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Abstract
Any quantization introduces errors. An important question is how to suppress their visual effect. In this paper
we present a new quantization method for the geometry of 3D meshes, which enables aggressive quantization
without significant loss of visual quality. Conventionally, quantization is applied directly to the 3-space coordi-
nates. This form of quantization introduces high-frequency errors into the model. Since high-frequency errors
modify the appearance of the surface, they are highly noticeable, and commonly, this form of quantization must
be done conservatively to preserve the precision of the coordinates. Our method first multiplies the coordinates by
the Laplacian matrix of the mesh and quantizes the transformed coordinates which we call “δ-coordinates”. We
show that the high-frequency quantization errors in the δ-coordinates are transformed into low-frequency errors
when the quantized δ-coordinates are transformed back into standard Cartesian coordinates. These low-frequency
errors in the model are much less noticeable than the high-frequency errors. We call our strategy high-pass quan-
tization, to emphasize the fact that it tends to concentrate the quantization error at the low-frequency end of the
spectrum. To allow some control over the shape and magnitude of the low-frequency quantization errors, we ex-
tend the Laplacian matrix by adding a number of spatial constraints. This enables us to tailor the quantization
process to specific visual requirements, and to strongly quantize the δ-coordinates.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—surface solid, and object representations

1. Introduction

Polygonal meshes are widely used for representation of 3D
objects. Compression of 3D meshes is today an active re-
search area, important for web-based applications, efficient
storage and archiving. Mesh compression involves two prob-
lems that are usually solved, at least conceptually, sepa-
rately: the mesh connectivity encoding and the geometry en-
coding. While state-of-the-art connectivity encoding tech-
niques are extremely effective 22, 3, compressing the geom-
etry remains a challenge. The encoded geometry is, on aver-
age, at least five times larger than the encoded connectivity,
even when the coordinates are pre-quantized to 10–12 bits.
Finer quantization for higher precision increases the impor-
tance of effective geometry encoding even further.

The raw geometry data, whether originating from scanned
real-world objects or synthetic modeling applications, usu-
ally comes in high-precision floating-point representation.
Such data cannot be significantly compressed by standard

techniques such as dictionary-based coding (e.g., LZ), or en-
tropy coding; therefore, most geometry encoding schemes
involve quantization. Normally, the Cartesian coordinates of
each vertex are uniformly quantized, and the resulting inte-
ger values are encoded using predictive approaches that rely
on local surface smoothness assumptions 22, 20. Another pos-
sibility is to alter the surface representation; for instance, to
treat the geometry as a surface signal and employ signal pro-
cessing and compression techniques, such as wavelet com-
pression 16. However, such approaches require modification
of the connectivity of the mesh into a regular or semi-regular
network. While the new mesh might be close enough to the
original surface, some important local features that are well
represented by a specific connectivity might get washed out.
Thus, in many cases it is desirable to keep the original con-
nectivity intact.

Quantization necessarily introduces errors and causes a
certain loss of data. Loosely speaking, quantizing the Carte-
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Figure 1: The δ-coordinates quantization to 5 bits/coordinate (left)
introduces low-frequency errors, whereas Cartesian quantization to
11 bits/coordinate (right) introduces noticeable errors. The upper
row shows the quantized model, and the bottom figures use color to
visualize the corresponding quantization errors.

sian coordinates of the mesh produces high-frequency errors
across the surface. This especially damages the fine-sampled
areas, since the relative error is greater when the polygons
are smaller. Aggressive quantization significantly alters the
surface normals, causing the irritating “jaggies” effect. Thus,
only mild quantization of Cartesian coordinates is possible
without causing visible artifacts (usually between 10 and 16
bits per coordinate).

In this paper, we investigate a different approach to
geometry quantization. Instead of directly quantizing the
Cartesian coordinates, we first transform them to another
space by applying the Laplacian operator associated with
the mesh topology. We call these transformed coordi-
nates “δ-coordinates”. The quantization is applied to the δ-
coordinates, and the geometry of the mesh can be restored
on the decoder side by solving a linear least-squares system
defined by the extended Laplacian matrix (discussed in Sec-
tion 3). We show that introducing high-frequency errors by
quantizing the δ-coordinates results in low-frequency errors
in the reconstructed Cartesian coordinates. By considering a
visual error metric between meshes, that takes into account
not only the Euclidean distance between corresponding ver-
tices (or the “Metro” distance 8) but also the smoothness er-
ror, we argue that low-frequency displacements in the sur-
face geometry are less noticeable than high-frequency dis-
placements which modify the local characteristics of the sur-
face such as normals and curvature. Consequently, strong
quantization of the δ-coordinates yields a small visual error,
in contrast to standard Cartesian coordinate quantization.

