
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 1

Geometry-aware Bases for Shape Approximation
Olga Sorkine, Daniel Cohen-Or, Member, IEEE, Dror Irony, and Sivan Toledo

Abstract— We introduce a new class of shape approx-
imation techniques for irregular triangular meshes. Our
method approximates the geometry of the mesh using a
linear combination of a small number of basis vectors. The
basis vectors are functions of the mesh connectivity and
of the mesh indices of a number of anchor vertices. There
is a fundamental difference between the bases generated
by our method and those generated by geometry-oblivious
methods, such as Laplacian-based spectral methods. In
the latter methods, the basis vectors are functions of the
connectivity alone. The basis vectors of our method, in
contrast, are geometry-aware, since they depend on both
the connectivity and on a binary tagging of vertices that
are “geometrically important” in the given mesh (e.g.,
extrema). We show that by defining the basis vectors to be
the solutions of certain least-squares problems, the recon-
struction problem reduces to solving a single sparse linear
least-squares problem. We also show that this problem can
be solved quickly using a state-of-the-art sparse-matrix
factorization algorithm. We show how to select the anchor
vertices to define a compact effective basis from which an
approximated shape can be reconstructed. Furthermore,
we develop an incremental update of the factorization of
the least-squares system. This allows a progressive scheme
where an initial approximation is incrementally refined by
a stream of anchor points. We show that the incremental
update and solving the factored system are fast enough to
allow an on-line refinement of the mesh geometry.

Index Terms— shape approximation, basis, mesh Lapla-
cian, linear least-squares

I. INTRODUCTION

SHAPE approximation is an important problem in
computer graphics and CAGD. Reducing the amount

of data needed to represent a specific shape is often
necessary for modeling, efficient storage and transmis-
sion of 3D models. Irregular triangle meshes are the
predominant means of representing shapes, and in the
last decade there has been a vast amount of work on
mesh simplification techniques [1]. These techniques are
closely related, and can be regarded as descendants of
knot removal techniques developed for spline curves and
surfaces [2]. Other approximation techniques, suited for

All the authors are with the School of Computer Science, Tel Aviv
University, Tel Aviv 69978, Israel.

E-mail: {sorkine|dcor|irony|stoledo}@tau.ac.il

semi-regular connectivity, are based on wavelet repre-
sentations or subdivision surfaces [3]–[6].

Mesh simplification techniques aim to approximate a
given shape with as few vertices or triangles as possible,
while keeping the error of the approximation, in some
given metric, lower than a prescribed tolerance. A differ-
ent class of approximation techniques retains the original
connectivity of the given mesh and approximates only
its geometry [7]–[9]. Karni and Gotsman [7] introduce
a spectral method where the mesh is approximated by
reconstructing its geometry using a linear combination
of a number of basis vectors. The basis is derived
from the spectral decomposition of the Laplacian matrix
associated with the mesh connectivity [10]. Chou and
Meng [8] encode the geometry of the mesh using vector
quantization of the displacement coordinates. Based on
an analysis of the spectral basis of the Laplacian, Sorkine
et al. [9] introduce a method where the quantization
is applied to the geometry vector transformed by the
Laplacian operator.

Laplacian-based methods are attractive for mesh
processing, since they benefit from the powerful set of
tools from linear algebra and signal processing. The
eigenvectors of the mesh Laplacian matrix can be viewed
as an extension of the Fourier transform basis functions
for the irregular connectivity case, and the eigenvalues
represent the frequencies [7], [11]. The spectral basis
is readily defined on the given irregular mesh and does
not require altering the input representation. In addition
to geometry-compression applications [7], [12], spectral
properties have been studied for the design of fairing
filters and modeling tools [11], [13], mesh watermark-
ing [14] and spherical parameterization [15].

