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Abstract

Surface editing operations commonly require geometric details of the surface to be preserved as much as possible.
We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best
performed by operating over an intrinsic surface representation. We provide such a representation of a surface,
based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the
mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian
representation, we develop useful editing operations: interactive free-form deformation in a region of interest
based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and
transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is
the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness
of our approach in several examples, showing that the editing operations change the shape while respecting the
structural geometric detail.

1. Introduction geometry is encoded as a base mesh and several levels of
Surfaces in computer graphics are mostly represented in refinement. The refinement is typically described locally, so
global coordinate systems: explicit representations are basedthat the geometric details are mostly captured in a discrete
on points, vertices, or nodes that are typically described us- set of intrinsic coordinates. Using this representation, sev-
ing absolute Euclidean coordinates. Implicit representations eral modeling operations can be performed on an appropriate
describe the shape as the level set of a function defined in user-specified level-of-detail.
Euclidean space. A global coordinate system is the natural Our approach to encoding geometric details is to use dif-
choice for all operations involving other objects, such as ren- ferential coordinates for the vertices. This provides an in-
dering, intersection computation, transformations, or CSG trinsic representation of the surface mesh, where the re-
modeling. On the other hand, for local surface modeling, it construction of global coordinates always preserves the lo-
would be desirable that the representation captures the local cal geometry as much as possible given the modeling con-
shape (i.e. the intrinsic geometry of the surface) rather than straints. Using a differential representation for editing op-
the absolute position or orientation in Euclidean space. erations has been shown to be quite effective in image do-
Manipulating and modifying a surface while preserving main [FLW02, PGB03]. Image domain has a natural regular
the geometric details is important for various surface edit- parameterization and a resulting inherent definition of a gra-
ing operations, including free-form deformations [SP86] dient, which allows modeling many editing tasks as a dis-
[Cog90], cut and paste [RIKM93, KK99, BMBZ02], fu-  crete Poisson equation. However, this approach cannot be
sion [KSMK99], morphing [Ale03], and others. The abso- directly adapted to discrete (as well as continuous) surfaces.
lute position of the mesh vertices is not important for these

A PVRTHE . We rather realize an approach to surface mesh editing
tasks, which calls for an intrinsic surface representation.

based on encoding each vertex relative to the centroid of
its topological neighbors. The difference of a vertex posi-
A partially intrinsic surface mesh representation is tion from the centroid of its neighbors is known as a Lapla-
multi-resolution decompositions [FB88, ZSS97, KCVS98] cian coordinate [Ale03, KG00, SCOTO03, LSC®]. Lapla-
[KVS99, GSS99, CGM2]. In a multi-resolution mesh, the  cian coordinates are a linear function of the global mesh
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geometry, which allows efficient converting between abso- different levels can be considered as frequencies of the ge-
lute and intrinsic representations by solving a sparse linear ometry. The coarsest level refers to the smoothest surface
system. Laplacian coordinates are invariant under translation and adding finer levels introduces smaller details. Editing

(of absolute geometry), but they are not invariant to scaling operations can be performed on coarse levels, and the so

and rotation, which poses the main practical problem. modified shape is computed by “adding” the displacements
We provide a technique that makes Laplacian coordinates in their local coordinate frames.
invariant to rotation and isotropic scaling. Using this tech- The problem of basis elements with large support in multi-

nique, we develop useful surface editing operations, which resolution representations has motivated differential repre-
preserve the intrinsic geometry of the surface as much as sentations for image editing [PGBO03]. Note that the com-
possible given the constraints of the modeling operations. pletely local and intrinsic differential representation comes
The major contributions of this work are: at the expense of a global reconstruction computation (e.g.
Rotation and scale invariant (RSI) Laplacian coordi- the solution of a global PDE), while the generation of ab-
nates: We reformulate the process of least squares fitting of solute coordinates from multi-resolution representations is
the Euclidean geometry to the given Laplacian coordinates. restricted to the modified bases.