We call our strategy high-pass quantization, to emphasize
the fact that it tends to concentrate the quantization error at

the low-frequency end of the spectrum. A high-pass filter
also concentrates the error at the low end of the spectrum,
and the form of the error is known: damping. In high-pass
quantization, the high-end of the spectrum is preserved, as in
high-pass filtering. The low-frequency errors that high-pass
quantization introduces, however, are essentially random.
They do not necessarily correspond to damping. The ran-
domness is an outcome of the quantization process, which
always introduces random errors.

Lossy compression methods are evaluated by rate-
distortion curves, which correlate bitrates with signal distor-
tion. We claim that there is not yet a visual distortion metric
for 3D models that can objectively rank compression meth-
ods. One of our main contributions is the observation that
visual distortion is highly influenced by the spectrum of the
error, in ways that are not captured well by existing distor-
tion metrics. We address the quantitative evaluation issue us-
ing a two-pronged approach: (i) In Section 4 we propose a
distortion metric and show that it captures our visual per-
ception well; then we demonstrate the effectiveness of our
method by means of rate-distortion curves; (ii) We show in a
visual metric-independent way that the rate-distortion of our
method is better than that of direct quantization methods.

The paper presents two main contributions. The first is
the observation that lossy mesh compression should intro-
duce low-frequency errors but almost no high-frequency er-
rors. We assume that high-frequency information below the
visual threshold has already been filtered from the coordi-
nates. Therefore, compression should aim to preserve the re-
maining significant high-frequency information. The second
contribution is a computational method, based on extended
Laplacian matrix, that achieves this objective.

The rest of the paper is organized as follows. We review
previous work related to the mesh Laplacian and the field
of geometry compression in Section 2. Section 3 shows the
properties of the Laplacian matrix and the δ-coordinates,
which enable their strong quantization. In Section 4 we de-
scribe the visual error metric that better captures the visual
distance between meshes. Section 5 presents implementation
details and the results, and we conclude in Section 6.

2. Related work

Following the pioneering work of Deering 9 and Taubin and
Rossignac 20, numerous mesh-compression techniques have
been developed, which focus mainly on connectivity encod-
ing (e.g., 13, 22, 19). It has been shown that the efficiency of the
connectivity encoding has reached near-optimal level 14, 3.
Our work is based on these results since the encoded connec-
tivity is in fact an efficient encoding of our extended Lapla-
cian matrix.

As mentioned above, the geometry data size is signifi-
cantly larger than the encoded connectivity data size. In re-
cent years the focus has been shifted to efficient encoding of
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the geometry. In earlier works, the geometry was encoded by
a predictive coding paradigm. The vertices of the mesh are
traversed in some order v1, ...,vn and each vertex vi is en-
coded based on the known locations of the previous vertices
in the sequence v1, ...,vi−1. The unknown location of vi is
predicted to be at v̂i, and the displacement ei = v̂i − vi is en-
coded. Usually linear predictors are used; the most common
one is known as the parallelogram predictor 22.

The above methods first quantize the mesh vertices and
then losslessly encode the displacements. Our approach is
different: we compute the displacements on the exact geom-
etry and then quantize them in a lossy manner.

In all the above methods, the displacements are com-
pressed by some entropy encoder. Chou and Meng 6 use vec-
tor quantization instead to gain speed. Their paper, as well as
others, does not measure the relation between the quantiza-
tion error and the visual quality of the decoded mesh. Most
works consider the Metro-like measure, rather than a visual
error metric. A notable exception is the work of Karni and
Gotsman 15, where the compression results are measured in
terms of visual quality.

The mesh-compression method of Karni and Gotsman 15

is based on the spectral properties of Laplacians, as well
as our work, but it is fundamentally and computationally
different from our method. Karni and Gotsman propose to
compute the eigenvectors of the Laplacian of the mesh, ex-
pand the mesh functions (the x, y and z vectors) in this basis,
and drop the coefficients of high-frequency modes from the
representation. The rationale is that smooth shapes can be
well represented by a linear combination of low-frequency
modes (the same applies to other bases, such as wavelet
bases). The fundamental difference between their method
and ours is that the error in their method consists entirely
of high-frequency modes, since these are the modes that suf-
fer from the lossy representation, whereas the error in our
method consists mostly of low-frequency modes. In models
that have some high-frequency components, such as folds,
corners, or rough surfaces, their method wipes out these fea-
tures, whereas ours preserves them almost perfectly (see Fig-
ure 8 in the color section). In other words, both methods ex-
ploit the fact that 3D models can be well approximated by
a combination of low-frequency Laplacian eigenvectors, but
the compression errors in the two methods are entirely differ-
ent. Another important difference between our method and
Karni and Gotsman’s lies in computational efficiency. Their
method requires computing eigenvectors of the Laplacian,
which is more expensive than solving a sparse least-squares
problem, which is the computational kernel in our method.

