
Laplacian Mesh Optimization

Andrew Nealen
TU Berlin

Takeo Igarashi
The University of Tokyo / PRESTO JST

Olga Sorkine∗

TU Berlin
Marc Alexa
TU Berlin

Figure 1: Original HORSE mesh (left) triangle shape optimization (middle) and feature preserving smoothing (right)

Abstract

We introduce a framework for triangle shape optimization and fea-
ture preserving smoothing of triangular meshes that is guided by
the vertex Laplacians, specifically, the uniformly weighted Lapla-
cian and the discrete mean curvature normal. Vertices are relocated
so that they approximate prescribed Laplacians and positions in a
weighted least-squares sense; the resulting linear system leads to
an efficient, non-iterative solution. We provide different weighting
schemes and demonstrate the effectiveness of the framework on a
number of detailed and highly irregular meshes; our technique suc-
cessfully improves the quality of the triangulation while remaining
faithful to the original surface geometry, and it is also capable of
smoothing the surface while preserving geometric features.

Keywords: Discrete Differential Geometry, Triangle Quality,
Remeshing, Smoothing, Fairing, Least Squares

1 Introduction

Polygonal, and specifically triangular meshes are ubiquitous in
computer graphics. Whether they have been generated by hand,
from real world data, or by other means, obtaining a well-behaved
mesh with respect to sampling rate and triangle quality is of great
importance for a variety of applications. Our goal is to establish
a simple and efficient framework which optimizes triangle shapes,
or smoothes an input mesh, solely by means of vertex relocation,
while maintaining both sampling rate and connectivity. The under-
lying assumption is that the input mesh is the ground truth, i.e. the
sampling rate and connectivity information hold all information on
the underlying smooth shape (possibly with implicitly defined or
user-tagged sharp features).

Our framework is inspired by recent methods that compute ver-
tex positions as the weighted least-squares solution to positional

∗Supported by the Alexander von Humboldt Foundation.

and Laplacian constraints. In particular, several methods try to pre-
serve all original vertex Laplacians while imposing new positions
for a few vertices [Lipman et al. 2004; Sorkine et al. 2004; Yu et al.
2004], which allows detail preserving modeling. Prescribing new
vertex Laplacians has several additional applications: a smooth sur-
face has a Laplacian with small magnitude. This observation has
lead Sorkine and co-workers to represent the geometry of a mesh
by assuming the vertex Laplacians vanish and additionally fixing
the positions of a few control vertices [Sorkine and Cohen-Or 2004;
Sorkine et al. 2005]. By prescribing vertex Laplacians with modi-
fied magnitude or direction, Nealen et al. [2005] achieve a variety
of modeling effects, which are used in a sketch-based tool. We ex-
plain these techniques in Section 3.

We take these ideas a step further and use positional and Lapla-
cian constraints in all vertices. Figure 2 illustrates our basic idea.
Constraining all vertices with both positions and vertex Laplacians
leads to a simple, flexible, and powerful framework for mesh op-
timization (Section 4). Inspired by the local triangle shape opti-
mization that Nealen et al. [2005] used to embed the user drawn
sketches into the mesh, we show that in our framework all triangles
can be optimized at the same time (Section 5). Figure 3 shows that
fixing only a few vertices (as in [Nealen et al. 2005]) would not suf-

LS-Mesh [2004] Nealen et al. [2005] Our method

Figure 2: Left: Sorkine and Cohen-Or [2004] reconstruct the sur-
face from a subset of control vertices (red). Middle: Nealen et
al. [2005] constrain the boundary vertices (red), and optimize in-
ternal triangle shapes. Right: we constrain all vertices and opti-
mize triangle shapes and/or smooth the mesh, with optional feature
preservation.

Figure 3: Least squares mesh [Sorkine and Cohen-Or 2004] (mid-
dle) and detail preserving triangle shape optimization [Nealen et al.
2005] (right) of the ARMADILLO (left), each with the same set of
40 control vertices (red).

fice. Similarly, the idea of Sorkine and Cohen-Or [2004] to generate
fairly smooth meshes by constraining a few positions and assuming
the vertex Laplacians vanish turns into a global mesh smoothing
technique. This idea is detailed in Section 6. Figure 1 demonstrates
both techniques. Furthermore, by adjusting the weights on the dif-
ferent terms of the optimization it is possible to preserve sharp fea-
tures, if this is desired. Sections 5 and 6 introduce several weighting
schemes for the positional as well as the Laplacian constraints and
discuss the variety of effects that can be achieved.