However, together with their appealing properties, one
must bear in mind that pure Laplacian-based methods are
geometry-oblivious, since the basis vectors are functions
of the connectivity alone. It is possible to use the
geometric Laplace-Beltrami operator (see, e.g., [16]),
however, its construction requires heavy use of the mesh
geometry, which is not practical for compression appli-
cations. Our new geometry-aware methods derive the
basis both from the mesh connectivity and limited geo-
metrical information. The basis vectors in our methods
are centered around selected “geometrically important”
anchor vertices. This allows a terse capturing of impor-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 2

Original model, 28747 vertices 35 basis vectors 160 basis vectors 960 basis vectors

Fig. 1. Reconstruction of mesh geometry using geometry-aware bases. A geometry-aware basis function is centered around a certain anchor
vertex of the mesh. The locations of the anchors used in reconstruction in the second left figure are marked by red spheres.

tant features of the surface and leads to compact and
efficient representation of the mesh geometry. Figure 2
illustrates the reconstruction using such basis vectors
on a 2D curve example. The bottom row shows the
meshes reconstructed using geometry-aware bases. The
locations of the anchors are marked by small dots. The
reconstructed mesh passes close to the original locations
of the anchor points, which enables good approximation
of such features as the tips of the bird’s wings and tail.
For comparison, reconstruction of this mesh using an
analogous number of spectral basis vectors misses out
the features. This behavior is evident in large as well as
in small scale.

It should be noted that explicit computation of the ba-
sis vectors is, generally speaking, too expensive for large
meshes. Geometry representation using the Laplacian
eigenbasis [7] requires finding a partial spectral decom-
position of a large symmetric matrix. This computation
is too expensive to be applied in practice to anything but
small meshes.

The method that we present here avoids explicit
computation of the underlying basis. Instead of directly
representing the geometry by the coefficients of the
linear combination of the basis vectors, we reduce the
reconstruction problem to solving a sparse linear least-
squares system, as explained in Section II. State-of-the-
art least-squares solvers make the solution efficient and
enable reconstruction of the mesh as a whole.

A. Overview

The proposed geometry-aware representation of a
shape is a linear combination of k basis functions, which
are vectors that assign a real value to each vertex of
the mesh. The basis functions are an implicit function
of the connectivity of the mesh and of the indices of
k vertices that we call anchors. Each basis function is
selected so that it fulfils the following conditions in the
least-squares sense: it attains the value 1 at one of the
anchors and 0 at the other anchors, and it is the smoothest
among all the functions that satisfy these requirements
(we also propose a slightly different definition for strictly

interpolatory anchors, but the principle is the same).
The smoothness of a function is defined in a discrete
manner using the connectivity of the mesh. Specifically,
we require that the position of a vertex deviates as little
as possible from the average of its neighbors in the mesh.
These definitions result in smooth basis functions that
are easy to combine into an approximation that attains
specific values at the anchors. Furthermore, a fast sparse
least-squares solver with updating capability allows us
to efficiently recover a representation of the shape from
the coefficients of the linear combination.

A number of recent papers have shown that the
connectivity of the mesh often encodes some useful in-
formation about the geometry of the shape that the mesh
represents [17], [18]. Isenburg et al. [17] reconstruct a
shape from the connectivity by a non-linear optimization
of a uniform edge-length criterion. In [18] it was shown
that augmenting the connectivity with a few well-placed
anchors significantly increases the geometric value of the
information encapsulated in the connectivity alone. The
least-squares system that is used to reconstruct the so-
called LS-mesh in [18] is essentially the same system
that arises from our basis vectors. In this paper, we fully
explore the application of geometry compression, both
theoretically and experimentally. Progressive compres-
sion is made possible thanks to the proposed algorithm
that quickly augments the existing representation with
new anchors without fully solving the least-squares re-
construction system again. We rigorously analyze the
underlying basis vectors, which provides a theoretical
framework for studying this type of approximation ap-
proaches.