An alternative to quantization as means of geometry com-
pression is mesh simplification, which removes vertices and
changes the connectivity of the mesh. The trade-off be-
tween simplification and quantization is extensively studied
by King and Rossignac 17. They define a shape complexity
measure and use it to estimate the optimal number of ver-

tices and bits per vertex, given an error bound or file size
bound. In this work, our goal is to investigate a different way
to perform geometry quantization, while preserving the con-
nectivity. However, it would be interesting to combine our
findings on quantization with the above study.

The mesh Laplacian has other applications in Computer
Graphics. Taubin 21 showed the use of the Laplacian matrix
as a tool for spectral analysis of the 3D mesh. In his work,
Taubin designs a mesh smoothing filter and a modeling tool.
Alexa 1, 2 uses Laplacian coordinates for 3D morphing. He
shows that by interpolating Laplacian coordinates locally,
the intermediate surfaces remain smoother and tend to de-
form less than linearly interpolated Cartesian coordinates.
Ohbuchi et al. 18 use spectral decomposition of the Lapla-
cian to watermark 3D models. The amplitude of the spectral
coefficients of low-frequency modes is modulated to embed
a watermark bit-string. Their work, like ours, exploits the
observation that low-frequency errors are almost invisible.

3. Laplacian matrix and δ-coordinates

3.1. Algebraic background

Quantizing a vector x with continuous coefficients intro-
duces an error qx, where x + qx is the quantized vector. In
this section we show how to control the spectral behavior
of the error using linear transformations. We assume that a
simple fixed-point quantization is used, so that the maximum
quantization error maxi |qi| is bounded by 2−p(maxi xi −
min j x j), using p-bit quantized coefficients.

Suppose that instead of quantizing the input vector x, we
transform x into a vector Ax using a nonsingular matrix A,
and then quantize Ax. We denote the quantization error
by qAx, so that the new quantized vector is Ax+qAx. The el-
ements of the quantized vector are now discrete, as are those
of x + qx. We can recover an approximation of x from this
representation, by multiplying the quantized vector by A−1:

A−1(Ax+qAx) = x+A−1qAx.

The error in this approximation is A−1qAx, and we will see
shortly that under certain conditions, it behaves quite differ-
ently than qx.

Assume that A has an orthonormal eigen-decomposition
AU = UΛ, where U is unitary (has orthonormal columns)
and Λ is diagonal. This assumption is satisfied when A is real
and symmetric, and more generally, if and only if AA∗ =
A∗A, where A∗ is the Hermitian adjoint of A. Without loss
of generality, we assume that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|,
where λi = Λii are the eigenvalues of A. Since the processes
we are concerned with are invariant to scaling A, we also
assume that |λ1| = 1. We express x as a linear combination
of A’s orthonormal eigenvectors,

x = c1u1 + c2u2 + · · ·+ cnun,
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where ui are the columns of U . We also have

Ax = c1λ1u1 + c2λ2u2 + · · ·+ cnλnun.

Similarly, since A−1U = UΛ−1, we can express the quanti-
zation error as a linear combination of eigenvectors,

qAx = c′1u1 + c′2u2 + · · ·+ c′nun,

so

A−1qAx = c′1λ−1
1 u1 + c′2λ−1

2 u2 + · · ·+ c′nλ−1
n un.

We now reach the first fundamental point of the discus-
sion. The transformation A is useful for quantization when
three conditions hold:

1. For typical inputs x, the norm of Ax is much smaller than
the norm of x,

2. Quantization errors with large c′iλ
−1
i for large i (that is,

with strong representation for the last eigenvectors) are
not disturbing,

3. |λn| is not too small.

The first point is important since it implies that
maxi |(Ax)i| � maxi |xi|. Assuming a uniform quantization,
this property allows us to achieve a given quantization er-
ror with fewer bits. The best choice of norm for this purpose
is, of course, the max norm, but since norms are essentially
equivalent, the implication also holds if

‖Ax‖2 �‖x‖2.

Since ‖x‖2
2 = ∑i c2

i and ‖Ax‖2
2 = ∑i c2

i λ2
i , the above condi-

tion occurs if and only if the first ci’s are small compared to
the last ones. In other words, the first point holds if A, viewed
as a filter, filters out strong components of typical x’s.

The importance of the second and third points stems from
the fact that A−1 amplifies the components of qAx in the di-
rection of the last eigenvalues. If A has tiny eigenvalues, the
amplification by a factor λ−1

i is significant for large i. Even
if the small eigenvalues of A are not tiny, the error may be un-
acceptable. The quantization error A−1qAx always contains
moderate components in the direction of eigenvectors that
correspond to the small eigenvalues of A. When small er-
ror components in these directions distort the signal percep-
tively, the error will be unacceptable. Therefore, the last two
points must hold for the quantization error to be acceptable.

3.2. Laplacian transformations

This section discusses the Laplacian matrix of the mesh and
its variants and shows that these linear transformations work
well as quantization transforms.