In our fitting process, we implicitly compute an appropriate  Our motivation is similar to image editing methods based
transformation per vertex, which is applied to the respective on PDEs. We propose a local differential representation, at
Laplacian coordinate. This leads to Laplacian coordinates the expense of a global reconstruction from differential to
that are almost insensitive to rotation and scaling. absolute geometry. The modified surface is reconstructed by
Interactive detail-preserving surface editing: Based on solving a sparse linear system. Using state-of-the-art solvers
the RSI Laplacian coordinates, we develop an interactive this turns out to be very fast and adequate for interactive sys-
editing system. The user deforms a region of the surface by tems, even for editing operations on large meshes.
manipulating a handle. The transformation of the handle in-  The potential of differential coordinates for free-form
duces a global deformation that resembles the outcome of modeling is briefly discussed by Alexa [Ale03]. He specifi-
manipulating an object made of some physical soft material. cajly discusses the difficulty of deriving affine-invariant co-
Transfer of geometric detail (coating): Since the detail is ordinates for mesh representation as the vertex neighbor-
captured in the Laplacian coordinates, we are able to “peel” hood may be degenerated (i.e. planar) and, even more diffi-

high-frequency details from one surface and transfer them to cult, near-degenerate situations make the reconstruction nu-
another. The method can be applied to arbitrary homeomor- merically intractable.

phically parameterized surface patches. In a recent work, Yu et al. [YZX04] introduce an edit-
Transplanting surface patches with homeomorphic ing technique, formulated by manipulation of the gradients
boundaries: Our transplanting technique only requires that  of the coordinate functionx(y, z) defined on the mesh. The
the surfaces have matching topology at the boundaries; the surface is reconstructed by solving the least-squares system
surface patches within the boundaries need not match. A resulting from discretizing the Poisson equatloin= g with
seamless transition with gradual change of detail from one Dirichlet boundary conditions. Lipman et al. [LSCO4] re-

part to another results from blending the Laplacian repre- construct the surface from discrete Laplacians of the mesh

sentations of the parts. functions and spatial boundary conditions by solving a very
similar least-squares system. Both works point out the main
2. Related work problem of this approach: the need to rotate the local frames

Editing three-dimensional shapes has been an important re-that define the gradients, or the Laplacians, to preserve the
search area in geometric modeling and computer graph- orientation of the local details. They propose to remedy
ics. The dominating approach for (free-form) designing this problem by explicit assignment of the local rotations.
of a surface from scratch is based on parametric surfacesLipman et al. [LSCO04] estimate the local rotations of
(see e.g., [Far92, HL93)), which can be generalized to non- the frames on the underlying smooth surface, and Yu et
regular base domains using subdivision techniques [SZ00]. al. [YZX*04] propagate the rotation of the editing handle,
However, we are interested in editing an existing sur- defined by the user, to all the vertices of the region of in-
face, probably acquired with scanning devices. If the surface terest. In contrast to these explicit solutions, in this paper we
is smooth, modifications should remain smooth [WW94] introduce a method that implicitly transforms the differential
[Tau9s, Le 03]. If the surface contains geometric details coordinates based on finding aptimaltransform for each
(e.g. a sharp feature), these details should be preserved.vertex. The transform is defined by a linear expression of
The editing operation should naturally change the shape local coordinates and a sparse set of control points. The so-
and simultaneously respect the structural detail. The stan- lution of this linear system strives to preserve the size and the
dard approach to detail-preserving modeling operations usesorientation of the differential coordinates and consequently
a multi-resolution representation of the mesh. The geomet- Of the surface details.
ric details are usually expressed relative to a local coordi- We focus our work on meshes as they are the dominat-
nate frame [FB88, ZSS97, KCVS98, KVS99, GSS99]. The ing representation of surfaces these days. Other surface rep-
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resentations are advantageous for certain modeling opera-by fitting the Laplacian coordinates of the geomatfyo the
tions. Implicit surfaces allow easy blending, space warp- given Laplaciang\. It has been observed that the solution
ing, and CSG modeling [Roc89, GW95, PASS95, WGG99]. behaves better if the constrains; } are satisfied in a least
The recently popular level-set approach yields a particu- squares sense rather than exactly [SCOTO03, LSD This
larly simple formulation and implementation of these oper- results in the following error functional:

ations [MBWBO02] based on the discrete and regular repre- n n

sentation of a distance field. Adaptively sampled distance E\V) = Z\Héi ff(vi’))H2+ > IVi—ul?, @
fields [FPRJOO] provide a discrete surface representation i= i=m

with controlled error. All of these essentially implicit rep-  which has to be minimized to find a suitable set of coordi-
resentations allow changing the topology of the surface dur- natesV’. Solving this quadratic minimization problem re-
ing modeling. Point-sampled surfaces are related to meshes;sults in a sparse linear system of equations.

however, explicit information about the topology is missing.  The rationale of fitting given Laplacian coordinates is that
This has advantages for some operations [PKKGO3], though getails of the shape are preserved, as the relative location
sometimes requires surface reconstruction steps to add moreps yertices is encoded in. As mentioned, however, these

points to the representation. coordinates are sensitive to linear transformations. Thus, the

detail structure of the shape can be translated, but not rotated
3. Fitting transformed Laplacian coordinates or scaled. If the constraintg imply a linear transform, the
Let the mesh# be described by a pafK,V), whereK de- details are not transformed accordingly.
scribes the connectivity and = {v;,...,vp} describes the The main idea of our approach is to compute an appropri-
geometric positions of the verticesit?. We use the follow- ate transformatiofl; for each vertex based on the eventual
ing terminology: theneighborhood ringof a vertexi is the new configuration of verticeg’. Thus, T, (V') is a function
set of adjacent verticed! = {j|(i, j) € K} and thedegree ¢ of V/ and we formulate the error functional as
of this vertex is the number of elements.if|. We assume n ,
that the mesh is connected. E(V)= ZHTi(V’)éi -2V + Vi =yl (5)

1= I=m

Instead of using absolute coordinatéswe would like
to describe the mesh geometry using a set of differentials  Note thatin Eq. 5 botfi; andV’ are unknown. However, if
A = {§;}. Specifically, coordinate will be represented by the coefficients of; are a linear function ilv’, then solving
the difference betweev) and the average of its neighbors: for V/ implies findingT; (though not explicitly) sincé& (V')
is simply a quadratic function i’.

& =Z(v): @ L N -
o i ) ) i The basic idea for defining is to derive it from the trans-
For simplicity, we defineZ” with uniform weights: formation ofv; and its neighbors inte/ and its neighbors:
1
L) =v,— = V. 2) .
g jeZJi{ J min ITvi =vil?+ S Ty =vjlI? |- (6)
i 124

These weights proved to be sufficient in all our experi-
ments. However, our approach does not depend on the par-
ticular choice of.Z. For instance, the cotangent weights
(see, e.g. [DMSB99]) would accommodate extremely non-
uniform tessellations, and their application is straightfor-
ward. The transformation betwe¥randA can be described

in matrix algebra. LeAA be the mesh adjacency matrix and

D = diagd;,...,dn) be the degree matrix. Thel= LV,

Since this is a quadratic expression, the minimizer is a linear
function ofV’, as required. However, T is unconstrained,
the natural minimizer foE (V') is a membrane solution, and
all geometric detail is lost. Thu3; needs to be constrained

in a reasonable way. We have found tfiashould include
rotations, isotropic scales, and translations. In particular, we
want to disallow anisotropic scales, as they allow removing
the normal component from Laplacian coordinates.

whereL = | — DA for the uniform weights. The matrix ) - )

L is commonly considered as the Laplacian operator of the  1N€ translational part of; is introduced simply by us-
mesh with connectivityA [Tau95, KG00], which is why we ing homogengous coc.)r.dlnates. The linear part should sat-
call &, the Laplacian coordinatef vertexi. Laplacian coor- STy the following conditions: The transformation should be
dinates are invariant under translation, but sensitive to linear @ linéar function in the target configuration but constrained
transformsL has rankn— 1, which mean® can be recov- to isotropic scales and rotations. The class of matrices rep-

ered fromA by fixing one vertex and solving a linear system. resenting isotropic scales and rotation can be written as