The effectiveness of adding anchors with geometric
information was used earlier in [9] to reduce the low-
frequency error caused by quantization of the differential
coordinates of the mesh. There, a linear least-squares
system was solved to reconstruct the mesh geometry
from a quantized differential representation, and the
work focused on the analysis of the visual impact of
the quantization error. In our case, the mesh vertices
do not hold any geometric information – it is entirely
encapsulated in the basis functions.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 3

6 spectral basis vectors 45 spectral basis vectors

6 geometry-aware vectors 45 geometry-aware vectors

Fig. 2. Reconstruction of the swallow curve (simple closed path)
using different bases. The top row shows reconstruction using the
Laplacian eigenvectors, which are the discrete Fourier basis function
in this case. The bottom row displays reconstruction with geometry-
aware basis vectors. The reconstructed mesh is shown in black, while
the original mesh is tinted in blue. The geometry-aware bases better
approximate the features of the shape, on large as well as on small
scales.

The main contributions of this paper include efficient
algorithms for producing a geometric approximation of
a shape and for recovering the approximate shape from
the compact representation. Our algorithms are based on
several advanced computational linear algebra tools: the
ability to control the conditioning of the least-squares
problems that we solve, the ability to solve them quickly,
and the ability to quickly add anchors by updating a
sparse factorization of an augmented Laplacian matrix.
We also provide evidence that the new method compares
favorably with spectral methods, both in terms of com-
pression ratios for a given approximation error and in
terms of running times. The paper explores the theory
of augmenting the connectivity with geometric data, in
search for a better understanding of shapes in general
and approximation of irregular meshes in particular.

II. GEOMETRY-AWARE BASES

Most of the techniques for approximating and encod-
ing mesh geometries represent the geometry as a linear
combination of basis functions. In this section we present
the specific basis functions that we use and explain why
this basis is effective.

A mesh function is a real vector that assigns a value
to each vertex in the mesh. A basis function is simply a
mesh function, and a basis is a set of basis functions that
spans Rn, where n is the number of vertices in the mesh.
The coordinates of the vertices, say the x coordinates,
are a mesh function that expresses the location of the
vertices in R3 as a linear combination of the functions
of the standard basis, whose functions assign 1 to one
vertex and 0 to all the others. The coordinates can also
be expressed as a linear combination of other basis
functions.

The bases that we use, like Laplacian-spectral bases,
can be constructed by solving a series of minimization
problems. This construction is perhaps not the most
natural one for Laplacian-spectral bases, but it is the most
natural for our bases. Let us describe this construction
for the well-known Laplacian-spectral bases first. The
combinatorial Laplacian of a mesh is the n × n sym-
metric positive semi-definite matrix L = D −A, where
A = (aij) is the adjacency matrix (aij = 1 if vertices i
and j are neighbors and aij = 0 otherwise) and D is the
diagonal matrix whose ith entry on the diagonal equals
the valency (degree) of vertex i.

Given the Laplacian L of the mesh, the first Laplacian-
spectral basis function u1 is the function that minimizes1

‖Lu1‖ subject to ‖u1‖ = 1. The next basis function u2

is the one that minimizes ‖Lu2‖ subject to ‖u2‖ = 1 and
to u2 ⊥ u1. In general, uk minimizes ‖Luk‖ subject to
‖uk‖ = 1 and to uk ⊥ span{u1, . . . ,uk−1}. The func-
tions uk are the eigenvectors of L sorted by the eigen-
values. The minimization problems above favor smooth
basis functions, because the transformation x 7→ Lx as-
signs to each vertex i the difference between xi and the
average of its neighbors, multiplied by the number of
neighbors. Therefore, u1 is the smoothest vector in Rn,
the constant vector, u2 is the smoothest mesh function
orthogonal to u1, and so on. The first function u1 is
always the same, while the shapes of the rest depend on
the topology of the mesh.

