
struction accuracy.

3.3. Implementation details

Iterative patch extraction. In each training step, the tar-
get resolution L̂ is fixed. PL̂ and QL̂ denote the prediction
and reference patch in L̂, whereas TL̂ denotes the entire ref-
erence shape in this resolution. We compute PL̂ and QL̂

iteratively from a series of intermediate predictions and ref-
erences, denoted as P` and Q̃` where ` = 1 . . . L̂− 1.

More specifically, the input to level ` is obtained using
kNN (k = N) around a random point p∗`−1 in P`−1. Q̃`

should matche the spatial extent of P` but has a higher res-
olution, hence it can be extracted by kNN search in Q̃`−1

using the same query point p∗`−1, whereas k = 2L̂−l+1N .
Note that we normalize the patches to a unit cube to im-
prove the computational stability. In Figure 6 we illustrate
the described procedure for L̂ = 3.

For inference, the procedure differs from above in two
points: 1. In each level, we extract H overlapping input
patches to ensure coverage of the entire input point set, the
query points are sampled with farthest sampling; 2. We
obtain P` by first merging the H overlapping partial out-
puts and then resampling with farthest sampling such that
|P`| = 2|P`−1|. The resampling leads to uniform point dis-
tribution despite overlapping regions.

Using a small N could theoretically restrict the contex-
tual information, while a larger N could unnecessarily in-
crease the input complexity thus training difficulty. In our
experiments, the choice of the input patch size N is not that
critical for the upsampling quality.

Loss function. We use Euclidean distance for patch ex-
traction for its speed and flexibility. This implies that the
patch pairs P` and Q` might have misalignment problems
on their borders. We observe that the loss computed on

those unmatched points adds noise and outliers in the re-
sult. Thus, we propose a modified Chamfer distance:
L(P,Q)=

1

|P |
∑

p∈P
ξ

(
min
q∈Q

‖p−q‖2
)
+

1

|Q|
∑

q∈Q
ξ

(
min
p∈P

‖p−q‖2
)
, (2)

where the function ξ filters outliers above a threshold δ:

ξ (d) =

{
d, d ≤ δ

0, otherwise
. We set δ to be a multiple of the av-

erage nearest neighbor distance so as to dynamically adjust
to patches of different scales.

4. Results
In this section, we compare our method quantitatively

and qualitatively with state-of-the-art point upsampling
methods, and evaluate various aspects of our model. Please
refer to the supplementary for further implementation de-
tails and extended experiments.

The metrics used for evaluation are (i) Chamfer distance,
(ii) Hausdorff distance [4] and (iii) point-to-surface distance
computed against the ground truth mesh.

Training and testing data. We generate two datasets for
our experiments: MNIST-CP, Sketchfab and ModelNet10
[54]. MNIST-CP consists of 50K and 10K training and
testing examples of 2D contour points extracted from the
MNIST dataset [31]. Given a set of 2D pixel points, we
apply Delaunay triangulation [5], Loop surface subdivi-
sion [38], boundary edge extraction, and WLOP [22] to
generate a uniformly distributed point set lying on the con-
tour curve of the image. The number of points in input
P and ground truth point sets T1, T2 and T3 are 50, 100,
200 and 800, respectively. Sketchfab consists of 90 and
13 highly detailed 3D models downloaded from Sketch-
Fab [48] for training and testing, respectively. ModelNet10
is comprised of 10 categories, containing 3991 and 908
CAD meshes for training and testing, respectively. We use
the Poisson-disk sampling [7] implemented in Meshlab [6]
to sample input and ground truth point sets with the number
of points ranging from 625 to 80000. Our data augmenta-
tion includes random rotation, scaling and point perturba-
tion with gaussian noise.