Let M be a given triangular mesh with n vertices. Each
vertex i ∈ M is conventionally represented using absolute
Cartesian coordinates, denoted by vi = (xi,yi,zi). We define

the relative or δ-coordinates of vi to be the difference be-
tween the absolute coordinates of vi and the center of mass
of its immediate neighbors in the mesh,

δi = (δ(x)
i ,δ(y)

i ,δ(z)
i ) = vi − 1

di

d

∑
k=1

vik ,

where di is the number of immediate neighbors of i (the de-
gree or valence of i) and ik is i’s k th neighbor.

The transformation of the vector of absolute Cartesian co-
ordinates to the vector of relative coordinates can be repre-
sented in matrix form. Let A be the adjacency (connectivity)
matrix of the mesh:

Ai j =
{

1 i and j are adjacent
0 otherwise,

and let D be the diagonal matrix such that Dii = di. Then
the matrix transforming the absolute coordinates to relative
coordinates (scaled by D) is L = D−A,

Li j =




di i = j
−1 i and j are adjacent
0 otherwise.

That is, Lx = Dδ(x), Ly = Dδ(y), and Lz = Dδ(z), where x is
an n-vector containing the x absolute coordinates of all the
vertices and so on. Without loss of generality, we now focus
on the vectors x and δ = Dδ(x).

The matrix L is called the Laplacian of the mesh 10. Lapla-
cians of meshes have been extensively studied 7, primarily
because their algebraic properties are related to the combi-
natorial properties of the meshes they represent. The Lapla-
cian is symmetric, singular and positive semidefinite. The
singularity stems from the fact that the system Lx = δ has
an infinite number of solutions which differ from each other
by a vector that is constant on each connected component
of the mesh. Thus, we can actually recover x from δ if we
know, in addition to δ, the Cartesian coordinate of one xi in
each connected component. We can formalize this method
by dropping from L the rows and columns that correspond to
one vertex in each connected component, called the anchor
of the component. The resulting matrix (see Figure 4), which
we call the basic invertible Laplacian, generates all the δ’s
that we need and is nonsingular. We will later explore other
nonsingular variants of the Laplacian.

To explain why variants of the Laplacian are effective
quantization transforms, we first have to introduce the no-
tion of mesh frequencies (spectrum). The frequency of a real
function x defined on the vertices of a mesh M is the number
of zero crossings along edges,

f (x) = ∑
(i, j)∈E(M)




1 xix j < 0

0 otherwise


 ,

where E(M) is the set of edges of M, so the summation is
over adjacent vertices. It turns out that for many classes of
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Figure 2: An example showing quantization errors in a one-dimensional mesh. The mesh here is a simple linear chain with 114 vertices.
(a) shows a smooth function x defined on the mesh, its direct quantization, and a Laplacian-transform quantization. The quantizations were
performed with 20 discrete values uniformly distributed between the minimum and maximum absolute values of the vectors. The direct error
vector is smaller in magnitude, but has a strong high-frequency oscillatory nature, whereas the Laplacian-transformed error vector is smooth.
(b) explains this observation by plotting, on a log scale, the spectrum of the two errors. We can see that the direct quantization has moderate
components in the direction of all eigenvectors of the Laplacian (i.e., all frequencies), whereas the Laplacian-transformed error has strong
components in the direction of the smooth eigenvectors, but very small components in the direction of high-frequency eigenvectors.
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Figure 3: The same mesh as in Figure 2, but with an additional anchor point at vertex 86. The transformed quantization error is no longer
smooth at the anchor point, even though the vector x is smooth there.

graphs, including 3D meshes, eigenvectors of the Laplacian
(and related matrices, such as our basic invertible Laplacian)
corresponding to large eigenvalues are high-frequency mesh
functions, and eigenvectors corresponding to small eigenval-
ues are low-frequency mesh functions. In other words, when
i � j, λi > λ j and f (ui) � f (u j). Furthermore, since 3D
models are typically smooth, possibly with some relatively
small high-frequency perturbation, the coordinate vectors x,
y, and z often have a large low-frequency and a small high-
frequency content. That is, the first ci’s are often very small
relative to the last ones.

This behavior of the eigenvectors of Laplacians and of
typical 3D models implies that the first property we need
for effective quantization holds, namely, the 2-norm of Lx is
typically much smaller than the norm of x, and therefore the
dynamic range of Lx is smaller than that of x.

Laplacians also satisfy the second requirement. As stated
above, eigenvectors associated with small eigenvalues are
low-frequency functions that are typically very smooth.
When we add such smooth low-frequency errors to a 3D
model, large features of the model may slightly shift, scale,
or rotate, but the local features and curvature are main-
tained. Thus, errors consisting mainly of small-eigenvalue
low-frequency eigenvectors are not visually disturbing.