The approach to performing modeling operations using T =sexp(H), whereH is a skew-symmetric matrix. In 3D,

. . : ) i, skew-symmetric matrices emulate a cross product with a
Laplacian coordinatesis to fix the absolute position of sev- . :
. . vector, i.e.Hx = h x x. Drawing upon several other prop-
eral vertices (see [Ale03)), i.e.,

erties of 3x 3 skew matrices, one can derive the following
v = U, ie{m....n},m<n 3) representation of the exponential above:

and solve for the remaining verticég }, i € {1,...,m—1} sexpH = s(al +BH +yhTh). 7
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Inspecting the terms we find that ordyl, andH are linear in
the unknowns andh, while hTh is quadratic As a linear ap-

Both situations are handled in a similar way: The current set
of transformations{T; } is computed fromV andV’. Then

proximation of the class of constrained transformations we, eachl; is inspected, the corresponding Laplacian coordinate

therefore, use

s —hy h, 1

T_ h, s —h
! -h, M S t
0 0 0 1

®)

This matrix is a good linear approximation for rotations with

g, is updated appropriately depending on the cases above,
and the system is solved again. In the case of too large an-
gles of rotations, it is possible to first apply an approximated
reconstruction using the method in [LSO®] and then re-
fine it with our technique, such that smaller rotations are in-
volved. In the case of wanted anisotropic scaling, {bg

are scaled by the inverse of the scale implied by the con-

small angles. The consequences for larger angles are dis-straints. See Figure 2 for an example of large rotations.

cussed later.

Given the matrixT, as in Eqg. 8, we can write down the
linear dependency (cf. Eq. 6) & on V', explicitly. Let
(s,h;,t;)T be the vector of the unknowns ifj. Then we
wish to minimize

HAi(%vhivti)beinv (9)
whereA; contains the positions of, and its neighbors and

b; contains the position of and its neighbors. The structure
of (s, h;.t;) T yields

Vi 0 Vi, ’ka 1 0
vky —V, 0 Vi, 0 1 0 .
A=lv. v -v 0 0 0 1f ke{ifuA,
¥4 Y X
(10)
and
V'kx
\/ky _
b, = Vi s ke {ijuA (11)

The linear least-squares problem above is solved by

(%,hi,ti)T = <A1TAi>71A1Tbi7

which shows that the coefficients @f are linear functions
of b;, sinceA; is known from the initial mesN. The entries
of b; are simply entries 0’ so that(s;, h;,t;) and, thusT;
is a linear function i/, as required.

(12)

3.1. Adjusting T,
In many modeling situations, solving for absolute coordi-

4. Mesh editing

There are many different tools to manipulate an existing
mesh. Perhaps the simplest form consists of manipulating a
handle which is a set of vertices that can be moved, rotated
and scaled by the user. The manipulation of the handle is
propagated to the shape such that the modification is intuitive
and resembles the outcome of manipulating an object made
of some physical soft material. This can be generalized to a
free-form deformation tool which transforms a set of control
points defining a complex of possibly weighted handles, en-
abling other modeling metaphors to be mimicked (see e.g.,
the recent work of [BK03] and the references therein).

The editing interaction framework we used is similar to
the one described in [LSC©4], which is comprised of the
following stages: First, the user defines the region of inter-
est (ROI) for editing. The ROI is defined by the closed sim-
ple loop of its boundary edges. Next, the handle inside the
ROI is defined. In addition, the user can optionally define
the amount of “padding” of the ROI bstationary anchors
These stationary anchors fornmbalt that supports the tran-
sition between the ROI and the untouched part of the mesh.
Then, the user manipulates the handle, and the surface is re-
constructed with respect to the relocation of the handle.