2 Related work

Since our framework performs vertex relocation for both trian-
gle shape optimization and smoothing, we briefly list recent work
in these fields that is most related to our approach. An ex-
tensive overview is beyond the scope of this paper, but can be
found on remeshing [Alliez et al. 2005] and geometric signal pro-
cessing [Taubin 2000]. More recent surveys on mesh smoothing
are available in [Hildebrandt and Polthier 2005], [Bobenko and
Schröder 2005] and [Chen and Cheng 2005].

Vertex relocation for remeshing. Repositioning vertices is gen-
erally treated as a subproblem in the context of remeshing [Al-
liez et al. 2005], motivated by the need to improve triangle shapes
with respect to one or more of the extensively studied quality met-
rics [Pébay and Baker 2003]. There are quite a few algorithms
which circumvent the problem of relocating original mesh vertices
entirely, by resampling the surface [Turk 1992] using a global pa-
rameterization of the mesh [Alliez et al. 2002; Alliez et al. 2003].
Remeshing algorithms, which perform connectivity optimization
with vertex relocation, construct a global or a per-vertex, local pa-
rameterization, and use this parameterization to lift the vertex to
the original surface after relocation in the parameter domain [Vor-
satz et al. 2001; Surazhsky and Gotsman 2003; Vorsatz et al. 2003;
Surazhsky et al. 2003]. When exact error bounds are not required,
the relocated vertex can also be simply projected back onto its
original tangent plane [Botsch and Kobbelt 2004], instead of con-
structing a parameterization. What is common to most of these
algorithms (except for the ”pure” halftoning approach [Alliez et al.
2002]), is that they are inherently iterative, i.e. they apply the relo-
cation step-by-step, one vertex at a time, until some stoppage cri-
terion is reached. In contrast, all vertex relocations in our system
result from the unique solution of one sparse linear system.

Mesh smoothing. The bulk of existing work in mesh smooth-
ing deals with discrete filter design. Taubin’s [1995] pioneer-
ing work introduces a two-step Laplacian operator to inflate the
mesh after smoothing, thereby reducing shrinkage. Desbrun et
al. [1999] use implicit integration with Fujiwara [1995] or cotan-
gent weights [Pinkall and Polthier 1993] for scale-dependent, un-
conditionally stable smoothing, which leaves triangle shapes and
sizes mostly unchanged (also known as mean curvature flow or MC
flow for short). This approach is extended to handle anisotropy
and to preserve features by Meyer et al. [2003], and further im-

proved to prescribed MC flow by Hildebrandt and Polthier [2005].
Recently, researchers have applied the bilateral filter, known from
image processing, to discrete surfaces [Fleishman et al. 2003; Jones
et al. 2003]. Our approach to mesh smoothing differs significantly
from all of these methods. We rely on the least-squares meshes
algorithm [Sorkine and Cohen-Or 2004] to perform inner (triangle
shape) and/or outer (surface smoothness) fairing, while applying
soft positional constraints to all mesh vertices – where the weights
depend on e.g. discrete curvature distribution – to retain specific
features. Our optimization technique has similarities with the ge-
ometric fairing of Schneider and Kobbelt [2001]; their method is
oriented towards freeform surface design and thus prescribes posi-
tional constraints only to the boundary vertices, whereas our tech-
nique optimizes an existing mesh geometry and/or triangle quality.

3 Basics and notation

The mesh is represented as a graph G = (V,E), with vertices V
and edges E, where V = [vT

1 ,vT
2 , . . . ,vT

n]T , vi = [vix,viy,viz]T ∈ R3

is the original geometry, and V′ denotes the displaced geometry.
Furthermore, δi is the Laplacian of vi, the result of applying the
discrete Laplace operator to vi, i.e.

