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Figure 1: Popular deformation energies, such as As-Rigid-As-Possible, do not sufficiently penalize element inversion, and “spikes”
and “spillages” might occur as a consequence (visualized in yellow). Our method modifies any given deformation energy, such
that inversions are infinitely penalized. We derive an efficient numerical method to minimize the modified energy and produce a
locally injective mapping of 2D domains (left) and volumetric 3D objects such as Diffusion Surfaces models [TSNI10] (right).

Abstract

Mappings and deformations are ubiquitous in geometry processing, shape modeling, and animation. Numerous de-
formation energies have been proposed to tackle problems like mesh parameterization and volumetric deformations.
We present an algorithm that modifies any deformation energy to guarantee a locally injective mapping, i.e., without
inverted elements. Our formulation can be used to compute continuous planar or volumetric piecewise-linear maps
and it uses a barrier term to prevent inverted elements. Differently from previous methods, we carefully design both
the barrier term and the associated numerical techniques to be able to provide immediate feedback to the user,
enabling interactive manipulation of inversion-free mappings. Stress tests show that our method robustly handles
extreme deformations where previous techniques converge very slowly or even fail. We demonstrate that enforcing
local injectivity increases fidelity of the results in applications such as shape deformation and parameterization.

1 Introduction
No realistic material can be compressed to zero or even nega-
tive volume. While this is a very basic and intuitive require-
ment, it is rather difficult to satisfy in practice when con-
structing continuous piecewise linear mappings, as is often
done in geometry processing, shape modeling, and animation.
This problem arises for example in mesh parameterization,
which seeks a mapping between a surface and a subset of
R2, useful for transfering 2D data onto the surface. In some
situations this map should be bijective (e.g. for texture map-
ping) or at least locally injective (e.g. for remeshing). Yet,
many common methods for parameterization guarantee nei-
ther bijectivity nor local injectivity. In this paper we focus on
local injectivity which requires that the determinant of the
Jacobian of our mapping is always positive.

We consider both 2D and 3D mappings. Mappings from
R3 to R3 are typically used to deform objects, and similarly
to parameterization, these maps should be locally injective,
because inverted elements correspond to physically impos-
sible deformation. In physics-based simulation, it is often
sufficient to be able to recover from inverted elements rather
than avoid them [ITF04]. While useful in some applications,
this approach is not adequate if we want to guarantee that all
elements will have positive volume.

A common way of computing a mapping f between ar-
bitrary shapes is by designing an energy functional E( f )
that measures the desired properties of the mapping, such as
the amount of conformal and area distortion. The mapping
is then computed as the minimizer of the energy E under
some constraints, for example the desired positions of the
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manipulation handles in interactive shape deformation. The
main contribution of this paper is a method for efficient, in-
teractive optimization of an arbitrary energy E subject to
hard non-inversion constraints, i.e., guaranteeing that all ele-
ments retain positive volume. Drawing inspiration from bar-
rier methods [BV04], our method works by adding a term
which grows to infinity as the area/volume of the deformed
elements approaches zero. The resulting energy is highly
nonlinear and difficult to optimize; indeed, commercial opti-
mization software [BNW06] often takes impractically long
time to converge and effectively precludes user interaction.
In this paper, we propose a carefully designed barrier term
and the related numerical optimization procedures that allow
us to obtain a robust and fast solver. Using our technique, the
user can manipulate locally-injective mappings interactively.

Recently, Lipman [Lip12] introduced a method that min-
imizes an arbitrary energy over a space that is guaranteed
to contain only locally-injective mappings. This method is
applicable only to planar maps and does not offer interactive
response already for moderately sized meshes. In contrast,
our approach works by augmenting an arbitrary deformation
energy, which trivially extends to 3D and, most importantly,
permits interactive response times. This is crucial in user-
driven shape deformation, because the system needs to pro-
vide feedback to the user with a minimal delay. Our method
makes this possible thanks to the fact that each step is suffi-
ciently fast and converges smoothly to the solution, enabling
the user to quickly detect and resolve problematic edits. Such
interactivity may also be useful in parameterization, where
the user may prefer to have direct control over the solution.

We apply our method to several existing deformation en-
ergies, such as simple Laplacian editing [BS08], As-Rigid-
As-Possible (ARAP) [SA07, LZX∗08] and a simple linear
elasticity model utilizing Green’s strain [BW97]. We show
that our algorithm fixes the well known spill-overs and sharp
protrusion artifacts (spikes), caused by moving a point con-
straint too far from its original position (Figure 2). Green’s
strain energy is not commonly used for complicated defor-
mations because it does not penalize inverted elements, often
leading to poor deformation quality. With our term added to
the energy, this disadvantage disappears and Green’s strain
produces results similar to the more complex ARAP methods.