However, simple Laplacian transformations do not satisfy
our third requirement. The small eigenvalue of a basic in-
vertible Lapacian is typically tiny; a good estimate for |λ−1

n |
is the product of the maximum topological distance of a ver-
tex from the anchor vertex, and the number of vertices in the
mesh (assuming there is one connected component; other-
wise the maximum of the estimate over all components) 11, 5.
For a typical n-vertex 3D mesh, the small eigenvalue is there-

c© The Eurographics Association 2003.



Sorkine et al. / High-Pass Quantization

–1–1 –1 –1
–1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1
–1 –1 –1
–1 –1 –1 –1

–1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1

–1–1–1
–1 –1 –1 –1

4
3

5
4

3
4

6
6

3
4

The mesh The Laplacian matrix

–1–1 –1
–1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1

–1 –1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1

–1 –1 –1

4
3

5
4

4
6

6

4

–1–1 –1 –1
–1 –1 –1
–1 –1 –1 –1 –1

–1 –1 –1 –1
–1 –1 –1
–1 –1 –1 –1

–1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1

–1–1–1
–1 –1 –1 –1

4
3

5
4

3
4

6
6

3
4

1
1

Invertible Laplacian 2-anchor rectangular Laplacian

Figure 4: A small example of a triangular mesh and its associ-
ated Laplacian matrix (top right). Second row: a 2-anchor invert-
ible Laplacian and a 2-anchor rectangular Laplacian. The anchors
are denoted in the mesh by circles.

fore likely to be Θ(n−1.5). This causes large low-frequency
errors which are clearly visible in the example in Figure 2.

3.3. The k-anchor rectangular Laplacian

An effective way to increase the small eigenvalue of a Lapla-
cian is to add more anchor points. With k anchor points
in a connected mesh, we can bound |λ−1

n | in the following
way. Assign each vertex i to an anchor point m, denote the
neighborhood of m by Nm = {i : m is the anchor of i}, and
denote Rm = maxi∈Nm{distance between i and m}. We then
have |λ−1

n | ≤ maxm |Nm|Rm. Given a set of anchor points,
this inequality provides an easily-computed a-priori upper
bound on the norm of the quantization error.

Adding anchor points and dropping the corresponding
rows and columns from the Laplacian increases the smallest
eigenvalue of the transformation and reduces the magnitude
of the transformed quantization errors, but this method has a
serious defect. At the anchor points, the transformed quanti-
zation errors are not smooth, as illustrated in Figures 3 and 5.

We propose to fix this defect. The crucial observation is
that the k-anchor invertible Laplacian essentially forces the
transformed quantization error to be zero at the anchors, and
allows the error to grow as we get further and further away
from the anchor points. We suggest using a k-anchor rect-
angular Laplacian, which is an (n + k)-by-n matrix L̃, with

the singular Laplacian in the first n rows, and unit vectors
corresponding to the anchor points in the last k rows (see
Figure 4). We transform the coordinates of the mesh simply
by multiplying x by L̃, w = L̃x. The vector that represents x is
now a vector of n Laplacian coordinates, and k standard co-
ordinates of the anchor points. We quantize the two groups
of coordinates separately, to reap the benefits of the small
values of the Laplacian coordinates.

To recover x from w+qw, we solve the least-squares prob-
lem minx

∥∥L̃x− (w+qw)
∥∥

2. It is well known that the solu-
tion of the least-squares problem is the solution of the so-
called normal equations L̃T L̃x = L̃T (w + qw), and that it is
unique if there is at least one anchor point in each connected
component of the mesh. Intuitively, the least-squares solu-
tion generates smooth errors since it allows the computed
solution to differ from the given input even at the anchor
points. The magnitude of the quantization error is similar to
that of the k-anchor invertible Laplacian transform, but it is
smooth where x is smooth. We will provide a provable bound
on the norm of the quantization error that this technique in-
troduces in a companion paper.

To place k anchor points we use a greedy algorithm. We
begin by placing one random anchor point and generating a
1-anchor rectangular Laplacian, denoted by L̃1. We proceed
iteratively: given L̃ j we place the j + 1 anchor at the vertex
with the largest visual error, to yield L̃ j+1. We can either
place enough anchors to satisfy some prescribed visual error,
or place k anchors. This can be accelerated by adding some
anchors in random locations. However, since typically only
a small portion of the vertices are used as anchors (about
0.1% – 0.7%), we found the greedy algorithm to be effective.

Figures 1 and 7 (see the color section) visualize the errors
over the mesh. In Figure 7(a) only two anchors are used; the
legs and the head of the horse exhibit some shift, indicated
by the strong red and blue colors. In (c) twenty anchors are
used, “nailing” the horse in place. As expected, the errors are
nicely distributed.