Comparison. We compare our method on relatively
sparse (625 points) and dense (5000 points) inputs with
three state-of-the-art point set upsampling methods: EAR
[23], PU-Net [59] and EC-Net [58] . The code of these
methods is publicly available. For EAR, we set the pa-
rameter σn = 35◦ to favor sharp feature preservation. For
PU-Net and EC-Net, we obtain 16× results by iteratively
applying their 4×-upsampling model twice, as advised by
the authors. As for comparison, we train a four-step 16×
model using our method, where the initial patch size falls
into a similar level of detail as PU-Net. For all experiments,
we add to the input Gaussian noise with 0.25% magnitude
of the model dimensions.

Method Sparse input Dense input # Param.CD HD P2F CD HD P2F

EAR 0.67 7.75 5.25 0.09 1.82 1.88 -
PU 0.72 9.24 6.82 0.41 5.45 3.39 814K
EC 0.91 13.4 6.42 0.24 4.21 2.64 823K

Ours 0.54 6.92 3.32 0.06 1.31 1.11 304K

Table 1: Quantitative comparison with state-of-the-art approaches for 16×
upsampling from 625 and 5000 input points tested on Sketchfab dataset.

10−3 bathtub bed chair desk dresser monitor n. stand sofa table toilet

C
D

PU 1.01 1.12 0.82 1.22 1.55 1.19 1.77 1.13 0.69 1.39
EC 1.43 1.81 1.8 1.30 1.43 2.04 1.88 1.79 1.00 1.72
ours 0.70 0.77 0.90 0.96 1.13 0.83 1.37 0.67 0.58 1.02

H
D PU 10.77 12.39 10.38 13.29 14.08 14.01 16.21 11.66 9.7 14.74

EC 15.71 23.17 18.65 16.12 16.37 30.48 20.29 19.97 12.42 18.58
ours 7.76 9.36 9.70 9.19 11.33 9.90 13.52 8.37 5.87 10.95

Table 2: Quantitative comparison with state-of-the-art approaches on Mod-
elNet10 dataset for 16× upsampling from 625 input points.

Table 1 and 2 summarizes the quantitative comparison
conducted using Sketchfab and ModelNet10. Note that be-
cause many models in ModelNet10 are not watertight, we
omit the point-to-surface distance in Table 2. Examples of
the upsampling results are provided in Figures 11 and 12 for
visual comparison, where we apply surface reconstruction
to the upsampled point sets using PCA normal estimation
(neighborhood number = 25) [18] and screened Poisson re-
construction (depth = 9) [26]. As seen in Figures 11 and 12,
EAR generates competitive results for denser inputs but
struggles with sparse inputs. As shown in Table 1, the per-
formance of PU-Net on sparse and dense inputs is similar,
revealing its limitation for high levels of detail. For denser
inputs, EC-Net produces clean and more well defined out-
puts than PU-Net, but also shows signs of over-sharpening.
For sparse input though, EC-Net produces more artifacts,
possibly because the geodesic KNN, which EC-Net is built
upon, becomes unreliable under sparse inputs. In compar-
ison, our method outperforms all these methods quantita-
tively by a large margin. Qualitatively, our results are less
noisy and contain notably more details.

Ablation study. An ablation study quantitatively evalu-
ates the contribution of each of our proposed components:

1. Multi-stage architecture: we train a 2×-upsampling
model for all levels of detail and test by iteratively ap-
plying the model 4 times.

2. End-to-end training: we train each upsampling unit
separately.

3. Progressive training: instead of progressively activat-
ing the training of each upsampling unit as described
in Section 3.1, we train all units simultaneously.

4-6. Dense feature extraction, expansion, and inter-level
skip-connections: we either remove or replace each of
these modules with their counterpart in PU-Net.

As Table 3 shows, all components contributes positively

Removed/Replaced component
CD

10−3
HD

10−3
P2F
10−3 Param.