Figure 2: Example of 2D deformation: (left) the original
ARAP energy minimization, (right) our method, (middle) rest
pose. Blue circles enclose constrained vertices, red color
indicates the amount of angular distortion. Yellow indicates
inverted elements.

We compare our method to standard numerical approaches
and barrier functions, showing its superior performance and
robustness in the setting of interactive deformations.

2 Related work
Shape deformation and parameterization are typically sep-
arately studied problems in geometry processing. However,
our technique is equally suitable in both cases, and therefore
we survey existing techniques for both.

Deformation. Deformation modeling is important both
in geometry processing and physics-based simulation
[NMK∗06]. Linear deformation models are simple and ef-
ficient, but cannot avoid artifacts when large deformations
are required [BS08]. This is due to the fact that deforma-
tion energies should be invariant to rotation, which is a
nonlinear function of the shape geometry. One possibil-
ity is to apply nonlinear strain measures, such as Green’s
strain [BW97]. Unfortunately, Green’s strain does not pe-
nalize inversion. Another, more costly possibility is to use
SVD of the deformation gradient, which allows to detect
and resist inversion [ITF04, SHST12]. While penalizing in-
verted elements, inversion is not guaranteed to be avoided,
in contrast to our method. A related idea is to explicitly de-
compose the deformation gradient into a rotation and pure
deformation (stretch) components. This strategy is utilized
in shape matching [MHTG05], ARAP deformation ener-
gies [SA07, LZX∗08], and their continuous limit [CPSS10].
Other methods like [AOW∗08, MKN∗04] propose to use a
penalty term based on the determinant of the deformation
gradient to preserve volume. While these methods discourage
inverted elements, they do not always avoid them; negative
volume elements may and often do occur.

In order to guarantee that element inversion is avoided, we
can use a deformation energy that grows to infinity as the
area of a deformed element approaches zero. This is clearly
impossible with linear deformation energies. Several con-
stitutive models with this property are known in continuum
mechanics, such as the Neo-Hookean model [BW97]. While
this model is implemented in physics-based simulation soft-
ware [PMS12, SSB13], it is not used frequently, mainly due
to the increased numerical complexity. [vFTS06, AS07] re-
strict the displacement introduced by the deformation to be a
divergence-free vector field, which prevents local and global
inversion. Another approach by [AWC04,AC04] decomposes
a space deformation into a series of small steps, locally pre-
venting any introduced foldovers. A barrier term based on
a distance function is used in [PS06] to prevent crossings
of maze paths. The determinant of the deformation gradient
is used in [DKMS04] to define an energy which prevents
flips. In this paper, we enrich existing energies by adding a
carefully designed inversion-avoiding term. We also propose
a corresponding nonlinear optimization procedure to achieve
smooth convergence and interactive user response even for
generously tessellated models.

Parameterization. Single-patch parametrization maps a
surface homeomorphic to a disk to a subset of R2. Here we
mainly review the work dealing with locally injective param-
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eterization, and we refer an interested reader to [FH05] and
[SPR06] for additional references. Tutte’s theorem [Tut63]
guarantees that a parametrization with fixed convex boundary,
where the location of each inner vertex is a convex combina-
tion of its neighbors’ locations, is bijective. Such parameteri-
zation is obtained by solving a sparse linear system [Flo03].
Since this construction cannot be used if the domain is con-
cave, which is often necessary to reduce distortion, alternative
parametrization approaches have been proposed. In particular,
free-boundary methods, for example methods that minimize
the discrete conformal energy (see e.g. [LPRM02,MTAD08]),
enable to significantly reduce the distortion compared to fixed
boundary. However, no linear free-boundary method can guar-
antee a fold-over free parametrization. It is possible to iter-
atively repeat the optimization with penalty terms that fight
against flipped triangles [BZK09] but convergence is not
guaranteed.

A direct way to prevent inversions is to employ a nonlinear
energy that penalizes inversions and degenerate elements by
an infinite cost [HG00]. However, such energies are typically
hard to optimize since the gradient and the Hessian become
ill-conditioned when the elements degenerate. Customized
optimization strategies could be used, for example [SSGH01]
and [DMK03] propose a coordinate descent optimization
where each vertex is moved separately. Similarly, [SLMB05]
enforces local injectivity after computing the parametrization
by moving a vertex in the kernel of its one-ring and smoothing
the resulting parametrization to reduce distortion. Such meth-
ods may get stuck and fail to find an un-inverted configuration
if the vertex kernels are too small. Global collision detection
could also be used to prevent inverted elements [HPSZ11].
However, this method becomes prohibitively slow when the
deformation generates multiple collisions.