δi = ∑
{i, j}∈E

wi j(v j −vi) =

[
∑

{i, j}∈E
wi jv j

]
−vi, (1)

where ∑{i, j}∈E wi j = 1, and the choice of weights

wi j =
ωi j

∑{i,k}∈E ωik
(2)

defines the nature of δi. Some popular choices are

ωi j = 1, (3)
ωi j = cot α + cot β , (4)

where (3) are the uniform and (4) the cotangent weights. The angles
used in these equations are shown in Fig. 4. In the remainder of
this paper, we will refer to the uniform and cotangent Laplacians
with normalized weights as δu and δc respectively. To obtain the
Laplacians for the entire mesh, we use the n× n Laplacian matrix
L, with elements

Li j =

 −1 i = j
wi j (i, j) ∈ E

0 otherwise
, (5)

and we denote as Lu and Lc the Laplacian matrices with
uniform and cotangent weights respectively. With Vd =
[v1d ,v2d , . . . ,vnd]T ,d ∈ {x,y,z}, the n×1 vector containing the x,y
or z coordinates of the n vertices, we can compute the x, y and z
coordinates of the Laplacians ∆d = [δ1d ,δ2d , . . . ,δnd]T ,d ∈ {x,y,z}
separately as

∆d = LVd . (6)

The uniform Laplacian of vi points to the centroid of its neigh-
boring vertices, and has the nice property that its weights do not
depend on the vertex positions. The cotangent Laplacian is known
to be a good approximation of the surface normal, although the
weights can become negative and are nonlinear in the vertex posi-
tions. When properly scaled by the Voronoi region (see Fig. 4)

κ ini = δi,cκ =
1

4A(vi)
∑

{i, j}∈E
(cot α + cot β)(v j −vi), (7)

as described by Meyer et al. [2003], we obtain the discrete mean
curvature normal κ ini, which is the unit length surface normal ni

vi

vi

vjα

β

vi A()vi

Figure 4: Left: uniform (red) and cotangent (green) Laplacian vec-
tors for a vertex vi and its (in this case planar) 1-ring, as well as
the angles used in Eqn. 4 for one v j, Bottom right: the effect of
flattening vi into the 1-ring plane. While the cotangent Laplacian
vanishes, the uniform Laplacian generally does not. Right top: the
Voronoi region A(vi) around a vertex.

scaled by the discrete mean curvature κ i. Furthermore, we will use
Eqn. 7 to discretize the Laplacian matrix L, denoted as Lcκ , in the
context of mesh smoothing (Section 6).

We now describe two interesting applications, which will lead to
our optimization in Section 4.
Least squares meshes. Sorkine and Cohen-Or [2004] demon-
strate how a mesh can be reconstructed from connectivity informa-
tion alone, using a small subset C ⊂ V of m geometrically con-
strained vertices (anchors). They solve for x, y and z positions
(V′

d = [v′1d ,v′2d , . . . ,v′nd]T ,d ∈ {x,y,z}) separately by minimizing
the quadratic energy

‖LuV′
d‖

2 + ∑
s∈C

w2
s |v′sd − vsd |2, (8)

where the vsd are the stored anchor positions and the w2
s are weight-

ing factors. In practice, with the anchors as the first m vertices
(w.l.o.g.), the (n+m)×n overdetermined linear system AV′

d = b[
Lu

Im×m 0

]
V′

d =
[

0
V(1...m)d

]
(9)

is solved in the least squares sense using the method of normal
equations V′

d = (AT A)−1AT b. Note that the first n rows of AV′
d =

b are the Laplacian constraints, while the last m rows are the po-
sitional constraints. The reconstructed shape is generally smooth,
with the possible exception of small areas around anchor vertices.
The minimization procedure moves each vertex to the centroid of
its 1-ring, since the uniform Laplacian Lu is used, resulting in good
inner fairness.
Detail preserving triangle shape optimization. Nealen et
al. [2005] show how a least squares optimization can improve trian-
gle quality in a small mesh region (including boundary constraints)
with negligible vertex drift. Essentially, they modify the linear con-
straints in Eqn. 9 as[

Lu
Im×m 0

]
V′

d =
[

∆d,c
V(1...m)d

]
, (10)

where the uniform Laplacian of each new vertex position is asked to
resemble its undeformed cotangent Laplacian as closely as possible.
The idea here is that while the uniform Laplacian has a tangential
component, the cotangent Laplacian does not (see also [Desbrun
et al. 1999]), and thus the optimization attempts to remove the tan-
gential components, while preserving the the surface details in the
normal direction. As shown in Fig. 3, this method fails to preserve
the overall shape when the region is large, or there are insufficient
boundary constraints, but works well for local modifications. We
have experimented with the anchor selection process of Sorkine

and Cohen-Or [2005] for Eqn. 10, an iterative process, which, al-
though fast, still introduces a significant computational overhead.
Yet, while this attempt did produce fairly good results after many
iterations, it lead us to the ”all vertices are anchors” approach,
which requires no selection process, and will be described and dis-
cussed in the next sections.