A. Relaxed geometry-aware bases
Our basis also solves a series of minimization prob-

lems, but they are chosen in a geometry-aware manner.
Given a set of k vertex indices 1 ≤ a1, a2, . . . , ak ≤ n,
the ith function vi in our basis minimizes

‖Lvi‖2 +

∑
j 6=i

ω2|(vi)aj
− 0|2 + ω2|(vi)ai

− 1|2
 .

1We use the following notation. Vectors are denoted by upright
bold letters, e.g., x, and their elements are denoted by italic letters,
e.g., xi. All the vectors in this paper are column-vectors and all the
norms are 2-norms.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 4

0 50 100 150 200 250 300
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
5 first vectors out of 5 anchor vectors

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
5 first vectors out of 20 anchor vectors

(a) (b)

Fig. 3. Geometry-aware basis functions on a 1D domain. The mesh
here is a simple closed path with 274 vertices. Plot (a) displays the
five basis functions corresponding to a set of five anchors; (b) shows
the first five basis functions out of a 20-anchor basis.

The interpretation of this minimization problem is the
following. The basis function vi minimizes the sum of
two terms. The first term is the non-smoothness in vi,
and the second is the deviation of vi from given values in
the k mesh locations a1, . . . , ak, which we call anchors.
These values are 1 at ai and 0 at aj , j 6= i. Therefore, vi

tries simultaneously to be smooth everywhere, to be large
at ai, and to vanish on all the other aj’s. The weight ω
controls the impact of the anchors. Our algorithms never
use basis functions other than the first k (the number of
anchors), so there is no point in characterizing them.
(Formally, all completions of this set of k functions to a
basis of Rn are equivalent for our algorithms.)

Figure 3 shows five geometry-aware basis functions
on a mesh consisting of a simple path. On this mesh,
the first Laplacian-spectral basis functions are simply
low-frequency sines and cosines. The geometry-aware
functions are also fairly smooth, but most of their
“energy” is concentrated near a single anchor. Basis
functions for larger k are less smooth, because the
anchors get closer to each other, forcing the functions
to attain values near 0 and near 1 within short intervals.
Intuitively, a few geometry-aware functions should allow
us to approximate smooth mesh functions whose extrema
are at or near the anchors more accurately than a few
geometry-oblivious Laplacian-spectral functions.

We express approximations of mesh functions using a
set of k anchors and the coefficients c = (c1, . . . , ck)T

of the corresponding k geometry-aware functions
V = (v1, . . . ,vk). Given this representation of the ap-
proximation, we reconstruct the approximation x̃ in the
standard basis by solving a single least-squares mini-
mization problem,

x̃ = argmin
x

{
‖Lx‖2 +

k∑
i=1

ω2|xai
− ci|2

}
=

=
k∑

i=1

civi = V c

The equality follows from the linearity of the minimum-
norm solution to least-squares problems. The coefficient
matrix L̃ of this least-squares problem has n + k rows
and n columns. The significance of this expression is that
it shows that we can reconstruct x̃ from V without any
reference to the basis vectors V . Thus, assuming w.l.o.g.
that (a1, a2, . . . , ak) = (1, 2, . . . , k), we reconstruct x̃ by
simply finding the vector that minimizes the norm of

L

ω Ik×k | 0

 x1

...
xn

−

|
0
|

ω c1
...

ω ck

. (1)

Since L is typically very sparse, this least squares can
be solved very quickly even when n is large. It should
be noted that the reconstruction is not interpolatory at
the given values on the anchors – it only approximates
them in a least-squares sense.

There are at least three categories of constraints that
we can apply to the anchors. The method that we pre-
sented above charges a quadratic penalty for deviations
of x̃ from x at the anchors. We can use different weights
for these penalties and for the smoothness penalties.
Another option is to use box constraints, which require
that x̃ai

lies within a box centered around xai
[19]. The

algorithmic issues in this approach are more complex
than in the other approaches, so we have not pursued
it. The third approach is interpolatory; it requires that
x̃ai

= xai
. This is the limiting case of the two other

approaches. We explain this approach next.