As Rigid As Possible (ARAP) energies mentioned above
have been used for parametrization purposes to obtain as iso-
metric as possible parameterizations [LZX∗08, CPSS10]. As
in the shape deformation case, ARAP does not guarantee that
inversion will be avoided, in fact inverted elements often ap-
pear if the parameterization is far from isometry. Some param-
eterization approaches (e.g. [SCOGL02, LPRM02, MZ12])
split the domain into multiple parts in order to bound the
distortion. Inverted elements can still be introduced in the
single-patch parametrization step; our algorithm could be
used to make the per-patch parameterization locally injective
with minimal modifications.

Local injectivity in 2D. Generating 2D locally-injective
maps has been studied in two recent papers. [WMZ12] com-
putes, for a fixed boundary, a map with the lowest confor-
mal distortion. The method is limited to 2D maps, requires
a fixed boundary, and cannot be applied to arbitrary ener-
gies. [Lip12] proposes a representation of the subspace of
maps with bounded maximal conformal distortion; these
maps by definition are locally injective. An arbitrary energy
can be minimized on this subspace, resulting in inversion-free
parameterization or 2D deformation. However, to find a so-
lution, the subspace is convexified, which potentially makes
the feasible region empty. Finding a solution may also fail
if the bound on maximal distortion is set too low (simply

because a map with this distortion bound does not exist). The
method relies on certain special properties of 2D mappings;
an extension to 3D was not discussed and does not seem sim-
ple. The method utilizes a quadratic programming solver and
allows minimizing the energy with only few iterations, but
each iteration might take tens of seconds even for moderately
sized meshes, making it too slow for user interaction.

3 Method
Minimization of any deformation energy is not very interest-
ing unless we introduce additional terms that compete with
the energy. We can express this by adding a soft constraint
term to an arbitrary energy E(v) that depends on the position
of the mesh vertices v:

argmin
v

E(v)+α‖Cv−d‖2 (1)

where α ≥ 0 is a parameter specifying the weight of the
soft constraints. This parameter is automatically estimated in
our algorithm (Section 3.4). Note, that hard constraints may
preclude the existence of a non-inverted minimum in certain
constraints and mesh configurations, due to the piecewise-
linear nature of the meshes.

We propose to modify an existing deformation energy E by
adding a barrier term which grows to infinity as our elements
approach zero area/volume. We propose a solver which is
customized for interactive generation of maps, with a user in
the loop. We describe the barrier term in Section 3.1, and the
solver we use in Section 3.2. The barrier functions tend to
make the Hessian of this augmented energy ill-conditioned
in presence of large deformations, and a strategy to prevent
this, while also generating a smooth sequence of intermediate
optimization results, is presented in Sections 3.3 and 3.4.

3.1 Non-flip constraints as barrier functions
We start with the function λ j(v), which measures the
area/volume of the jth element (i.e., triangle in d = 2 or
tetrahedron in d = 3) in configuration v. This function is a
fraction of the determinant, i.e., a polynomial of degree d.
We define our constraint functions as

c j(v) = λ j(v)− ε (2)

ARAP

Green

= 0.0001 0.01 1.0 100

Figure 3: The influence of the barrier strength β on the opti-
mization for Green’s strain and ARAP energies. When β is
high, the optimization effectively tries to preserve the original
element areas. Note that any β > 0 prevents flips, since the
total energy is infinite for non-positive element area.
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Figure 5: Visualization of the intermediate iteration states of the interior point method implemented in KNITRO [BNW06]. In
this simple example we stretch a cylinder by pulling the right cap, while keeping the left cap fixed. Note that the convergence is
not monotonic and the intermediate states are unintuitive.

Figure 4: Plot of the barrier as function of the triangle area,
for three different values of the constant s. As the triangle
degenerates, the barrier function increases, approaching∞.

where ε is a small constant that accounts for numerical inac-
curacies; we used ε = 10−5 ·min j λ j(v0) in our experiments,
where v0 is the initial mesh geometry. By requiring c j(v)> 0,
we say that elements cannot invert. One possibility would be
to use these constraints directly and solve a nonlinear con-
strained optimization problem. However, this is complicated,
time consuming, and not suitable for interactive manipulation.
Instead, we propose to modify the original energy by adding
a fixed barrier term. A barrier is a function φ :R→R such
that limx→0 φ(x) =∞ and for x≤ 0, φ(x) =∞. Adding the
barriers yields an unconstrained optimization problem:

argmin
v

E(v)+α‖Cv−d‖2 +β ∑
j∈E

φ j(c j(v)) (3)

where β > 0 is a scalar parameter specifying the barriers
strength (Figure 3) and E is the set of all elements. Numerical
issues aside, the minimization of Eq. 3 guarantees that no
element may invert regardless of the value of β. Note that
we assume that the rest pose v0 does not contain inverted
elements.