4 Global vertex relocation framework

We propose a modification of Eqns. 9 and 10, which generalizes
both [Sorkine and Cohen-Or 2004] and [Nealen et al. 2005] and
gives rise to two interesting applications. Our general 2n×n system
AV′

d = b is [
WLL
Wp

]
V′

d =
[

WLf
WpVd

]
. (11)

The main modification is that we no longer have a subset of po-
sitional constraints, instead, all vertices appear both as Laplacian,
and positional constraints. As we will describe in more detail fur-
ther below, we can modify the result of the operation and intro-
duce a good trade-off between triangle quality and geometric error
by (non-)uniformly weighting the positional constraints with the
diagonal matrix Wp. In some cases, it will also be beneficial to
weight the Laplacian matrix L and the corresponding right-hand
side f with the diagonal matrix WL. In general, larger weights in
Wp enforce positional constraints and thus preserve the original
geometry, which can be useful for high-curvature regions and sharp
features. On the other hand, larger weights in WL enforce regular
triangle shapes and/or surface smoothness. As we describe in the
following sections, solving the general system in Eqn. 11 results in

• detail preserving triangle shape optimization, when setting
L = Lu and f = ∆d,c, or

• mesh smoothing, when setting L = Lcκ or Lc (outer fairness)
or L = Lu (inner and outer fairness) and f = 0.

5 Global triangle shape optimization

Our goal here is to optimize triangle shapes. We measure our suc-
cess with the radius ratio [Pébay and Baker 2003], mapped to [0,1]
as

ti = 2
r
R

, (12)

where R and r are the radii of the circumscribed and inscribed cir-
cles respectively. This way, ti = 1 indicates a well shaped, ti = 0 – a
degenerate triangle. To perform this optimization, we discretize L
in Eqn. 11 using the uniform Laplacian Lu, set f on the right hand
side to ∆d,c, and use WL = I, similar to Eqn. 10. A straightforward,
yet naive choice, is to use uniform weights Wp = Wconst = sI,
where s denotes an arbitrary positive scalar. While this does some-
what improve the overall triangle quality (see Fig. 5(b)), and has
the lowest geometric error (Hausdorff distance to (a) [Cignoni et al.
1998]), we can do better in terms of triangle quality.

It can be observed that large geometric error is likely to occur
in the vicinity of vertices with high κ . Therefore, a more sensi-
tive choice of weights is a linear curvature-to-weight transfer func-
tion (Fig. 5(a), bottom), which maps discrete mean curvature κ i
to weight wi for each vertex, resulting in Wp = Wlinear. More pre-
cisely, given the minimal and maximal discrete mean curvature over
the mesh, κmin and κmax, we linearly map the interval [κmin,κmax]
to [0,s] (Fig. 5(c)). Since the values for κ can be very large for a
small set of vertices, we truncate these outliers before computing
the linear mapping. The threshold value κτ is computed using a
simple box plot test [Tukey 1977], and works well for all models

Figure 5: Comparison of triangle optimization weights. The far left column (a) shows (from top to bottom) a 17k vertices ARMADILLO mesh,
with the same two close-ups used in (b)-(g), the triangle quality distribution (see Eqn. 12), the distribution function of discrete mean curvature
c(κ), the associated cumulative density function (cdf) C(κ), and the three weighting functions, used in (b)-(g) to map from curvature to
positional weight for each vertex. Each optimized mesh (b)-(g) shows its triangle quality distribution, its mean (tmean) and minimal (tmin)
triangle quality, as well as the Hausdorff distance (dist) to the original mesh (a) with respect to the bounding box diagonal.

we have encountered. The weights of vertices where κ > κτ are
clamped to s.