B. An interpolatory scheme

We can create slightly different geometry-aware bases
by forcing the basis functions to attain prescribed values
at specific mesh locations. Given a set of k vertex indices
1 ≤ a1, . . . , ak ≤ n, the ith function wi in the basis
minimizes ‖Lwi‖ subject to (wi)ai

= 1 and (wi)aj
= 0

for j 6= i.
Given the indices of the k anchors and the coef-

ficients c of the basis functions (w1, . . . ,wk) = W ,
the approximation x̂ can be reconstructed as follows.
We use the equation xai

= ci to eliminate xai
from

the system. This effectively deletes column ai and row
n + ai from the coefficient matrix L̃ (where ω = 1) and
changes the right-hand side. After all these equations are
eliminated, the resulting coefficient matrix L̂ has n rows
and n− k columns. To reconstruct the unknown values
xj , j /∈ {ai}, we solve the least-squares problem

min
x
‖L̂x− (−L̃1:n,{ai}c)‖ .

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 5

Combining the minimizer with the known values
xai

= ci yields the approximation

x̂ =
k∑

i=1

ciwi = Wc .

The coefficient matrix L̂ of this least-squares problem
is smaller and sparser than L̃, so in general it will
be even easier to solve the least-squares problem that
reconstructs x̂.

The main disadvantage of this basis, compared to the
relaxed basis {vi}, is that adding interpolatory anchors
is computationally more expensive than adding least-
squares anchors; we explain this issue below, in Sec-
tion III. When a large weight ω is used for the anchors
in the relaxed scheme, the solution effectively becomes
very close to interpolatory. See Figure 4 that visualizes
the influence of different ω’s.

C. Approximating mesh functions

So far we have seen the basis functions and how
to reconstruct an approximation given the indices of
the anchors and the coefficients of the basis functions.
We now turn to the question of how to generate the
coefficients c = (c1, . . . , ck)T given a mesh function x
and a set a1, . . . , ak of anchors.

Perhaps the best way to define c is by requiring that
the approximation x̃ = V c or x̂ = Wc of a mesh
function x be as close as possible, in the 2-norm, to
x. That is, to require that c minimizes ‖V c − x‖ or
‖Wc− x‖ (depending on the basis used). Solving these
systems is potentially expensive. A naive way to compute
these optimal c’s is to compute V or W explicitly,
by solving the least-squares problems that define their
columns, and then to solve the dense n×k least-squares
problem. Note that to reconstruct x̃ = V c or x̂ = Wc,
we do not use an explicit representation of V or W .

For interpolatory geometry-aware bases, another nat-
ural way to choose c is by setting ci = xai

. This ensures
that x̂ coincides with x at the anchors. The 2-norm of
the error x̂ − x is likely to be higher than if we define
c so as to minimize the error, but now the error is
concentrated away from the anchors. It turns out that
setting ci = xai

works well even for relaxed geometry-
aware bases V . Employing large weights (ω → ∞) on
the relaxed anchors effectively makes the relaxed scheme
interpolatory, while maintaining the advantage of the
updating capability (see Section III). In practice, we set
ω = 10n.

III. THE PROGRESSIVE SCHEME

One of the best aspects of relaxed geometry-aware
bases is that we can quickly improve the approximation
as soon as the location of additional anchors becomes
known. This allows a client to display a rough approx-
imation as soon as the location of a few anchors is
received from a server or retrieved from storage.