We propose a barrier function that only affects the deforma-
tion energy when the elements are close to being degenerate.
In other words, in addition to requiring limx→0 φ(x) =∞,
we want the new barrier function to smoothly approach 0
as x→ s j, where s j > 0 is a certain fraction of the initial
rest-pose area/volume of the jth element, i.e., s j = sλ j(v0),
s > 0. This necessitates defining a different barrier function
for each element, but this is just a technical matter.

We build our barrier functions φ j starting from a cubic
polynomial g j , which must possess the following properties:

g j(0) = 0, g j(s j) = 1, g′j(s j) = 0, g′′j (s j) = 0 (4)

This results in

g j(x) =
1
s3

j
x3− 3

s2
j
x2 +

3
s j

x. (5)

We define our “compact” barrier functions as “splines”, using
the inverse of the above polynomial:

φ j(x) =


∞, x≤ 0

1
g j(x)
−1, 0 < x < s j

0, x≥ s j

(6)

The parameter s (Figure 4) determines how much the area
can be reduced before the barriers intervene to prevent in-
version. It is tempting to use a very small value for s, so
that the barriers affect the energy as little as possible. The
catch is that a small s makes the slope of the barrier func-
tion very steep, leading to a poor quadratic approximation
of the energy, which we need in our numerical optimization
(Section 3.2). This reduces the convergence speed. We found
that a good compromise between numerical properties and
approximation of the original energy is a value of s between
0.1−1.

Discussion. The choice of the barrier function was not
straightforward and we first experimented with existing meth-
ods, which all turned out to be ill suited for our purposes.

The nonlinear optimization problem in Equation 1 with
the non-flipping constraints can be directly solved using an
interior point method (IPM). We tested two state-of-the-art
solvers, KNITRO [BNW06] and Ipopt [WB06], and we ob-
served that they are not suitable when interactivity is desired,
because they converge to the solution in a non-monotonic
way. In Figure 5, we show the intermediate steps of KNITRO
for a simple deformation example. The entire optimization
took 1512 iterations and 948 seconds, compared to 4 itera-
tions and less than 1 second of our solver. This behavior is
due to the weights of the barrier term that is modified at every
iteration [BV04]. For our setting, we want the energy E to de-
crease at each iteration, so that we can show the intermediate
results of the optimization.

Inspired by interior point methods, we initially used the
following log-barriers:

φlog(x) =
{
− log(x), if x > 0
∞, otherwise (7)

While preventing flipped elements, these barriers achieve
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Figure 6: Barrier functions plots. Only the inverse-spline
barrier has compact support and does not affect the stretching
of elements.

No barriers

Augmented log barrier Inverse spline barrier

Stretching from rest pose

Figure 7: Visualization of the bias for the augmented log
barrier, compared to the inverse-spline function, minimizing
Green’s strain energy.

their minimum value only at infinity and arbitrarily alter the
rest state of the deformation energy, which is also the reason
for the strange intermediate shapes in Figure 5. Therefore,
we augment them with an additional linear term to fix this
problem. The resulting barrier function will now have the
minimum at the rest pose of the deformation energy, but it still
alters the energy when elements increase their area/volume.
The modified barriers are similar to an energy term found in
the model of constitutive Neo-Hookean materials [BW97]:

φhookean(x) j =

{
log( x j

s j
)2, if x > 0

∞, otherwise
(8)

Also the Neo-Hookean barrier biases the deformation energy,
since it tries to preserve the area of every element and can
compete with deformation energies where stretching is al-
lowed (for example in any energy used to compute conformal
parametrizations). A visual comparison is given in Figures
6 and 7, energy and timing measurements can be found in
Table 1, where our barrier outperforms the other options.

3.2 Optimization
To minimize Equation 3, we use a variant of the Levenberg-
Marquardt (LM) algorithm [GW81]. The barrier terms offer
a relatively simple closed form of the gradient and Hessian,
see the additional material. The Hessian ∇2Ebar(v) is used
to quadratically approximate the energy and determine a
direction to advance, decreasing the energy at every iteration
and converging to a local minimum. We iteratively update the
vertex positions in two steps:

pi = (∇2Ebar(vi)+µiI)−1 ·∇Ebar(vi)
vi+1 = vi −σi pi

(9)

Figure 8: A close-up of a mesh during the substepping iter-
ations of our algorithm. The target position d (blue disc) of
the constrained vertex (green disc) is linearly interpolated
to define the intermediate target ti (magenta disc). As the
shapes of the elements improve, the relaxation is tightened
and converges to the prescribed positional constraint.

where σi is the step size and is computed with an adaptive,
backtracking line search method: we use an initial and max-
imum value of 1 for σi and we halve until we find a step
size that decreases the energy. At ith step, we use σi−1 as a
starting point, and multiply it by two if the step size decreases
the energy. We experimented with more advanced line search
methods without getting significant benefit, since the time
saved by the reduced number of iterations was compensated
by the increased number of energy evaluations needed.