The submesh of the ROl is the only part considered during
the editing process. The positions of the handle vertices and
the stationary anchors constrain the reconstruction and hence
the shape of the resulting surface. The handle is the means of
user control, and therefore, its constraints are constantly up-
dated. The unconstrained vertices of the submesh are repeat-
edly reconstructed to follow the user interaction. The station-
ary anchors are responsible for the transition from the ROI
to the fixed part of the mesh, resulting in a soft transition

nates in the way explained above is sufficient. However, between them. Selecting the amount of padding by anchor
there are two exceptions that require adjusting the transfor- vertices depends on the user’s requirements, as mentioned

mations:

above. We have observed in all our experiments that setting

1. As mentioned]; does not exactly represent the class of the radius of the “padding ring” to be up to 10% of the ROI

isotropic scales and rotations. For large angiesound
the axish/||h|| the space is scaled aloty||h|| with a
factor of cogp.

radius gives satisfying results.

The reconstruction of the submesh requires solving the
linear least-squares system as described in Section 3. Build-

2. Sometimes anisotropic scaling is the wanted free-form ing the system matrix (Eq. 12), including the computation of

deformation, e.g., the dislocation of a single vertex typi-
cally implies a stretch in only one direction.

a sparse factorization, is relatively slow, but constructed only
once when the ROl is selected. The user interaction with the
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Figure 1: The editing process. (a) The user selects the region of interest — the upper lip of the dragon, bounded by the belt of
stationary anchors (in red). (b) The chosen handle (enclosed by the yellow sphere) is manipulated by the user: translated and
rotated. (c) The editing result.

Figure 2: Different handle manipulations. (a) The region of interest (arm), bounded by the belt of stationary anchors, and the
handle. (b) Translation of the handle. (c) Subsequent handle rotation. Note that the detail is preserved in all the manipulations.

handle requires solely updating the positions of the handle of the vertex in Sand$, respectively. We defing to be the
vertices in the right-hand-side vector, and solving. encoding of the coating at vertéxefined by¢; = &, — Si .

Figures 1 and 2 illustrate the editing process. Note that the The values ofEJ- encode the coating d§, since given the
details on the surface are preserved, as one would intuitively pare surfacé;we can recover the original coating simply by
expect. Figure 3 demonstrates deformation of a model with addng to 5 and reconstructing with the inverse Lapla-
large extruding features which cannot be represented by a ian transfornL 1 Thatis,S=L" (5+5) ]

height field. For more examples and details, see [SMa}. In this case of a coating transfer ®bnto itself,Sis faith-

) fully reconstructed. However, in general, instead of coating

5. Coating transfer Swith &, we would like to add the coating onto an arbi-
Coating transfer is the process of peeling the coating of a trary surfacdJ. If the target surfac® is not smooth, it can
sourcesurface and transferring it ontotarget surface. See be smoothed first, and then the coating transfer applied. Be-
Figure 4 for an example of such an operation. We use the fore we move on, we should note that the coating transfer
term coatingto refer to the high-frequency surface details. from SontoSis simple, since the neighborhoods of the cor-
More precisely, the coating is defined as the difference be- responding verticeshave the samerientation We define
tween the original surface and a low-frequency band of the the orientation of a verteixin a surfaceS by the local frame
surface. LetS be the source surface from which we would  of i onS. Loosely speaking, the orientation of a point reflects
like to extract the coating, and |&be a smooth version of  the general orientation of its neighborhood, without respect-
S. The surfacéis a low-frequency surface associated with ing the high frequencies of the surface.
S, which can be generated by filtering (see e.g., [DMSB99]).  when applying a coating transfer between two surfaces,
The amount of smoothing is a user-defined parameter, de- the coatingf should first be aligned, or rotated with respect
pending on the range of detail the user wishes to transfer.  to the target. This compensates for the different local sur-

We encode the coating of a surface based on the Lapla- face orientations of corresponding points in the source and
cian coordinates. Lei andg; be the Laplacian coordinates  target surfaces. The following is an important property of
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Figure 3: Deformations of a model (a) with detail that cannot be expressed by height field. The deformation changes the global

shape while respecting the structural detail as much as possi
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Figure 4: Coating transfer; The coating of the Bunny (a) is
transferred onto the mammal’s leg (b) to yield (c).

the Laplacian coordinateR- L*l(éj) =L4R- 3;) , where
L~1is the transformation from Laplacian coordinates to ab-
solute coordinates, ariRlaglobalrotation applied to the en-
tire mesh. The mapping between corresponding poing& in
andU defines different local orientations across the surfaces.
Thus, our key idea is to use the above property of the Lapla-
cian coordinates locally, assuming that, locally, the rotations
are close to each other (in induced norm).