When the locations of additional anchors become
known to the client, it can produce a more accurate
approximation by updating the system with the new
information. The following system is solved:

L̃newx = (01×n, ω c1, . . . , ω ck, ω ck+1, . . . , ω ck+m)T ,

where L̃new is the updated system matrix comprised of
the previous L̃, and additional rows for the new anchors
ak+1, . . . , ak+m; ck+1, . . . , ck+m denote the new coef-
ficients. The key to utilizing additional anchors is an
efficient updating scheme to a sparse factorization of L̃.
The system (1) can be solved using a sparse Cholesky
factorization of the normal equations, L̃T L̃ = RT R,
where R is sparse and upper triangular. The factorization
is done once, for an initial set of anchors. Suppose that
we now add an anchor ak+1. This adds a row to L̃,
and adds ω2 to the ak+1th diagonal element of L̃T L̃.
To reconstruct the new approximation, we need a new
Cholesky factorization of L̃T

newL̃new. Fortunately, we can
update the previous factorization in time proportional to
the number of nonzeros in R. Furthermore, the update
does not modify the nonzero structure of R, only the
numerical values of its entries.

We update R as follows. We essentially eliminate the
single nonzero in the new row in L̃ using a series of
Givens rotations that we perform on that row and on
rows of R. The first rotation is performed on row ak+1

of R and annihilates the ak+1th element in the new row.
This, however, introduces nonzeros to several elements in
the new row, elements with column indices greater than
ak+1. We then eliminate the nonzero element with the
smallest column index in the new row, say index i, using
a Givens rotation on row i of R. The Givens rotation
never modifies the nonzero structure of rows in R,
because the next row that we update is always the parent
in the elimination tree of L̃T L̃ of the previous row. Since
we update R using a series of orthogonal transformations
(the Givens rotations) and since the addition of a ω2 to
the diagonal of L̃T L̃ only improves its conditioning, the
updating process is always numerically stable.

Our incremental update method can be viewed as
a special case of the general algorithm proposed by
Davis and Hager [20]. Due to the specific structure of
the change in L̃, the update in our case is particularly

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 6

ω = 1.0 ω = 10.0 ω = 100.0 interpolatory reconstruction

ω = 1.0 ω = 10.0 ω = 100.0 interpolatory reconstruction

Fig. 4. The effect of different weights on the relaxed scheme. The first three columns display the reconstruction with the relaxed scheme
using the same set of anchors, with different weights. The rightmost column shows the reconstruction using the interpolatory scheme. Close-
up on the ear is shown in the bottom row; the red spheres denote the position of the anchor vertices in the original mesh. As the weight of
the anchors grows, the reconstruction approaches to being interpolatory.

efficient. More specifically, Davis and Hager show how
to update the Cholesky factor R when an arbitrary row
is added or removed from L̃. Our algorithm solves a
special case of this general update/downdate problem:
the case of adding a row with a single nonzero. In
the general case, the nonzero structure of R might
change, and so does its elimination tree. These changes
require a sophisticated algorithm to take care of sparsity.
Furthermore, since R can fill as a result of an update,
the cost of a series of updates can be hard to predict.
In contrast, in our case the nonzero structure of R
and the elimination tree do not change, so the path
in the elimination tree from the vertex ak+1 to the
root gives the sequence of elimination operations that
must be performed. This special case is considerably
simpler. Another difference between the algorithm of
Davis and Hager and ours is that we use orthogonal
Givens rotations to eliminate the new row in L̃, whereas
they use nonorthogonal operations. As a consequence,
our algorithm performs 4 floating-point operations per
nonzero in R that is modified, and their algorithm
performs only 2 per modified nonzero. Using fast Givens
rotation in our algorithm would bring the two algorithm
to the same cost per modified nonzero, but due to the
insignificance of the update costs, we did not implement
such an approach. In short, our algorithm is, essentially,
a special case of [20]. But in our case, much of the
machinery developed in [20] is not needed.

