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Discrete Laplacian on Simplicial Meshes

* Many applications in geometry processing:
deformation, parameterization, heat diffusion, uniformization.

* All these examples have direct analogies for tetrahedral meshes.
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Discrete Laplacian on Simplicial Meshes

* All Laplacians we consider here are given by weights W .

(Lf)i= > wiy(fj—f) wij = Wji

* Properties by construction:
(weak) locality, symmetry, constants are part of the null space.
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Discrete Laplacian on Simplicial Meshes

* Additional desirable properties:

negative semi-definite

Dirichlet energy —f ' I,f is non-negative for any functionf.

positive coefficients W;

Maximum principle.

linear precision

(Lf); = 0 for inner vertices ¢ and linear functions f.
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Discrete Laplacian on Simplicial Meshes

* Discrete Laplacians are widely studied for triangle meshes.
* Arguably the most common choice:

cotan Laplacian
(negative semi-definite, symmetric, linear precision, local)

* If maximum principle is needed for non-Delaunay meshes:

Intrinsic cotan Laplacian
(negative semi-definite, symmetric, linear precision, positivity)
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Discrete Laplacian on Simplicial Meshes

* |s there a similar default option for simplicial meshes?

Short answer: No

Triangle meshes Simplicial meshes

FV/DEC FEM FV/DEC

N/ L

Cotan-Laplacian Primal Laplacian # Dual Laplacian



Discrete Laplacian on Simplicial Meshes

* |s there a similar default option for simplicial meshes?

Detailed answer:

Eurographics Symposium on Geometry Processing 2020 Volume 39 (2020), Number 5
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(Guest Editors)
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Abstract

Discrete Laplacians for triangle meshes are a fundamental tool in geometry processing. The so-called cotan Laplacian is widely
used since it preserves several important properties of its smooth counterpart. It can be derived from different principles: either
considering the piecewise linear nature of the primal elements or associating values to the dual vertices. Both approaches
lead to the same operator in the two-dimensional setting. In contrast, for tetrahedral meshes, only the primal construction is
reminiscent of the cotan weights, involving dihedral angles. We provide explicit formulas for the lesser-known dual construction.
In both cases, the weights can be computed by adding the contributions of individual tetrahedra to an edge. The resulting two
different discrete Laplacians for tetrahedral meshes only retain some of the properties of their two-dimensional counterpart. In
particular, while both constructions have linear precision, only the primal construction is positive semi-definite and only the



Discrete Laplacian: Linear Finite Elements
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Discrete Laplacian: Linear Finite Elements

 Each vertex v; has a unique function b; that is
* linear on the elements (triangles/tetrahedra).
* fulfills bi(vj) — 5’63

* Represent function in this basis

f = Zfibi
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Discrete Laplacian: Linear Finite Elements

 Gradients of b, are constant on elements.

* Gradient of piecewise linear function by linearity.

\
Vf:VZfibi:ZfiVbi \

* A matrix (z maps vertex values to gradients.
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Discrete Laplacian: Linear Finite Elements

* Divergence is the adjoint of the gradient
D=-G'A

* Ais a diagonal matrix containing areas/volumes. \

* The Laplacian can be defined as divergence of
the gradient:

L=-G'AG
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Discrete Laplacian: Linear Finite Elements

L=-G'AG
* Negative semi-definite by construction.

* Linear functions are exactly reproduced.

—> linear precision: the Laplacian of linear
functions vanishes (at interior vertices).
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Discrete Laplacian: Linear Finite Elements

L=-G'AG

* Yields cotan Laplacian for triangle meshes.

1 1
Wi = §cotoz+§cot6

* Construction per triangle.
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Discrete Laplacian: Linear Finite Elements

* Analogous formula for tetrahedral meshes
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* Construction by summing up per element: strong locality.



Discrete Laplacian: Finite Volumes



Discrete Laplacian: Finite Volumes

 Associate constant values to volumes at vertices.

» Use circumcentric dual volumes %7 .

/Ade / (VF) dV = /a*i(Vf)-ndS *i\




Discrete Laplacian: Finite Volumes

/*iAf dV:/{M(Vf).nds

(f5 — [i)

Vol(i, j)

Vol(x(%, j))

o Vol(*(i, 7))

Vol(i, 7)




Discrete Laplacian: Finite Volumes

*(2,7)

/*iAf dV:/M(Vf).nds

(f5 — [i)

Vol(i, j)

Vol(*(z, 7))

o Vol(*(1, 7))

Vol(i, 7)




Discrete Laplacian: Finite Volumes

* The set (1,x,y,z) spans the space of linear functions.

* Constants are part of the kernel by default.

 Linear precision: (LX); = 0 for the vertex positions X € R"™*%,
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Discrete Laplacian: Finite Volumes

» Linear precision: (LX); = 0 for the vertex positions X € R"**

*(2, ) ' (v, — v;) .
] > ij- - Vol(x(%, 7)) = 0
(ij)em "7

(2,7)

Vector area integrated over a
closed surface vanishes.




Discrete Laplacian: Finite Volumes

* Positivity: (i) - Vol(*(i,j))

Vol(i, j)

Vi — Vi

* The vector v, — il IS the outward directed boundary normal.






Discrete Laplacian: Finite Volumes

- Positivity: (,7)  Vol(x(i, §))

Vel )
x(1,7)

Vi — Vi
* The vector v, — il IS the inward directed boundary normal.




Discrete Laplacian: Finite Volumes

o . . Z, ' . .
Positivity: (4,7) Vol (* (Z,J))
Wi = T
/ Vol(i, j)
*(2, 7)
negative dual volume
Vj — V;

* The vector v, — il IS the inward directed boundary normal.



 Delaunay meshes have embedded circumcentric duals => w;; > 0



Discrete Laplacian: Strong Locality

 Element wise construction:

v, ta cot
Wi = Ivi = vl Zcotﬁ (ZCO @ cotf — cot? a — cot? 5)

cos 6

* Applies to non-Delaunay meshes.
* Easy boundary treatment.
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Discrete Laplacian: Properties

* Properties by construction (finite elements/finite volumes):

symmetry, strong locality, linear precision

* Properties by construction (finite elements):

negative semi-definite

* Properties by construction (finite volumes, Delaunay mesh):

positive coefficients (mesh interior)




Discrete Laplacian: Properties 2d

* For triang

e meshes:

finite e

ement Laplace = finite volume Laplace = cotan Laplace

* Delaunay meshes:

negative semi-definite and positive coefficients (interior)

* non-Delaunay meshes:

negative semi-definite




Discrete Laplacian: Properties 3d

* For tetrahedral meshes:

finite element Laplace # finite volume Laplace




Discrete Laplacian: Properties 3d

* Finite volume Laplace:

Delaunay mesh:

positive weights (away from the boundary)

non-Delaunay mesh:




Numerical Experiments

* Minimizing Dirichlet energy: Delaunay mesh
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Numerical Experiments

* Minimizing Dirichlet energy: Delaunay mesh
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Numerical Experiments

* Minimizing Dirichlet energy: non-Delaunay mesh

Symmetry error
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Conclusion

* The choice of Laplacian for simplicial meshes depends on:
* mesh type
* problem type
* numerical method
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