1. Multi-stage architecture 0.69 9.98 4.07 65K
2. End-to-end training 0.73 9.91 3.34 263K
3. Progressive end-to-end training 0.55 7.46 3.49 304K
4. Dense feature extraction 0.61 9.17 4.17 2855K
5. Feature expansion 0.73 9.83 5.30 1642K
6. Inter-level skip-connections 0.61 7.65 3.38 263K

Our full model 0.54 6.92 3.32 304K

Table 3: Ablation study with 16×-upsampling factor tested on the Sketch-
fab dataset using 625 points as input. We evaluate the contribution of each
proposed component quantitatively with Chamfer distance (CD), Haus-
dorff distance (HD) and mean point-to-surface distance (P2F), and also
report the number of parameters in the rightmost column.

input (i) (ii) (iii) (iv) (v) GT

Figure 7: Study of patch-based progressive upsampling. From left to
right: input with 50 points, (i) direct 16× upsampling, (ii) iterative 2×
upsampling trained with augmented data, (iii) multi-stage network trained
separately, (iv) multi-stage network trained progressively, (v) patch-based
multi-stage network trained progressively, and ground truth.

to the full model. In particular, removing multi-stage archi-
tecture significantly increased the difficulty of the task, re-
sulting in artifacts shown in Figure 8b. We observe similar
artifacts when the upsampling units are trained separately
(Figure 8c), as the networks cannot counteract the mistakes
made in previous stages. The proposed dense feature ex-
traction, feature expansion, and inter-level skip-connections
considerably improve the upsampling results. Moreover,
the feature extraction and expansion unit contribute to sig-
nificant parameter reduction.

Study of patch-based progressive upsampling. We
evaluate the effect of our core idea, patch-based progres-
sive upsampling, in greater detail. For this purpose, we
start from the architecture proposed by PU-Net and add the
techniques introduced in Section 3.1 one by one. Specif-
ically, we conduct the following experiments on MNIST-
CP dataset: (i) train a PU-Net with direct 16× upsampling,
(ii) train one 2× PU-Net using training examples sampled
with all available patch densities and then apply it iteratively
4 times, (iii) train a network for each level of detail sepa-
rately, (iv) progressively train all networks but omit the per-
stage patch extraction technique introduced in Section 3.1,
and finally (v) progressively train all networks with patch
extraction.

The results are shown in Figure 7. Both direct upsam-
pling and single-stage model ((i) and (ii)) are unable to
reconstruct faithful geometry in curvy regions, suggesting
that a multi-stage architecture is necessary for capturing
high levels of detail. The multi-stage PU-Net (iii) notably

(a) (b) (c) (d)

Figure 8: Visual comparison for ablation study. We perform 16×-
upsampling from 625 points (left). (a)-(d) show a point patch of the input
and the results from the single-stage model, separately trained model and
our full model.

(a) (b) (c)

Figure 9: 16× upsampling results using a real scan as input. Given a noisy
input (a), we use WLOP [22] to obtain a consolidated point set (b), to
which we apply our upsampling network (c).

improves the result but shows more artifacts compared with
an end-to-end multi-stage model (iv), since the network has
a chance to correct the mistakes introduced in earlier stages.
Finally, applying adaptive patch extraction (v) further re-
fines the local geometry, indicating that it helps the network
to focus on local details by adapting the spatial span of input
to the scope of receptive fields.

Stress test. To test the robustness to noise and sparsity, we
subject an input point set to different noise levels ranging
from 0% to 2%, and for sparsity we randomly remove 10%
to 50% of the points from the input. The corresponding
results from MNIST-CP datasets are shown in Figures 10a
and 10b. Compared to PU-Net, our model is more robust
against noise and sparsity.

Real world data. To test our model on real scans, we ac-
quire input data using a hand-held 3D scanner Intel Re-
alSense SR300. Albeit dense, such data is severely rid-
den with noise and outliers. Therefore, we first employ
WLOP [22], a point set denoising tool known to be robust
against noise and outliers, to consolidate and simplify the
point set. We then apply our model to the resulting, de-
noised yet sparse point set and obtain a dense and clean
output, as shown in Figure 9c.