4. The visual quality measure

The geometric error of a lossy mesh compression scheme
can be measured by a per-vertex Euclidean distance
Mq(vi) = ‖vi−Q(vi)‖, where Q(vi) is the decompressed po-
sition of vertex vi ∈ R

3. Then the root-mean-square (RMS)
error that measures the “physical” distance between the orig-
inal mesh and the decompressed mesh is:

Mq =

(
n

∑
i=1

‖vi −Q(vi)‖2

)1/2

.

The Mq measure does not represent the visual quality of
the mesh well, since the visual quality should be more sensi-
tive to the surface local differential properties that define the
surface appearance.
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Figure 5: Reconstruction of the mesh from quantized δ-
coordinates using k-anchor invertible Laplacian is not smooth at
the anchor vertices.

Karni and Gotsman 15 suggest using a “geometric Lapla-
cian” of a vertex vi, that is, Sq(vi) = ‖S(vi)− S(Q(vi))‖,
where S(vi) is a local measure of smoothness at vi:

S(vi) = vi −
∑

j∈N(i)
l−1
i j v j

∑
j∈N(i)

l−1
i j

.

In this formula, li j is the Euclidean distance between vi
and v j , and N(i) is the set of indices of the neighbors of
vertex vi. Then:

Sq =

(
n

∑
i=1

‖S(vi)−S(Q(vi))‖2

)1/2

.

They combine Mq and Sq as the visual quality measure:

Evis = αMq +(1−α)Sq.

Karni and Gotsman used α = 0.5. While this is a step
towards a better visual measure, we argue that α must be
smaller since Sq has a more significant visual effect. This is
quite evident in Figure 8 (see the color section), where the
surfaces in the middle column clearly look visually closer
to the original models than the surfaces in the right column.
From our informal experiments, only when α � 0.15, does
Evis agree with our perception. We acknowledge that this
metric and this particular α value are ad-hoc. Ideally, com-
pression methods should be evaluated using a quantitative
visual measure backed by psychophysical evidence. Unfor-
tunately, such evidence is not available, so an ad-hoc mea-
sure must be used. Our results can also be evaluated in a
visual-metric-independent way as shown in Figure 8.

This agrees with the claim that our perception is more
sensitive to lighting than geometry. When the tessellation is

finer, the same displacements have more effect on the nor-
mals and so the distortion of the lighting is stronger.

Taubin 21 shows that the δ-coordinates are an approxima-
tion of the vertex normal for curvature-continuous surfaces,
and the norm of the vector of the δ-coordinates is an ap-
proximation of the mean curvature. Thus, quantization of the
δ-coordinates provides direct control over the normals and
curvatures, and consequently on the shading of the model.

It should be emphasized that for various CAD and engi-
neering applications the geometric distance Mq must be ac-
curate, and no loss of precision can be accepted. Moreover,
defining a visual error that measures the human perception
of 3D models is an open problem. We believe that, just like a
similarity metric among shapes, the perception problem re-
mains open, as it is subjective to the observers. We further
discuss this in Section 6.

5. Implementation and results

5.1. Quantization and compression

Our technique encodes the geometry of a 3D mesh by quan-
tizing the δ-coordinates. We now explain how this fits into
an overall coding/decoding framework.

We assume that the connectivity of the mesh is first
encoded using a state-of-the-art connectivity encoder 22, 3.
Since the Laplacian is a trivial function of the connectivity,
this encoding also represents the Laplacian of the mesh.

Next, we attach to the encoding the indices of the k
anchor points, which are necessary for constructing rows
n+1, . . . ,n+ k of the k-rectangular Laplacian. This requires
k log2 n bits, which for reasonable values of k is insignificant.

The encoder then transforms the Cartesian coordinates x
into δ-coordinates δ = Lx. These transformed coordinates
are quantized and compressed using an entropy-based en-
coder. Finally, we attach to the encoded δ-coordinates the
original Cartesian coordinates of the k anchors, separately
quantized and encoded. The compression ratio of the encod-
ing of the anchors is fairly irrelevant, since k is typically less
than one percent of n.

The decoder decompresses the connectivity and geome-
try data and solves the least-squares problem to recover an
approximation of the Cartesian coordinates from the δ and
anchor coordinates. As explained below, most of the compu-
tational effort in a least-squares solver involves a preprocess-
ing step that depends only on L̃, but not on the coordinates
data. Therefore, once the connectivity and the indices of the
anchors are available to the decoder, it starts working. The
bulk of its efforts can be completed before the compressed
geometry data is available. This behavior allows the decoder
to hide the latency of processing the geometry data.
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5.2. Rate-distortion

To evaluate the performance of our scheme we generated a
number of rate-distortion curves comparing our technique to
the parallelogram scheme 22, which we denote by TG. The
parallelogram scheme is simple and known to perform well,
thus, chosen to represent the general performance of a larger
family of traversal-dependent predictors. The rate-distortion
curves (see Figure 6) show the error measures as functions
of the entropy. The entropy is a reasonable estimate of the
compression ratios of high quality predictor-corrector com-
pression schemes. In such schemes, including ours and TG,
the predictors capture virtually all the spatial information in
the data. The vector of predictors, therefore, behaves essen-
tially like a vector of identically-distributed and independent
random variables. For such vectors, the entropy is a provable
lower bound on compression ratios. In addition, the publica-
tion of entropy data allows for an unbiased comparison of
different predictor schemes, whereas actual compression ra-
tios depend on both the prediction scheme and the specific
entropy encoding that is used.