The Hessian of our energy becomes numerically singular
when an element degenerates, and then it is impossible to
solve the linear system in Equation 9 with µi = 0. To ensure
we always find a search direction, we regularize the Hessian
by adding µiI. The factor µi is chosen to make the Hessian
invertible, while being as small as possible and eventually
zero if no regularization is needed. It is dynamically updated
using the same strategy we used for σi, where the condition
we check is the invertibility of the regularized Hessian (using
sparse Cholesky decomposition). The factor µi has a very
intuitive effect: for a small or large Hessian the step direction
pi becomes more similar to the gradient descent with a step
size 1/µi. This results in slower but more reliable convergence
whenever a good quadratic approximation of the energy is
not available.

3.3 Substepping
The solver, presented in Section 3.2, minimizes the energy
in Equation 3 only for moderate deformations. For extreme
cases like in Figure 2, this method may fail to make any
reasonable progress. We propose a novel substepping strategy
customized for our specific problem.

The core idea is to rely on the search direction provided by
the Hessian when it is well-conditioned and alter our objec-
tive function when it is not. The barrier makes the Hessian
numerically singular in configurations similar to Figure 8,
where a group of consecutive triangles is compressed by a po-
sitional constraint that forces them to degenerate. Relying on
the search direction provided by the Hessian will force the al-
gorithm to perform many small iterations or even stop due to
rounding errors. We thus propose to relax the positional con-
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ARAP Green Laplacian Dirichlet

Figure 9: Deformation of a 2D mesh using different energies.
First and third rows show the results of the unmodified energy
minimization, and second and fourth rows display our results.

straints to allow the deformation energy and the barrier term
to improve the shape of the degenerate elements. We mod-
ify the positional constraints by replacing the user-provided
values d with intermediate targets ti updated at every step:

Ebar(v) = E(v)+α ‖Cv− ti‖2 +β ∑
j∈E

φ j(c j(v)) (10)

ti is identical to d if the Hessian is invertible, and is modified
to be further from d depending on the amount of regulariza-
tion needed to make the Hessian non-singular. We want the
positional constraints term to gradually disappear for large
µi and be equal to d for µi = 0. This way, the optimization is
affected only if the Hessian is ill-conditioned:

ti = Cvi−1 +
1

1+µ2
i
(d−Cvi−1) (11)

We experimentally found that squaring µi works well, in
particular because ti approaches d super-linearly in µi. In-
troducing ti can be interpreted as an adaptive “substepping”
method. This relaxation allows the barriers to improve the
shape of the elements, resulting in gradually decreasing µi,
which will in turn tighten the relaxation and eventually bring
ti to d. We show a series of iterations of this algorithm in
Figure 8.

3.4 Soft constraints
The weight α (Equation 1) plays an important role in the
energy, since it controls the effect of the soft constraints. An
incorrect choice of this parameter can result in not satisfy-
ing the constraints (if α is too small, see Figure 21), or to
converge too early due to numerical issues (if α is too high).
Relying on the fact that the positional constraints should
always be dominating the energy by a certain ratio r, we
introduce an adaptive adjustment of α:

γ = r
‖Cv−d‖2

(
E(v)+β ∑

j∈E
φ j(c j(v))

)
(12)

αi+1 = min(max(αi,γ) , t) (13)

We experimentally found that a value of r = 1000 and
t = 1016 works well for all the examples in the paper. In
our experiments, the positional constraint are satisfied up to
numerical precision even for extreme deformations. For the
stress tests we provide the residuals in the captions of Figure
19 and 20.

4 Results
We ran all our experiments on a single core of an Intel i7
processor clocked at 2.93 GHz. The linear solves inside
the LM method are performed using the Cholesky solver of
Eigen [GJ∗12]. Note that the matrix nonzero pattern stays the
same throughout the iterations; we can therefore save some
computation time by precomputing the symbolic factorization
and perform just the numeric factorization in each iteration.
We applied our method to 2D and 3D deformations and mesh
parameterization, showing that the quality of the resulting
mappings generally improves compared to the original energy
minimization without our barriers, while still being computed
at an interactive rate. We also performed experiments with
extreme deformation, to show the robustness of our approach.
Additional results are available in the supplemental material
and the accompanying video. In all our results we set the
barrier parameter β = 0.01 for all energies except Green’s
strain, for which we use β = 100 (since this energy does not
inherently penalize inversions at all, see Figure 3). The ratio
s is always set to 1. When minimizing the ARAP energy, we
use the local-global approach of [SA07, LZX∗08] and apply
the barriers in the global step.

Dirichlet/Laplacian. In Figure 10, we show that even a
simple deformation, computed using the Dirichlet energy, can
introduce inverted elements. The problem is less prominent
if the Laplacian energy is used instead.

Laplacian

Dirichlet

original energy our method

Figure 10: A simple example of a 2D deformation using
the Dirichlet and Laplacian energies, with and without our
barrier method.