As can be seen in Figs. 5 (b) and (c), while using Wconst con-
strains low curvature vertices excessively, Wlinear has a tendency
to give them too much freedom, and therefore also has relatively
high geometric error. Since we wish to take the relative frequency
of mean curvature into account, we have chosen to use the cumula-
tive density function (cdf) of κ (Fig. 5(a)) to map from κ i to weight
wi ∈ [0,s], resulting in Wp = Wcd f . In detail, given the normalized
distribution function of mean curvature c(κ) for a mesh (Fig. 5(a)),
we compute the cdf C(κ) as

C(κ) =
∫

κ

0
c(t) dt, (13)

shown in Fig. 5(a) (in practice, C(κ) is precomputed as a discrete
sum over the vertex curvatures). The rationale behind using C(κ)
is that if we have a mesh with a large amount of low curvature ver-
tices (such as the ARMADILLO in Fig. 5), these vertices should be
assigned a larger weight than they would have if Wlinear was used,
thus reflecting the need to retain the detail in these regions and re-
duce vertex drift. As can be seen from the values in Fig. 5(d), using
Wcd f is somewhere between Wconst and Wlinear, and is a good
trade-off between triangle quality and geometric error. The cumu-
lative density function also has the advantage of implicitly dealing
with outliers without the need to compute κτ .

5.1 Tangent plane constraints

To further reduce the geometric error, planar (2D) constraints can
be incorporated in our system. Essentially, we add the following
term to the energy in Eqn. 8:

n

∑
i=1

|ni · (v′i −vi)|2. (14)

This term penalizes displacement perpendicular to the tangent plane
defined by the original vertex position vi and the local surface nor-
mal ni given in Eqn. 7, assuming a first order approximation of the
surface around vi. Since constraints of this form require solving for
x, y and z positions simultaneously, we need to couple the 2n× n
system (Eqn. 11) for each coordinate x, y and z into a single 6n×3n
system, and add n constraints of the form

ni ·v′i = ni ·vi, (15)

resulting in a 7n× 3n system. Although this involves significant
computational overhead, Fig. 5(e) shows that tangent plane con-
straints reduce geometric error and have nearly the same mean tri-
angle quality compared to cdf weights alone (Fig. 5(d)).

5.2 Triangle quality modulation

The quality of meshes for numerical simulations, such as the Finite
Element Method (FEM), is heavily influenced by tmin, the minimal
triangle quality. To maximize tmin, the positional weights Wp are

(a) original (b) linear weights (c) linear + tplane (d) linear + reduced Laplacian

Figure 6: Triangle optimization on an input mesh (a) with distinct sharp features. Using linear weights (b) breaks the sharp features, and
using (2D) tangent plane constraints (c) cannot resolve the problem, since these features would require 1D or zero dimensional (positional)
constraints. Instead, we reduce the weight on Laplacian constraints of feature vertices (d).

Figure 7: Comparison of smoothing weights. Columns 2 and 3 are generated using the weight functions introduced in Section 5, with
different scaling factors s. The right column shows the effect of reducing the weights on the (Laplacian) smoothness constraints of high
curvature vertices. All results in this figure were generated with L = Lu.

modulated with the diagonal matrix Wt , where the entry wt,i for
vertex vi is set to the minimal triangle quality t of its adjacent trian-
gles. This way, if there is a triangle with small t attached to vi it will
be allowed to move more than without the modulation. The effect
for cdf and linear weighting can be observed in Figs. 5(f) and (g):
triangle quality has improved, especially around the ear of the AR-
MADILLO. The cost for this improved triangle quality is increased
geometric error, which can be a worthwhile trade-off if a large tmin
is required by the application.

5.3 Sharp features

For meshes with distinct sharp features, i.e. edges (1D) and cor-
ners (0D), the method described so far produces visible artifacts
(Fig. 6(b) and (c)). Clearly, what we want is that vertices on edges
only move along the edge (1D constraint), while corners remain
fixed in place (0D constraint). This requires solving an 3n× 3n

system, as in Section 5.1. We have found a very simple solution
which achieves a similar effect, and only requires solving an n×n
system; by reducing the weight on the Laplacian constraint of high
curvature vertices (and using Wp = Wlinear), feature vertices are
no longer inclined to move, and their neighboring triangles will be
optimized by their non-feature 1-ring vertices. Specifically, we use
WL = sI−Wlinear in Eqn. 11 (when using weights Wlinear ∈ [0,s])
and scale all values to [0,1]. The result of this modification can be
seen in Fig. 6(d), where all feature vertices remain in place, while
vertices in planar regions are moved towards their respective 1-ring
centroids.