5. Conclusion
In this work, we propose a progressive point set up-

sampling network that reveals detailed geometric structures
from sparse and noisy inputs. We train our network step by
step, where each step specializes in a certain level of detail.
In particular, we direct the attention of our network to local

increasing noise

(a)
increasing sparsity

(b)

Figure 10: Stress test with increasing noise (a) and sparsity (b). The model
is trained using 50 input points and Gaussian noise of 0.25% magnitude of
the point set dimensions. In (a) we test with noise level of 0, 0.25%, 0.5%,
1%, 1.5% and 2%; in (b) we test with 50, 45, 40, 35, 30, and 25 input
points.

geometric details by reducing the spatial span as the scope
of the receptive field shrinks. Such adaptive patch-based ar-
chitecture enables us to train on high-resolution point sets
in an end-to-end fashion. Furthermore, we introduce dense
connections for feature extraction, code assignment for effi-
cient feature expansion, as well as bilateral feature interpo-
lation for interlinks across the steps. Extensive experiments
and studies demonstrate the superiority of our method com-
pared with the state-of-the-art techniques.

Acknowledgement
We thank the anonymous reviewers for their constructive

comments and the SketchFab community for sharing their
3D models. This work was supported in parts by SNF grant
200021 162958, ISF grant 2366/16, NSFC (61761146002),
LHTD (20170003), and the National Engineering Labora-
tory for Big Data System Computing Technology.

Figure 11: 16× upsampling results from 625 input points (left) and reconstructed mesh (right).

Figure 12: 16× upsampling results from 5000 input points (left) and reconstructed mesh (right).

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning representations and generative models for 3D point
clouds. Proc. Int. Conf. on Machine Learning, 2018. 2

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Computing and rendering point set surfaces.
IEEE Trans. Visualization & Computer Graphics, 9(1):3–15,
2003. 2

[3] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional
neural networks by extension operators. ACM Trans. on
Graphics (Proc. of SIGGRAPH), 2018. 1

[4] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T.
Silva. A benchmark for surface reconstruction. ACM Trans.
on Graphics, 32(2):20, 2013. 5

[5] J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and
M. Yvinec. Triangulations in CGAL. Computational Ge-
ometry, 22:5–19, 2002. 5

[6] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganov-
elli, and G. Ranzuglia. Meshlab: an open-source mesh pro-
cessing tool. In Eurographics Italian Chapter Conference,
2008. 5

[7] M. Corsini, P. Cignoni, and R. Scopigno. Efficient and
flexible sampling with blue noise properties of triangular
meshes. IEEE Trans. Visualization & Computer Graphics,
18(6):914–924, 2012. 5

[8] H. Deng, T. Birdal, and S. Ilic. PPF-FoldNet: Unsupervised
learning of rotation invariant 3D local descriptors. arXiv
preprint arXiv:1808.10322, 2018. 2

[9] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-
resolution using deep convolutional networks. IEEE Trans.
Pattern Analysis & Machine Intelligence, 38(2):295–307,
2016. 1

[10] F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe. Know
what your neighbors do: 3D semantic segmentation of point
clouds. arXiv preprint arXiv:1810.01151, 2018. 2

[11] Y. Fan, H. Shi, J. Yu, D. Liu, W. Han, H. Yu, Z. Wang,
X. Wang, and T. S. Huang. Balanced two-stage residual net-
works for image super-resolution. In Proc. IEEE Conf. on
Computer Vision & Pattern Recognition Workshops, pages
1157–1164. IEEE, 2017. 1, 2

[12] M. Gadelha, R. Wang, and S. Maji. Multiresolution tree
networks for 3D point cloud processing. arXiv preprint
arXiv:1807.03520, 2018. 2

[13] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry.
AtlasNet: A papier-mâché approach to learning 3D surface
generation. In Proc. IEEE Conf. on Computer Vision & Pat-
tern Recognition, 2018. 2, 4

[14] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mi-
tra. PCPNet learning local shape properties from raw point
clouds. Computer Graphics Forum, 37(2):75–85, 2018. 2