2D shape editing. Figure 9 shows simple cases where the
Dirichlet, biharmonic (Laplacian), Green’s strain and ARAP
energies generate inverted elements. This issue arises often
(see also Figures 2, 13, 19), and it is fixed when the energy is
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augmented with our barriers, generating more intuitive defor-
mations. In all our illustrations, the colored circles enclose
the handle vertices, which can be moved interactively. The
meshes are colored on a linear scale of the conformal distor-
tion measure proposed in [LZX∗08]; inverted elements are
colored in yellow. Without barriers, inversion and “spillage”
artifacts are introduced for extreme deformations, while our
results introduce more distortion around the handles, but do
not spill outside of the shape or invert elements. Global self-
intersections of the mesh can still occur when the boundary
is not fixed, since we do not perform any self-collision detec-
tion. Note that with a fixed (simple) boundary, our method
produces bijective maps (Figure 17).

Image warping. Our method can also be used to deform
2D images interactively, as shown in Figure 12 and in the
accompanying video. Note that if the boundary of the image
is simple and fixed, we are guaranteed to produce a bijective
deformation.

3D deformations. Unlike previous works on locally-
injective mappings [Lip12, WMZ12], our formulation easily
extends to 3D deformations. In Figure 11 we compute a
natural-looking bend of the cylinder using Green’s strain en-
ergy, which collapses the shapes when minimized without
applying our barriers. During the interactive editing of the
handles, the deformation is usually smooth, as shown in the
accompanying video. However, for extreme deformations like
the one shown in Figure 20, the substepping slows the opti-
mization down, and it might take a few seconds to converge.
Figure 13 shows another 3D deformation of the Dino model.

We also tested our method on diffusion surfaces [TSNI10],
where a locally injective deformation prevents artifacts in
the generated volumetric texture, see the deformed tomato in
Figure 14. The interior structure of the tomato is deformed
without introducing flips or spill-overs, in contrast to the
normal ARAP deformation. The editing has been done in-
teractively with a grid resolution of 2250 voxels and 13500
tetrahedra. Anticipating multigrid implementations in the fu-
ture, we discretize the deformation field using a regular voxel

ARAPGreen

original
energy

our
method

Figure 11: 3D deformation examples using Green’s strain
and ARAP energies. Note that the deformation is computed
on an enclosing volumetric grid and then interpolated onto
the cylinder shape itself in this case.

original ARAP deformation our result with ARAP energy

Figure 12: Image warping with the ARAP energy on a tex-
tured regular mesh, with constrained boundary in blue.

grid; however, the energy is still evaluated on tetrahedra by
subdividing each voxel into 6 tets.

Single-patch parameterization. Local injectivity is par-
ticularly important for mesh parameterization, and existing
parameterization methods can be modified by our method
to guarantee this property. However, our method requires a
starting point that is free of self-intersections: if this is not the
case, our energy is infinite and we cannot advance. We thus
use Tutte’s parameterization (with uniform weights), fixing
the boundary to a circle as a starting point for all the examples.
This parameterization usually contains extreme area distor-
tion, and a complex deformation is required to deform this
initial state into a high-quality parameterization. We show in
Figure 15 that our method can robustly optimize the ARAP
energy [LZX∗08].

In all parameterization examples, the boundary is not fixed

Rest pose our methodoriginal energy

Figure 13: An example of 3D deformation. A tetrahedral
mesh is deformed minimizing Green’s strain energy with and
without our barriers. The inverted tetrahedra are visualized
in yellow.
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original texture model original ARAP energy our result

Figure 14: Deforming a Diffusion Surface, a representation
of inner volumetric structure and solid texture [TSNI10]. The
setup of the handles is shown in Figure 1, as well as the
rendered results of cut-planes with diffused colors. Here we
show the same result with transparent rendering of the inner
surfaces, which are not intersecting thanks to our barriers.

Conformal distortion Area distortionConformal distortion Area distortion

Figure 15: An example of local parameterization with ARAP,
with and without barriers. Red visualizes high conformal
distortion and orange the area distortion.

(only two vertices are fixed to remove the translational and
rotational degrees of freedom). Note that our parameter s in
fact controls the area distortion, and increasing s tends to
preserve the original area of each triangle. As visualized in
Figure 15, our method achieves lower area distortion than
the original ARAP in this case. Our method allows to in-
teractively edit the parameterization, as shown in Figure 16,
where we applied the barriers to the least-squares conformal
energy [LPRM02, MTAD08]. By moving two anchors, it is
possible to remove global overlaps, making the parameteriza-
tion bijective. The full editing session, starting from Tutte’s
mapping, is shown in the accompanying video.