6 Mesh Smoothing

Sorkine and Cohen-Or [2004], propose a procedure for smooth
hole filling by fitting a thin-plate surface (L2V′

d = 0, for infinitely

large anchor weights), while simultaneously improving the trian-
gle quality of the fitted mesh. Since only boundary vertices are
constrained, the fitted surface is smooth without detail or features.
Our framework (Sec. 4) can be easily adjusted to perform global
mesh smoothing, optionally with feature preservation, simply by
setting f = 0, and adjusting the positional- (Wp) and Laplacian
(WL) weights. Also, we can perform simultaneous inner and outer
fairing with Lu, or outer fairing alone with Lc or Lcκ . Note that
using the non-normalized Lcκ discretization is similar to the curva-
ture flow approach [Desbrun et al. 1999]: the weights on Laplacian
smoothness constraints are scaled by discrete mean curvatures.

To make the magnitude and behavior of our smoothing procedure
user-tuneable in a simple and intuitive way, we utilize and adjust
three parameters.

• Positional weights. The weighting matrices Wconst , Wlinear
and Wcd f introduced in Section 5 are applied in the setting of
mesh smoothing. These either uniformly smooth the mesh,
shown in Fig. 7(b) and (e), or attempt to retain features by
placing more (positional) weight on high curvature vertices,
as seen in Fig. 7(c) and (f).

• Scale factor. While the scale factor s was set to s = 1 for all
of Section 5, we can now use this scaling to adjust the overall
amount of smoothing. Compare the top and bottom rows of
Fig. 7, where the scale factors differ by an order of magnitude.

• Laplacian weights. To further increase feature preservation,
practically any function which reduces the weight WL on
Laplacian smoothness constraints of feature vertices can be
applied. In this work we have experimented with Gaussian
falloffs, and variants of the function used in Section 5.3 to
automatically deduce WL from the mean curvature cdf (see
Figs. 8 and 7(d) and (g)), but many other choices are conceiv-
able, e.g. user-tagged feature vertices.

The results of using these three parameters are shown in Fig. 7,
where the full ARMADILLO model is smoothed. Note how varying
the weights and the scale factor results in certain feature preserva-
tion, which can be seen in the closeup of the snout and teeth. For a
detailed analysis of using Wconst with varying s, see [Sorkine and
Nealen 2006]. A typical example of feature preserving smoothing

Figure 8: Smoothing a pyramid. Top row: original DOUBLEPYRA-
MID and the noisy version. Bottom row: Using Wp = Wlinear
alone smoothes out sharp features, while additionally reducing the
weights on Laplacian constraints of feature vertices recovers most
of the original shape.

(a) original (b) uniform Laplacian Lu

(c) cotangent Laplacian Lc (d) weighted Laplacian WLLc

Figure 9: Comparison of umbrella (b) and cotangent (c) discretiza-
tion of the L matrix. In (d), Laplacian constraints LcV′

d = 0 are
relaxed on feature vertices.

is shown in Fig. 8. The original DOUBLEPYRAMID model in the
upper left is contaminated with Gaussian noise, shown in the upper
right. In the lower left the result of using Wlinear is shown, where
the edges are visible, albeit heavily smoothed. If we additionally
use Laplacian weights WL, thereby relaxing Laplacian constraints
as described above, we can successfully recover most of the original
model.

The results shown in Figs. 7 and 8 use L = Lu, resulting in a
coupling of inner and outer fairness. While this works well for
regularly sampled meshes, it has been pointed out by Desbrun et
al. [1999] that this no longer holds for irregularly sampled meshes,
and unwanted object deformation can occur. This effect is some-
what reduced in our framework, thanks to positional constraints,
yet we can also decouple inner and outer fairness simply by using
Lc or Lcκ . As in other work on curvature flow, this moves each
vertex along its normal, while leaving the tangential component
unchanged. The effect is clearly visible, when comparing Fig. 9
(b) and (c); while the mesh in (b) has nicely shaped triangles, the
triangle shapes in (c) mostly reflect the original triangulation in a
smoothed version. Note that Lc can also be coupled with the fea-
ture preserving Laplacian weighting matrix WL (Fig. 9(d)).

7 Discussion and future work

Our framework can optimize triangle shapes and smooth meshes
with results similar to existing methods, but has the advantage that
the solution is well-defined and can be computed using optimized
sparse linear solvers [Toledo 2003]. Timing our algorithm amounts
to measuring the time for the factorization of the system matrix,
since this part makes up approximately 70-80% of the entire run-
time. On an Intel Centrino Duo with 2.0 GHz we can factorize
the n× n system matrix (3n× 3n for tangent plane constraints) for
meshes with 173k, 43k and 17k vertices in 27s(43s), 3s(25s) and
1s(6s) respectively.