[15] S. Gurumurthy and S. Agrawal. High fidelity semantic shape
completion for point clouds using latent optimization. arXiv
preprint arXiv:1807.03407, 2018. 2

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proc. IEEE Conf. on Computer
Vision & Pattern Recognition, pages 770–778, 2016. 2, 3

[17] P. Hermosilla, T. Ritschel, P.-P. Vazquez, A. Vinacua, and
T. Ropinski. Monte carlo convolution for learning on non-
uniformly sampled point clouds. ACM Trans. on Graphics
(Proc. of SIGGRAPH Asia), 37(6), 2018. 1

[18] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
Proc. of SIGGRAPH, pages 71–78, 1992. 6

[19] B.-S. Hua, M.-K. Tran, and S.-K. Yeung. Pointwise convo-
lutional neural networks. In Proc. IEEE Conf. on Computer
Vision & Pattern Recognition, pages 984–993, 2018. 1

[20] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In Proc. IEEE
Conf. on Computer Vision & Pattern Recognition, 2017. 2, 3

[21] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger.
Deep networks with stochastic depth. In Proc. Euro. Conf.
on Computer Vision, pages 646–661. Springer, 2016. 3

[22] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or.
Consolidation of unorganized point clouds for surface recon-
struction. ACM Trans. on Graphics (Proc. of SIGGRAPH
Asia), 28(5):176:1–176:7, 2009. 2, 5, 7

[23] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and
H. Zhang. Edge-aware point set resampling. ACM Trans. on
Graphics, 32(1):9:1–9:12, 2013. 1, 2, 5

[24] M. Jiang, Y. Wu, and C. Lu. PointSIFT: A SIFT-like network
module for 3D point cloud semantic segmentation. arXiv
preprint arXiv:1807.00652, 2018. 2

[25] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
growing of gans for improved quality, stability, and variation.
Proc. Int. Conf. on Learning Representations, 2018. 2, 3

[26] M. Kazhdan and H. Hoppe. Screened poisson surface recon-
struction. ACM Trans. on Graphics, 32(1):29:1–29:13, 2013.
6

[27] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image
super-resolution using very deep convolutional networks. In
Proc. IEEE Conf. on Computer Vision & Pattern Recogni-
tion, pages 1646–1654, 2016. 1

[28] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-
networks for the recognition of 3D point cloud models. In
Proc. Int. Conf. on Computer Vision, pages 863–872. IEEE,
2017. 2

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In In
Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012. 2

[30] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep
laplacian pyramid networks for fast and accurate superreso-
lution. In Proc. IEEE Conf. on Computer Vision & Pattern
Recognition, 2017. 1, 2

[31] Y. LeCun and C. Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. 5

[32] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al.
Photo-realistic single image super-resolution using a genera-
tive adversarial network. In Proc. IEEE Conf. on Computer
Vision & Pattern Recognition, 2017. 1

[33] J. Li, B. M. Chen, and G. H. Lee. So-net: Self-organizing
network for point cloud analysis. In Proc. IEEE Conf. on

Computer Vision & Pattern Recognition, pages 9397–9406,
2018. 3

[34] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. arXiv preprint
arXiv:1801.07791, 2018. 1

[35] D. Lin, Y. Ji, D. Lischinski, D. Cohen-Or, and H. Huang.
Multi-scale context intertwining for semantic segmentation.
In Proc. Euro. Conf. on Computer Vision, pages 603–619,
2018. 3

[36] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer.
Parameterization-free projection for geometry reconstruc-
tion. ACM Trans. on Graphics (Proc. of SIGGRAPH),
26(3):22:1–22:6, 2007. 2

[37] X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker. Point2Sequence:
Learning the shape representation of 3D point clouds with
an attention-based sequence to sequence network. arXiv
preprint arXiv:1811.02565, 2018. 2

[38] C. Loop. Smooth subdivision surfaces based on triangles.
Master’s thesis, University of Utah, Department of Mathe-
matics, 1987. 5