5.1. Coating

Assume that the source surfaBend the target surfadg
share the same connectivity, but have different geometries,
and that the correspondence between their vertices is given.
In the following we generalize this to arbitrary surfaces.

The local rotatiorR; at each vertexin SandU is taken
to be the local rotation between their corresponding frames
(see Figure 6). The frame of vertéxn Sis defined by its
normal ng and the normalized projection of some edge
emanating from onto the tangent plane defined by (the
third vector is determined by the right-hand product of the
first two). The corresponding frame W is established by
ny (the normal ofi in U) and the projection of the edgg
which corresponds tes. Denote the rotated coating encod-
ing of vertexi by & = R;(§;). Having all theR, associated
with the§;, the coating transfer frorB ontoU is expressed
as follows:U’ = L~1(A+&'), whereA denotes the Laplacian

ble.

(d)

Figure 5: The coating of the Max Planck is transferred onto
the Mannequin. Different levels of smoothing were applied
to the Max Planck model to peel the coating, yielding the
results in (c) and (d).

coordinates of the vertices bf. Now the new surfacd’ has
the coating ofJ.

5.2. Mapping and resampling

So far we have assumed that the source and target meshes
(SandU) share the same connectivity, and hence the cor-
respondence is readily given. However, the coating transfer
between arbitrary surfaces is more involved. To sample the
Laplacian coordinates, we need to define a mapping between
the two surfaces.

This mapping is established by parameterizing the meshes
over a common domain. Both patches are assumed to be
homeomorphic to a disk, so we may choose either the unit
circle or the unit square as a common domain. We apply the
mean-value coordinate parameterization [Flo03], as it effi-
ciently produces a quasi-conformal mapping, which is guar-
anteed to be valid for convex domains. We fix the boundary
conditions for the parameterization such that a correspon-
dence between the source and target surfaces is achieved, i.e.
we identify corresponding boundary vertices and fix them at
the same domain points. In practice, this is a single vertex in
Sand inU that constrains rotation for the unit circle domain,
or four boundary vertices for the unit square domain.

Some applications require a more careful correspondence
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(b)

Figure 6: Coating transfer. The orientation of a coating detail (a) is defined by the local frame at the corresponding vertex in the
low frequency surface in (b). The transferred coating vector needs to be rotated to match the orientation of the corresponding

(@)

point in (c) to reconstruct (d).

than what can be achieved from choosing boundary condi-
tions. For example, the mapping between two faces (see Fig-
ure 5) should link relevant details like facial features (e.qg.,
the brow wrinkles of theMax Planch. In this case the user
provides a few additional (inner) point-to-point constraints
which define a warp of the mean-value parameterization. In
our implementation we used a radial basis function elastic
warp; see e.g., [Lév0l, PSS01, KSGO03] for advanced con-
strained mapping techniques.

In general, a vertex € U is mapped to some arbitrary
point inside a triangle € S. We experimented with several
methods of sampling the Laplacian for a vertex. The best re-
sults are obtained by first mapping the 1-ring ohto Sus-
ing the parameterization, and then computing the Laplacian
from this mapped 1-ring. Note that this approach assumes a
locally similar distortion in the mapping. This is usually the
case for the coating transfer; we used the 1-ring sampling in
all the respective examples. We obtain similar results by lin-
ear interpolation of the three Laplacian coordinates sampled
at the vertices of the triangle While this approach leads
to some “blurring” compared to the first one, it is even sim-

pler and does not suffer from extremely different parametric .

distortion. In addition, no special treatment is required at the
boundary of the domain when it is chosen to be a disk.