Figure 6 shows the curves of the Mq and Sq measures
comparing our scheme and TG. The Sq curves of our scheme
are clearly below those of TG, while the Mq curves are usu-
ally above. As argued in Section 4, the Sq measure is more
visually important. This is further supported by Figure 8 (see
the color section) in a metric-independent way. The figure
shows pairs of models quantized into about the same entropy
by the two approaches. The visual comparisons are samples
of the rate-distortion curves at a given entropy.

5.3. Solving least-squares problems

Decoding in our method requires solving a linear least-
squares problem. There are efficient algorithms that can
solve such problems for sparse systems 4. We have experi-
mented with two direct solvers, one based on the L̃ = QR
decomposition, and one based on triangular factorization of
the coefficient matrix L̃T L̃ of the so-called normal equations.
The second solver is faster than the QR procedure, but pro-
duces less accurate solutions. However, the accuracy of the
solutions depends on the condition number of L̃ (ratio of ex-
treme singular values), and in our case L̃ is well-conditioned,
thanks to the anchors, and yields sufficiently accurate solu-
tions in terms of visual quality.

These methods are fast enough for decoding moderately
large models. For example, computing the triangular factor-
ization of the normal equations for the horse model (19,851
vertices) took 0.98 seconds on a 2 GHz P4 computer with
RDRAM, and solving for a single mesh function took 0.04
seconds once the factorization was computed (see Table 1).

In all direct methods, the factorization is computed once
and is used to solve for multiple mesh functions. Most of the
time is spent on computing the factorization, and the cost of
solving for a minimizer is negligible. Therefore, the cost of

Model #vertices Factorization (sec.) Solving (sec.)

Eight 2,718 0.127 0.006

Horse 19,851 0.980 0.040

Fandisk 20,111 1.595 0.056

Venus 50,002 4.803 0.151

Max Planck 100,086 10.790 0.318

Table 1: Running times of solving the linear least-squares systems
for the different models. Most time is spent on the factorization of
the coefficient matrix, which can be done during the transmission
of the δ-coordinates. Solving for a single mesh function (x, y or z)
takes only a negligible amount of time (see rightmost column).

decompression using these methods is almost independent
of the number of mesh functions (x, y, z, and perhaps other
information, such as color).

5.4. Discussion

Instead of directly pre-quantizing the Cartesian coordinates,
one could first compute the predictions in floating-point pre-
cision and then quantize the offsets from the predictions 6. A
naive implementation of such scheme would result in accu-
mulating error along the traversal path. Therefore, the offsets
are rounded in such a way that after decompression the Mq

error is kept bounded.

This method is computationally cheaper than solving a
least-squares system, but it does not possess the same prop-
erties as the Laplacian transform. In particular, the spec-
trum of the resulting quantization error will contain high-
frequency and not low frequency modes.

Moreover, a predictor that takes into account known lo-
cations from many directions, yields better predictions than
that based on only one direction or just few. A prediction
based on the Laplacian uses all possible directions and in
general yields better prediction than the 1-way parallelogram
rule. This fact is demonstrated in Table 2, where the entropy
of the offsets is computed using a single or several known
positions. To compute the entropy of a multi-way predictor,
we take several 1-way predictions around the vertex and av-
erage them. The offset is then taken from that averaged pre-
diction. The more directions are used for prediction, the bet-
ter the prediction is, and the entropy of the offsets is lower
(see also 12). However, multi-way predictor cannot be em-
ployed by traversal-dependent schemes. Our δ-coordinates
serve in a sense as the offsets of all-way predictor.

6. Conclusions

This paper addressed the issue of reducing the visual ef-
fects of aggressive quantization of 3D meshes. We argue
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Model 1-way 2-way 3-way 4-way 5-way 6-way All-way

Eight 16.9212 15.2487 14.3161 14.2064 13.8455 13.5434 13.5285

Horse 15.7501 14.9716 14.2978 13.7994 14.4517 13.2583 13.1568

Fandisk 12.1724 10.7292 9.8037 9.3536 8.8192 8.3925 8.3369

Venus 14.5413 13.4164 12.7131 12.1663 11.7758 11.5464 11.4519

Max Planck 10.2935 8.5432 7.6266 6.8253 6.1680 5.8708 5.7795

Table 2: Comparison of the entropies of the offsets using different multi-way predictors. All models where pre-quantized to 12 bits/coordinate.
Clearly, adding more prediction directions makes the prediction better and lowers the entropy of the offsets.

that low-frequency quantization errors are less distracting
than high-frequency errors. We presented a quantization
method that achieves this goal and results in mostly low-
frequency errors. Our approach is in complete contrast to
that of common wisdom and practice, which aims at pre-
serving low-frequency information while discarding high-
frequency data.