Our method can be used for constrained texture mapping
in order to match geometric features to corresponding parts
inside the texture image by deforming an existing parameteri-
zation. In Figure 17 we show such a deformed parametriza-
tion map of a human head in order to align it with the image
of a tiger. Even though an extreme deformation is required,
our method prevents inversions and produces a plausible,
bijective texturing result.

Stress tests. Since we rely on nonlinear optimization with
non-convex constraints, we are not guaranteed to find the

Figure 16: Interactive removal of global self-intersections
using our method. We first computed the parameterization on
the left by using our method with the least-squares conformal
energy (LSCM [LPRM02]). The result has no inversions, but
the two parts of the thumb globally overlap. We then place a
few handles and quickly deform the flattened model to resolve
the overlaps. See also the accompanying video.

global minimum of our energy. Additionally, our problem
becomes ill-conditioned when triangles start to degenerate,
making the optimization harder. However, the combination
of our barriers and our substepping seem to successfully
alleviate this problem. We provide experimental validation
of the robustness of our method, showing that we are able to
compute extreme deformations. In Figure 19 we swapped the
handles of the arms and the legs of the Woody mesh while
keeping the head fixed. Our algorithm finds a solution that
satisfies the constraints and does not contain any inverted
triangles, while ARAP generates a deformation with 512
flipped triangles. We also tested our method on an extreme
3D deformation by twisting a cylinder 7 times (Figure 20). We
used a very coarse grid and set the barrier constant β = 0.01
to make finding a solution harder, and even so, our algorithm
computes an extreme deformation without inverted elements.
Without barriers, 135 inverted tetrahedra are introduced.

Measurements and timings. The mappings are computed
at interactive rates with our solver, as shown in the accom-
panying video. The extreme ARAP deformation in Figure
2 takes 5.5 seconds for a mesh with 5040 triangles, and the
complex texture deformation in Figure 17 (46384 triangles)
converges in 172 seconds. The ARAP parametrization of the
Bimba model (11253 triangles) requires 93 iterations and 16.3
seconds, when initialized with Tutte’s parametrization. The
3D deformation in Figure 13 involves 13052 tetrahedra and
converges in 26 iterations and 7.3 seconds. The volumetric
deformation in Figure 14 is more challenging, since it uses a
mesh with 13K tetrahedra and is computed in 208 seconds
and 112 iterations. Note that the intermediate iteration re-
sults of our method are plausible because the convergence
is smooth, and thus we can constantly provide interactive
visual feedback to the user, so that she can gauge progress
and if necessary, interrupt the optimization even before it has
fully converged. This is in contrast to interior point methods
discussed earlier, whose intermediate states are not useful
in intuitively estimating the final result (Figure 5). The time
to complete a single iteration of our method is quite short,
allowing constant update of the rendering (please refer to
the accompanying video). This is different from the method
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of [Lip12], which may require only very few iterations to
find a solution, but each iteration is typically expensive. For
instance, in the bottom row of Figure 18, [Lip12] takes just
2 iterations to find a solution, but each iteration takes 19.5
seconds. Our method converges in 154 iterations and takes a
total of 6.5 seconds.

In Table 1 we compare between the different barriers and
interior point methods we experimented with. We do this
based on two deformations of meshes with different reso-
lutions (Figure 21) minimizing Green’s strain energy. We
report the number of iterations, time, deformation energy and
positional constraint energy values after the convergence of
the LM method. A fair comparison of these different bar-
rier terms requires setting the β appropriately: with the same
β, the augmented log and Neo-Hookean barriers penalize
changes of area less than our inverse spline, leading to sig-
nificantly different results (see Figure 3). In terms of time
and number of iterations, the inverse-spline barrier with sub-
stepping and α-update performs best. Note that for the high
resolution mesh, many methods without substepping enabled
converged in only a few steps without satisfying the posi-
tional constraints. As expected, the inverse spline function
also has the lowest bias in the deformation energy compared
to the Neo-Hookean or augmented log barriers. Although
the interior point methods find a better local minimum, they
are much slower or do not converge at all in a reasonable
time. Enabling the automatic α-update drastically decreases
the positional constraint error. Finally, two different failure
cases are shown in Figure 21 in the right column: (top) with-
out α adjustment the preset soft constraints are too weak for
the Neo-Hookean energy and the method does not converge;

Figure 17: Texture deformation using the ARAP energy with
our method. We fix the boundary of the uv-map and deform
inner parts to match the geometric features of the head to
the image of the tiger. No inversions occur, and for the fixed
boundary case our method generates a bijective mapping.