[39] M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784, 2014. 4

[40] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frus-
tum pointnets for 3D object detection from rgb-d data. arXiv
preprint arXiv:1711.08488, 2017. 2

[41] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep
learning on point sets for 3D classification and segmentation.
In Proc. IEEE Conf. on Computer Vision & Pattern Recog-
nition, 2017. 1, 2

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep
hierarchical feature learning on point sets in a metric space.
In In Advances in Neural Information Processing Systems
(NIPS), pages 5099–5108, 2017. 1, 3

[43] D. Rethage, J. Wald, J. Sturm, N. Navab, and F. Tombari.
Fully-convolutional point networks for large-scale point
clouds. arXiv preprint arXiv:1808.06840, 2018. 2

[44] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical Image Computing and
Computer-assisted Intervention, pages 234–241. Springer,
2015. 2

[45] R. Roveri, A. C. Öztireli, I. Pandele, and M. Gross. Point-
ProNets: Consolidation of point clouds with convolutional
neural networks. Computer Graphics Forum, 37(2):87–99,
2018. 2

[46] Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud
local structures by kernel correlation and graph pooling. In
Proc. IEEE Conf. on Computer Vision & Pattern Recogni-
tion, 2018. 3

[47] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-
age and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proc. IEEE Conf. on Com-
puter Vision & Pattern Recognition, pages 1874–1883, 2016.
1

[48] Sketchfab. https://sketchfab.com. 5
[49] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong. Adaptive O-

CNN: A patch-based deep representation of 3D shapes. ACM
Trans. on Graphics (Proc. of SIGGRAPH Asia), 2018. 2

[50] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and
B. Catanzaro. High-resolution image synthesis and semantic
manipulation with conditional GANs. In Proc. IEEE Conf.
on Computer Vision & Pattern Recognition, 2018. 2

[51] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung,
O. Sorkine-Hornung, and C. Schroers. A fully progressive
approach to single-image super-resolution. In Proc. IEEE
Conf. on Computer Vision & Pattern Recognition Workshops,
June 2018. 2, 3, 4

[52] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph cnn for learning on point
clouds. arXiv preprint arXiv:1801.07829, 2018. 3

[53] S. Wu, H. Huang, M. Gong, M. Zwicker, and D. Cohen-
Or. Deep points consolidation. ACM Trans. on Graphics,
34(6):176, 2015. 2

[54] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proc. IEEE Conf. on Computer Vision & Pattern
Recognition, pages 1912–1920, 2015. 5

[55] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn: Deep
learning on point sets with parameterized convolutional fil-
ters. Proc. Euro. Conf. on Computer Vision, 2018. 1

[56] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point
cloud auto-encoder via deep grid deformation. In Proc. IEEE
Conf. on Computer Vision & Pattern Recognition, volume 3,
2018. 2, 4

[57] K. Yin, H. Huang, D. Cohen-Or, and H. Zhang. P2p-net:
bidirectional point displacement net for shape transform.
ACM Trans. on Graphics (Proc. of SIGGRAPH), 37(4):152,
2018. 2

[58] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. Ec-
net: an edge-aware point set consolidation network. Proc.
Euro. Conf. on Computer Vision, 2018. 1, 2, 5

[59] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. Pu-net:
Point cloud upsampling network. In Proc. IEEE Conf. on
Computer Vision & Pattern Recognition, pages 2790–2799,
2018. 1, 2, 3, 4, 5

[60] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn:
Point completion network. In Proc. Int. Conf. on 3D Vision,
pages 728–737. IEEE, 2018. 2

[61] W. Zhang, H. Jiang, Z. Yang, S. Yamakawa, K. Shimada, and
L. B. Kara. Data-driven upsampling of point clouds. arXiv
preprint arXiv:1807.02740, 2018. 2

[62] Y. Zhao, G. Li, W. Xie, W. Jia, H. Min, and X. Liu.
Gun: Gradual upsampling network for single image super-
resolution. IEEE Access, 6:39363–39374, 2018. 1, 2

https://sketchfab.com