To enable faithful resampling of the Laplacian coordi-
nates, the tessellations of the surfatesnd S need to be
"compatible", i.e. each mesh must be locally fine enough to
accommodate the detail of the other mesh. This is achieved
by a local, isotropic remeshing (see e.g., [AdVDIO3, SG03]
[VRSO03]) of the sampled regions bf andS.

After the mapping betweed andShas been established

and the Laplacians have been sampled, the coating transfer

proceeds as explained before. Note that now the correspond-
ing &; is the difference between tisampled.aplacian coor-
dinates inSandS. See the examples in Figures 4, 5 and 7.

5.3. Mixing details

an Surface Editing
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Figure 7: Transferring the coating of the Mannequin onto
the face of the Bunny. (a) The source surface S. It is sig-
nificantly smoothed to peel the coating. (b) The smoothed
surfaceS. (c) The result of coating transfer onto the Bunny.

©

region of the target mesh receives the linear interpolation
of the corresponding Laplacian coordinates of the source
meshes. Figure 8 illustrates the effect of mixing the details.
This example emphasizes the gradual transition of geomet-
ric structure, as the details of the two source meshes differ
in smoothness, form and orientation. Note that the global
shape of the target mesh is deformed respectively. By adding
anchor points over the target, its shape can be further de-
formed. Figure 9 shows the application of this mechanism to
transplant theArmadillo's back onto theBunnys back with

a soft transition. In the next section we further discuss this
transplanting operation.

6. Transplanting surface patches

In the previous sections we showed how the Laplacian coor-
dinates allow us to transfer the details of a surface onto an-
other and how to gradually mix the details of two surfaces.
These techniques are refined to allow a seamless transplant-
ing of one shape onto another. The transplanting operation
consists of two apparently independent classes of operations:
topological and geometric. The topological operation creates

Given two meshes with different detail, a variant of the one consistent triangulation from the connectivities of the
above transfer mechanism can be applied on a third targettwo submeshes. The geometric operation creates a gradual
mesh from the two sources. Each vertex in the transitional change of the geometric structure of one shape into another.
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< / 7 \
@
Figure 8: Mixing details using Laplacian coordinates. The Laplacian coordinates of surfaces in (a) and (b) are linearly blended
in the middle to yield the shape in (c).

pings for correspondence between the patches. In our ex-

: ) ,/ J periments no further warping was necessary to improve the
' / - correspondence (cf. Section 5.2).
(/ J (/ Once the transitional regions and the mappings are de-
. —— \ \\ fined, the transplanting procedure is ready to sample the
\4. '\\ \‘F' , - '\\\ Laplacian coordinates over the target regidh In order
X AN { ‘\‘.“Q to mix details, the corresponding samples fr@mandU’
\ﬁ ) \\’? | are linearly interpolated with weights defined by their rela-
{ R ‘\ ‘ A /\ tiye po;ition inthe unit square para_meter domain. Mor_e pre-
L [\ ) cisely, if v e [0,1] defines the coordinate along the “height”
¢ e * axis (the blue and red lines in Figure 10(b), then the weights
(@) (b) are (1—v) andyv, respectively. Since the length distortion

of the maps may significantly differ, we linearly interpolate
the Laplacian coordinates for sampling (cf. Section 5.2). The
transition region is padded with some additional free vertices
and a belt of anchors (similar to the editing ROI). These
vertices are supposed to stay in place as much as possible,
and their Laplacian coordinates are sampled fiomThe
remaining vertices are fixed and hence not required for the
The latter operation is based on the Laplacian coordinates reconstruction. Figures 10(c)-(d), 11 show the results.
and the reconstruction mechanism.