In addition, setting specific least-squares weights allows opti-
mizing the results with respect to the particular model and the ap-
plication at hand. The parameters we expose allow either trading
off geometric error for triangle quality, or determine the intensity
of the smoothing operation, including the amount of detail preser-
vation. While the user may decide which weights and parameters
to chose, we suggest the following combinations.

(a) original (b) smoothed

Figure 10: Smoothing the noisy ANGEL dataset, using Wcd f and WLLc.

• Smooth models. Models, for which the mean curvature distri-
bution is fairly smooth, such as the ARMADILLO model used
throughout this paper, generally benefit from using Wcd f for
triangle shape optimization, since details in mid-range curva-
ture regions are retained, the overall geometric error is low,
and it produces a good distribution of triangle shapes. For
smoothing, Wcd f nicely preserves detail in high curvature re-
gions to a certain degree, which can be improved by addi-
tionally reducing weights on specific Laplacian smoothness
constraints with WL.

• CAD models. CAD models, or models with mostly flat sur-
faces and some sharp features, are weighted with Wlinear in
Figs. 6 and 8. Using Wcd f has little effect in these cases, since
the associated cdf has a high weight value for the numerous
low (or zero) curvature vertices. This fixes these vertices in
place, where they should actually be allowed to move freely
in their tangent plane. The situation is similar for the smooth-
ing application; here, we wish to de-noise the planar regions,
thus necessitating a low weight on the positional constraints
of these vertices, while holding feature curves and points in
place, again making Wlinear the better choice.

We ran the algorithm on some real world noisy data, and a few
more meshes with bad triangle shapes. For the ANGEL dataset,
acquired using 3D photography [Bouguet and Perona 1998], using
Wcd f and WLLc succeeds in removing the noise while retaining
the prominent features around the nose and eyes (Fig. 10). The
improvement in triangle quality on the TWEETY model in Fig. 11
is clearly visible, while a significant change in (flat) shading is not.
Figures 11 and 12 illustrate the components of our algorithm: the
original mesh (a) can be optimized with respect to triangle shapes
(b) and adaptively smoothed with curvature dependent positional
weights Wcd f (c) and reduced Laplacian weights WL (d). Note that
while in Figs. 11(c),(d) both inner and outer fairness is improved,
Figs. 12(c),(d) leave inner fairness untouched, since Lcκ and Lc
decouple the fairness criteria.

We have not explicitly treated the issue of volume preservation,
but the simple fact that the original mesh geometry is a substantial
part of the result, and can be granularly controlled with Wp, reduces
shrinkage significantly.

We would like to stress the fact that all these optimizations based
on adjusting the weight matrices Wp and WL have no adverse effect
on timing. It is conceivable that better feature detection could steer
the weighting, leading in turn to better feature preservation, again at
no additional cost (in the optimization computation). Consequently,
we are interested in improved automated feature detection in our
ongoing work. Other potential avenues for future work are volume
preservation by analyzing (and adjusting) the spectral properties of
the system matrix, and preservation of higher order discrete surface
properties.

8 Acknowledgements

This work was carried out during a visit to the User Interface Re-
search Group of The University of Tokyo (Autumn 2005), sup-
ported by a JSPS (Japan Society for the Promotion of Science) re-
search grant.

References

ALLIEZ, P., MEYER, M., AND DESBRUN, M. 2002. Interactive
geometry remeshing. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and interactive
techniques, 347–354.

ALLIEZ, P., ÉRIC COLIN DE VERDIÈRE, DEVILLERS, O., AND
ISENBURG, M. 2003. Isotropic surface remeshing. In SMI ’03:
Proceedings of the Shape Modeling International 2003.

ALLIEZ, P., UCELLI, G., GOTSMAN, C., AND ATTENE, M.,
2005. Recent advances in remeshing of surfaces. Part of the
state-of-the-art report of the AIM@SHAPE EU network.

BOBENKO, A. I., AND SCHRÖDER, P. 2005. Discrete willmore
flow. In Eurographics Symposium on Geometry Processing,
101–110.

BOTSCH, M., AND KOBBELT, L. 2004. A remeshing approach
to multiresolution modeling. In SGP ’04: Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, 185–192.

BOUGUET, J.-Y., AND PERONA, P. 1998. 3D photography on your
desk. In ICCV’98 proceedings, 43–50.

