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Abstract
This note presents a proof for the subspace property of linear vari-
ational methods for fair surface design. Specifically, we show that
any surface geometry computed from positional constraints which
lie on a linear subspace will be forced to lie in this same subspace.
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1 Introduction
In the process of creating FiberMesh [Nealen et al. 2007], we
have implemented both Least-Squares Meshes (LSM) [Sorkine and
Cohen-Or 2004; Sorkine et al. 2005] and the Botsch/Kobbelt (BK)
framework [Botsch and Kobbelt 2004] for fair surface computation.
In 2D MATLAB implementations, this works fine as long as the po-
sitional constraints (also known as the anchors) are not collinear, as
we can see from the examples in Fig. 1.

Figure 1: MATLAB examples where anchor points (red crosses)
are not collinear. The red dotted line is the LSM solution, while
the red, blue and green solid lines are the BK solutions for k = 1,
k = 2 and k = 3 respectively.

When the anchors lie in a linear subspace (such as a line in 2D),
all other vertices of this shape are forced to lie in this subspace as
well (see Fig. 2).

Figure 2: Degenerate MATLAB examples with two (left) or 3
collinear anchors (right). Color coding as in Fig. 1

Intuitively, this means that all vertices are computed as affine
combinations of the anchor vertices (see Fig. 3). In the following,
we show that the linear solutions of [Sorkine and Cohen-Or 2004]
and [Botsch and Kobbelt 2004] both have this property, which
makes them unsuitable for inflating a mesh defined by a planar
curve, since in a 2D sketching tool we will generally have con-
straints which lie on a plane (the two anchors in Fig. 2 can be

seen as the cross section of a planar 2D sketch). Adding posi-
tional constraints perpendicular to the sketch plane works, which
is analogous to implementing higher order boundary constraints,
yet requires manual placement, which is a nontrivial task in a 3D
modeling environment (see Fig. 1 for the cross section analogy).

Figure 3: MATLAB LSM example with three adjacent anchor
points. The weights are high, therefore the smoothness constraints
cannot be met (right, first three indices). Note that the horizontal
dashed line is the sum of the three bases.

2 Least-squares Meshes
Suppose we have connected mesh topology M with n vertices. De-
note by L the Laplacian matrix with L(1, . . . , 1)T

n = 0n, i.e. all
rows of L sum up to zero. Some k vertices are tagged as anchor
vertices; w.l.o.g. assume that the anchors are vertices {1, 2, . . . , k}.
In [Sorkine and Cohen-Or 2004] the positions of all vertices are ob-
tained as the solution of the following least-squares problem

argmin
x

∥∥∥∥(
L
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)
x−
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x′k

)∥∥∥∥2

= argmin
x

‖Ax− b‖2 ,
(1)

where Ik×k is the k by k identity matrix and x′k = (x′1, . . . , x
′
k)T

is the vector of prescribed anchor positions. While the matrix L
has rank n − 1, the rectangular matrix A involved in the least-
squares problem above has full column rank after adding a single
positional constraint (or more). Therefore, we can write the least-
squares solution explicitly as

x =
(
AT A

)−1

AT b. (2)

Observation 2.1. The solution to Eqn. 2 is an affine combination
of the anchor positions x′k.

Proof. First we expose the structure of the vector AT b of length
n, which has anchor positions in the first k entries, and zeros else-
where
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It is easy to see that:
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Denote 1n = (1, . . . , 1)T
n . Since L1n = 0n, also LT L1n =

0n. Thus:
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Let us multiply the last equation by (AT A)−1 on the left side:

(AT A)−1(AT A)1n = (AT A)−1

(
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)
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(
1k
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)
(6)

The last equality tells us that the sum of the first k elements of
each row of (AT A)−1 is equal to 1. These multiply the first k
elements of AT b in Eqn. 2, which shows that the solution x is an
affine combination of the anchors x′.

3 Botsch/Kobbelt Bases
In [Botsch and Kobbelt 2004] the anchors are interpolated instead
of approximated. Therefore, we are dealing with disjoint sets of
vertices (in contrast to [Sorkine and Cohen-Or 2004] where the an-
chors are a subset of all vertices). We denote the set of k fixed
vertices as F, the set of n free vertices as P and N = n + k. Note
that the fixed vertices are only required to enforce boundary con-
straints around the free region, since their positions are known a
priori (their smoothness constraints are also dropped from the sys-
tem, as we will see below).

First, the N × N Laplacian Matrix L is raised to the desired
power p (where p = 1 for the membrane, p = 2 for the thin-plate
and p = 3 for the minimum variation solution). W.l.o.g. assume
that the k fixed vertices have indices 1, . . . , k in the system, and the
free vertices have indices k + 1, . . . , N , then for the smoothness
constraint we have

Lp

(
F
P

)
= 0. (7)

The smoothness constraints on vertices in F are removed from the
system by omitting the first k rows of Lp, resulting in the n × N
matrix ∆p. By adding the boundary conditions back to the system,
we arrive at the formulation used in [Botsch and Kobbelt 2004](
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)
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This is for notational convenience only. Here, we use ∆p
F for the

upper left n × k matrix and ∆p
P for the upper right n × n matrix.

By dropping the bottom k rows of Eqn. 8 and rearranging we get

P = (∆p
P)−1 (−∆p

F)F = BBKF . (9)

The n × k matrix BBK can be interpreted as the matrix of basis
functions. This basis suffers from the subspace property, which is
equivalent to saying that the basis vectors (the columns of BBK )
sum to 1.

Observation 3.1.

(∆p
P)−1 (−∆p

F)1k = 1n . (10)

Proof. We know that the rows of ∆p sum to zero, since these are
rows of the original Laplacian matrix. This can also be written as

(∆p
F)1k + (∆p

P)1n = 0n . (11)

Rearranging and multiplying from the left with (∆p
P)−1 yields

1n = (∆p
P)−1 (−∆p

F)1k (12)

Which shows that the bases in [Botsch and Kobbelt 2004] sum to 1
on each mesh vertex.

4 Conclusions
To overcome these issues, we have implemented a fast approxi-
mation of the full nonlinear solution in our FiberMesh tool [Nealen
et al. 2007] (Fig. 4). This system runs at interactive rates for reason-
ably sized models (up to a few thousand vertices) on a 1GHz pen-
tium laptop. The method furthermore avoids the common problem
of curvature concentrating near the positional constraints by intro-
ducing edge length constraints near the anchors, thereby smoothing
out the approximated surface metric.

Figure 4: The results of least-squares meshes (top) and our non-
linear solution (bottom) for positional constraints which lie on a
planar curve.
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