While it is true that 3D models often contain high-
frequency noise that can be safely discarded, further aggres-
sive compression should introduce mostly low-frequency er-
rors. Indeed, models produced by high-resolution input de-
vices are often denoised. Denoising is basically a sophisti-
cated low-pass filter that preserves important high-frequency
features, such as folds and corners. We claim that the re-
maining high-frequency data in the model is an essential part
of its visual appearance, and in particular, it is more impor-
tant to preserve it than to preserve low-frequency data. This
is exactly what our quantization method does. In contrast,
most other mesh compression techniques continue to erode
the high-frequency data, which quickly degrades the appear-
ance of the model, but fail to exploit the insensitivity of the
human eye to moderate low-frequency errors.

We feel that it is premature to quantitatively compare the
distortion introduced by different lossy mesh-compression
methods, since none of the proposed visual-error metrics has
yet been convincingly shown to correlate with human per-
ception. We suggest that the spectrum of the error is essential
for understanding distortion; that moderate low-frequency
errors are usually acceptable, whereas high-frequency er-
rors beyond some threshold are not. Obviously, there are
applications and situations in which low-frequency errors
are unacceptable, such as mechanical CAD or, for exam-
ple, almost-touching features. Nonetheless, we have shown
that our method performs well using a visual-quality metric
based on the one introduced by Karni and Gotsman.

To improve the decoding times even further, we plan to
compare the performance of iterative and direct solvers for
our application. Iterative least-squares solvers do not factor
the coefficient matrix, but iteratively improve an approxi-

mate solution. The convergence of these methods depends
on the distribution of the singular values of the coefficient
matrix L̃, as well as on the initial approximation. In our case,
L̃ is always well conditioned, so we can expect reasonably
rapid convergence. Furthermore, the decoder knows the val-
ues of the mesh functions at the anchor vertices. By interpo-
lating these values, the decoder can quickly produce a good
initial approximation. We expect that for large models, iter-
ative methods would outperform direct solvers.

Fundamentally, our main contribution is a technique for
manipulating 3D models in the frequency domain. We use
this technique to effectively quantize the geometry of mod-
els. Others are using similar techniques in other applications,
such as watermarking 18. We believe that the ability to ma-
nipulate 3D models in the frequency domain will find addi-
tional applications in the future.
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Figure 6: Rate distortion curves for five known models. The graphs
show the Mq and Sq measures as functions of the entropy, for δ-
coordinates and the TG method.
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(a) (b) (c) (d)

Figure 7: Visualization of the visual error across the mesh surface. The surface was reconstructed from δ-coordinates quantized
to 7 bits/coordinate using 2 anchors (a), 4 anchors (b) and 20 anchors (c). The anchor points are shown as small red balls. Each vertex v
is colored according to its visual error value Evis(v). We have also added a sign to these values, so that vertices that move outside of the surface
have positive error values (colored by red), and vertices that move inwards have negative error values (colored by blue). In (d), the visual error
of direct quantization of the Cartesian coordinates is shown.

original Max Planck δ-entr = 7.62, E [0.5]
vis = 5.33,E [0.15]

vis = 2.34 Cart-entr = 7.65, E [0.5]
vis = 2.54,E [0.15]

vis = 2.61

original Horse δ-entr = 10.31, E [0.5]
vis = 6.41,E [0.15]

vis = 3.89 Cart-entr = 10.31, E [0.5]
vis = 5.00,E [0.15]

vis = 5.09

original Fandisk δ-entr = 6.69, E [0.5]
vis = 1.79,E [0.15]

vis = 0.95 Cart-entr = 7.18, E [0.5]
vis = 4.85,E [0.15]

vis = 4.93

Figure 8: Comparison of visual quality of the meshes using δ-coordinates quantization vs. standard Cartesian coordinates quantization. The
original meshes are shown in the left column, quantized δ-coordinates in the middle column, and quantized Cartesian coordinates in the right
column. The entropy of the δ-coordinates is slightly lower than that of parallelogram-prediction displacements, while visually, the surfaces look

closer to the original. Using Evis with α = 0.5 (denoted by E [0.5]
vis ), most models in the right column have a smaller error, while clearly the ones

in the middle column seem to have a better visual quality. Only when using α = 0.15, does Evis agree with our perception. The error values are
given in units of 10−4.
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