Let Sdenote the mesh that is transplanted onto a surface 7. Implementation details
U. See Figure 10, where the right win§) (of the Feline All the techniques presented in this paper are implemented
is transplanted onto thBunny (U). The transplanting re-  and tested on a 2.0 GHz Pentium 4 computer. The main
quires the registration of the two parts in world coordinates. computational core of the surface reconstruction algorithm
This defines the desired location and orientation of the trans- is so|ving a sparse linear |east-squares prob|em. We use a
planted shape, as well as its scale. If required, the meshesgirect solver [Tol03] which first computes a sparse trian-
are locally remeshed in order to make the scale of the Lapla- guylar factorization of the normal equations (employing fill-
cian coordinates compatible (cf. Section 5.2). The user se- reducing reordering) and then finds the minimizer by back-

Figure 9: Transplanting the Armadillo’s coating onto the
Bunny’s back with a soft transition (a) and a sharp transition
(b) between the two types of details. The size of the transition
area in which the Laplacians are blended is large in (a) and
small in (b).

lects a regiorlJ, of U onto whichSwill be transplanted.  sypstitution. The system is well-conditioned thanks to the
Hence the boundary &, is assumed to be homeomorphic  anchors. As mentioned in Section 4, constructing the ma-
to the boundary o8 After cuttingU, off U, the two bound-  trix of the least-squares system and factorizing it takes the
ary loops are trivially zipped. This creates the connectivity pylk of the computation time. This might seem a heavy op-
of the target mesD (Figure 10(a)). eration for such an application as interactive mesh editing;
The remaining transplanting algorithm is similar to details however, it is done only once per ROI selection. Solving by
mixing. Thetransitional regiongfor resamplingS on Sand back-substitution is quite fast and enables us to reconstruct
U’ onU,, are selected, e.g., by offsetting from the respective the surface interactively, following the user’s manipulations
cut seams. SincP includes a zipped “copy” 08, its transi- of the handle. It should be noted that the system is comprised
tional regionD’ is implicitly defined byS along with a trivial of only the vertices that fall into the ROI; thus the complexity
mapping between vertices of the two regions. For sampling, is not directly dependent on the size of the entire mesh, but
we require a correspondence between the patghasdU’. rather on the size of the ROI. We experimented with various

We parameterize both meshes over a common domain, e.g.,ROIs of sizes in the order of tens of thousands of vertices.
the unit square. If the patches have to be cut to match the The “intermediate preprocess” times observed were a few
topology of the domain, the cuts are used to align the map- seconds, while the actual editing process runs at interactive

(© The Eurographics Association 2004.
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(© (d)

Figure 10: Transplanting of Feline’s wings onto the Bunny (see also the color section). (a) After cutting the parts and fixing the
desired pose, the zipping (in green) defines the target connectivity D. The transitional réggan@ked red. (b) Dis sampled

over the respective regions'\d U, (U, is the cut part of the Bunny’s back) and(®e bottom of the wing). The texture with
uv-isolines visualizes the mapping over the unit square. The cut (in yellow) aligns the two maps. (c) The result of reconstruction.
The reconstructed submesh is padded by a belt of anchors (red dots). Note the change of the zipping seam triangles (in green)
and the gradual change and preservation details within the transition region (red). (d) The flying Bunny.

o ary constraints, however, computing absolute coordinates re-
quires the solution of a linear system. On the other hand, the
non-local bases in multi-resolution representations limit the

choice of the editing region and the boundary constraints,

but absolute coordinates are computed simpler, by summing
displacements through the hierarchy.

Global modeling operations naturally require global sur-
face representations. We would like to adapt our approach to
implicit shapes, possibly to the level-set framework. When
working with meshes, explicit handling of connectivity is
required. In [BMBZ02], this problem is dealt with by us-
ing regular remeshing. Here, we tried to preserve the orig-
inal connectivities as much as possible, modifying only the
transition area.

Figure 11: Transplanting part of the Feline onto the Dragon. In general, modeling geometry should be coupled to mod-
eling other surface properties, such as textures. The machin-
ery of discrete Poisson equations has already shown to be
effective for image editing, so that editing textured surfaces
should possibly be performed on a combined differential ge-
ometry/texture representation.

frame rates. For example, the construction of the system ma-
trix for a ROI on the arm of th®ctopugabout 10K vertices)
took 1.5 seconds and the factorization 1.9 seconds. The solve
(when moving the handle) took 0.07 seconds.
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