Bounded Distortion Our methodARAP energy

15

2

conformal
distortion

Figure 18: Comparison of our method to the to Bounded
Distortion technique of [Lip12]. The prescribed deformation
of the disk is shown in the left inset (we pull the bottom
handle up while dragging the other two outwards). Top and
bottom rows show the results for smaller and larger handle
translation, respectively. The original ARAP energy leads
to “spikes”, as expected. Our method results in a maximal
conformal distortion of 69 (top) and 149 (bottom) and we
used these bounds for Lipman’s method. The results in the
middle are produced using the author’s software. We used
the same initial mesh as a starting point for both methods.
The distortion color scale is set to (2−15), clamping higher
values to red; clearly, our method concentrates the distortion
around the handles, while Lipman’s method distributes it
more evenly.

Figure 19: A 2D stress test: extreme deformation of the
Woody via ARAP energy minimization, without (left) and
with (right) the barriers. Note that although our method can-
not avoid global overlaps in this case, no elements are locally
inverted. (soft constraint error: 2.6 ·10−16)

(bottom) disabling substepping causes the solver to converge
without reaching the positional constraints.

5 Limitations and future work
Our method guarantees that no flipped elements are intro-
duced, but it needs a starting point that also has this property.
This is usually not a problem for shape deformation, where
the rest pose is normally free from inverted elements. For
parameterization, this forces us to use a convex mapping as
a starting point. Our method provides only limited control
over the change in the deformation energy introduced by the
barrier terms. The preservation of the initial area or volume
can be controlled with the parameters β and ε. Furthermore,

c© 2013 The Author(s)
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Deformation in Fig. 21: 4844 triangles Deformation in Fig. 21: 48881 triangles

Barrier & method #iter time E ·105 Error #iter time E ·106 Error

IPM (Ipopt) 1136 1636s 1.26 4.0 ·10−06 >20h not converged
IPM (KNitro) 527 68s 1.24 4.2 ·10−06 >20h not converged

Augmented log 309 12s 1.24 3.6 ·10−06 69 69s 0.08 2.8 ·1015

+ substepping 56 2.8s 1.31 3.7 ·10−06 972 831s 75.4 2.7 ·10−08

+ α-update 56 2.7s 1.31 3.7 ·10−22 555 503s 75.3 2.5 ·10−16

Neo-Hookean 2306 96s 6.72 1.0 ·10−04 19 15s 0.02 2.9 ·1015

+ substepping >20h not converged 17917 7.5h 46.2 3.1 ·102

+ α-update 4779 238s 3.40 2.4 ·10−21 25814 5.0h 175 3.5 ·10−1

Inverse-Spline 332 12s 1.22 3.5 ·10−06 150 145s 0.52 1.9 ·1015

+ substepping 53 2.3s 1.28 3.6 ·10−06 614 517s 63.6 4.0 ·10−02

+ α-update 49 1.9s 1.29 3.6 ·10−22 526 471s 75.1 2.9 ·10−16

Table 1: Comparison of different barriers and interior point methods on a deformation example from Figure 21, minimizing
Green’s strain energy on two different resolution meshes. E denotes the energy value and Error the soft constraints error.

Twisting using Green energy

Further twisting, original Green energy

Further twisting, our method

Figure 20: A 3D stress test: twisting the left handle on the
bar 7 times and minimizing Green’s strain energy, with and
without the barriers. See also the accompanying video. (soft
constraint error: 2.6 ·10−26)

Neo-Hookean / without α-update

Our method
Spline / without substepping

Figure 21: Deformation of two meshes with 4844 triangles
(top) and 48881 triangles (bottom) used for the comparison
in Table 1. Right column shows two failure cases for disabled
substepping and α-update.

some deformation energies may require tuning the param-
eter β, as discussed in Section 4 and Figure 3. Adding our
non-flipping term to a deformation energy does not alter the
rest pose but it might change the local and global minima
when new positional constraints are posed. Additionally, we
focus solely on local injectivity. To resolve global overlaps,

we could combine our method with self-collision avoidance
techniques [HPSZ11].

We plan to further investigate more efficient solver imple-
mentations, leveraging parallelism and/or multigrid methods,
to improve the performance for highly detailed meshes. In this
work, we only utilized soft positional constraints; extension
to hard constraints is theoretically simple, but complicated
by the fact that a solution may not exist. Another interesting
future work would be to implement upper bounds on the max-
imal conformal distortion [Lip12] using barrier functions. It
would also be interesting to introduce adaptive remeshing to
mantain high element quality during the optimization.

6 Conclusion
We presented a robust and practical algorithm to generate
locally injective 2D and 3D mappings. It can be applied to a
variety of deformation energies, preventing the well-known
“spike” and “spillage” artifacts. The method can handle ex-
treme deformations and is fast enough to generate interactive
results for meshes of moderate sizes. We show that our algo-
rithm can be applied to compute interactive 2D and 3D mesh
deformations and also to generate locally injective param-
eterizations. We hope this work will not only make locally
injective mappings practical, but will also promote further re-
search of advanced nonlinear models and numerical methods
in geometry processing, shape modeling, and animation.
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