CHEN, C.-Y., AND CHENG, K.-Y. 2005. A sharpness dependent
filter for mesh smoothing. Comput. Aided Geom. Des. 22, 5,
376–391.

CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro:
Measuring error on simplified surfaces. Computer Graphics Fo-
rum 17, 2, 167–174.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H.
1999. Implicit fairing of irregular meshes using diffusion and
curvature flow. In SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques, 317–324.

FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral
mesh denoising. ACM Trans. Graph. 22, 3, 950–953.

FUJIWARA, K. 1995. Eigenvalues of Laplacians on a closed Rie-
mannian manifold and its nets. In Proc. AMS., 2585 – 2594.

(a) original (b) triangle optimization with Wcd f

(c) smoothing with Wcd f and Lu (d) feature preserving smoothing with Wcd f and WLLu
(inner and outer fairness) (inner and outer fairness)

Figure 11: TWEETY results.

HILDEBRANDT, K., AND POLTHIER, K. 2005. Anisotropic fil-
tering of non-linear surface features. Computer Graphics Forum
(Eurographics Proceedings) 23, 3, 101–110.

JONES, T. R., DURAND, F., AND DESBRUN, M. 2003. Non-
iterative, feature-preserving mesh smoothing. ACM Trans.
Graph. 22, 3, 943–949.

LIPMAN, Y., SORKINE, O., COHEN-OR, D., AND LEVIN, D.
2004. Differential coordinates for interactive mesh editing. In
International Conference on Shape Modeling and Applications,
181–190.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H.
2003. Discrete differential-geometry operators for triangulated
2-manifolds. Visualization and Mathematics III, pages 35–57.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D.
2005. A sketch-based interface for detail-preserving mesh edit-
ing. ACM Trans. Graph. 24, 3, 1142–1147.

PÉBAY, P. P., AND BAKER, T. J. 2003. Analysis of triangle quality
measures. Math. Comput. 72, 244, 1817–1839.

PINKALL, U., AND POLTHIER, K. 1993. Computing discrete min-
imal surfaces and their conjugates. Experimental Mathematics 2,
1, 15–36.

SCHNEIDER, R., AND KOBBELT, L. 2001. Geometric fairing of
irregular meshes for freeform surface design. Computer Aided
Geometric Design 18, 4, 359–379.

SORKINE, O., AND COHEN-OR, D. 2004. Least-squares meshes.
In Proceedings of Shape Modeling International, 191–199.

SORKINE, O., AND NEALEN, A. 2006. A note on Laplacian mesh
smoothing. Submitted for publication.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry processing, 179–188.

(a) original (b) triangle optimization with Wcd f

(c) smoothing with Wcd f and Lcκ (d) feature preserving smoothing with Wcd f and WLLc
(outer fairness only, inner fairness untouched) (outer fairness only, inner fairness untouched)

Figure 12: SQUIRREL results.

SORKINE, O., COHEN-OR, D., IRONY, D., AND TOLEDO, S.
2005. Geometry-aware bases for shape approximation. IEEE
Transactions on Visualization and Computer Graphics 11, 2,
171–180.

SURAZHSKY, V., AND GOTSMAN, C. 2003. Explicit surface
remeshing. In SGP ’03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, 20–
30.

SURAZHSKY, V., ALLIEZ, P., AND GOTSMAN, C. 2003. Isotropic
remeshing of surfaces: a local parameterization approach. In
proceedings of 12th International Meshing Roundtable, 215–
224.

TAUBIN, G. 1995. A signal processing approach to fair surface de-
sign. In SIGGRAPH ’95: Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques, 351–
358.

TAUBIN, G., 2000. Geometric signal processing on polygonal
meshes. EUROGRAPHICS state-of-the-art report.

TOLEDO, S. 2003. TAUCS: A Library of Sparse Linear Solvers.
Tel Aviv University.

TUKEY, J. W. 1977. Exploratory Data Analysis. Addison-Wesley.

TURK, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH
’92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, 55–64.

VORSATZ, J., RÖSSL, C., KOBBELT, L., AND SEIDEL, H.-P.
2001. Feature sensitive remeshing. Computer Graphics Forum
20, 3, 393–401.

VORSATZ, J., RÖSSL, C., AND SEIDEL, H.-P. 2003. Dynamic
remeshing and applications. In SM ’03: Proceedings of the
eighth ACM symposium on Solid modeling and applications,
167–175.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with Poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