Since three-dimensional meshes typically have small
vertex separators, and due to the special structure of our
updates, we can provide a tighter bound on the cost

of an update operation than was given by Davis and
Hager. They show that the cost of an update operation
is proportional to the number of nonzeros in R that
are being modified. The same is true in our algorithm.
However, in our case we can argue that under a rea-
sonable assumption, the number of modified nonzeros
in R is proportional to n, the size of the mesh; in most
cases, n is much smaller than the number of nonzeros
in R. Suppose that a mesh can be embedded on the
surface of a body with bounded genus (that is, without
many holes). Then the mesh has excluded minors, which
implies that it has a O(

√
n) approximately-balanced

vertex separator [21]. Once separated, the same holds
for the parts. The separators form a tree, and the path in
the elimination tree from row ak+1 to the root is also a
path in this separator tree. The number of nonzeros in R
that is modified is at most the sum of the squared sizes
of the separators on this path, which is at most(

c
√

n
)2 +

(
c
√

(2/3) n
)2

+
(
c
√

(2/3)2 n
)2

+ · · · <

< 1.8 c2 n ,

for some constant c that depends on the genus. Note that
for such meshes, the total number of nonzeros in R is
Θ(n log n), so the update only modifies a small fraction
of them. In particular, the update is much cheaper than
solving a single least-squares problem with the computed
factor R.

In the graphics literature, updating linear systems of
equations due to changes of boundary conditions was
also performed by James and Pai [22]. However, they
use the capacitance-matrix approach, where a change

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 7

of rank s in the original system matrix requires O(s3)
operations for update. This type of approach is not
efficient when it comes to incremental updates, since the
update has to be applied to the original factorization of
the first L̃. Thus, the cost would be cubic in the total
number of added anchors.

In general, updating a sparse factorization with arbi-
trary constraints can be both expensive and unstable. For
example, updating the factorization of the interpolatory
scheme is probably more difficult than updating R to
accommodate additional relaxed anchors. However, it is
easy to add relaxed anchors to a factorization of an
interpolatory basis. What is important is what kind of
constraint we add, not how the original factorization was
produced. Therefore, we only employ relaxed anchors
update, which is guaranteed to be stable.

IV. SELECTING ANCHORS

The norm of the approximation error ‖x − x̃‖ is
governed by two factors: the condition number of L̃
and the angle between x and span{v1, . . . ,vk}. The
first factor depends on the location of the anchors in
the topology of the mesh, and is independent of the
geometry of the shape. It is proven that L̃ is well-
conditioned if, loosely speaking, no vertex is too far (in
terms of mesh edges) from an anchor, i.e., if the anchors
are well-distributed across the mesh graph. Theoretical
bounds on the condition number of L̃, as well as a
practical algorithm for choosing an initial set of anchors
to condition L̃, can be found in [23]. The second factor
depends on the interaction between the geometry of the
given shape and the basis functions v1, . . . ,vk.

We use an iterative greedy heuristic to reduce the
angle between x and span{v1, . . . ,vk}. Given a set of
anchors a1, . . . , ak−1, we compute an approximation x̃
of the given shape and find the vertex on which x̃ differs
most from x. That vertex becomes the next anchor, ak.
Since we try to approximate at least three mesh functions
using the same anchors (the mesh function in three space
dimensions), we actually select the vertex whose spacial
3D location in the approximated shape has the largest
geometric distance to its location in the original mesh.

The above incremental selection scheme is well suited
for progressive transmission of the mesh geometry: the
server sends the anchors to the client in the same order
in which they were chosen by the greedy algorithm.

V. RESULTS

We have tested our shape approximation method on
several 3D models. We report results only for the relaxed
geometry-aware bases due to lack of efficient updating

capability for the interpolatory scheme, as discussed in
Section III. To reconstruct an approximation from an
initial set of anchors, the client needs to compute the
sparse factorization of L̃ (the connectivity is supposed to
be already known) and to solve for the mesh functions
x, y and z. When more anchors become known, the fac-
torization is updated and we solve for x, y, z again. The
running times of these key ingredients are summarized
in Table I. The factorization is the most costly part, and
is computed only once; the update and solve times are
very small. We have used the direct solvers provided by
TAUCS [24]. All our experiments were carried out on a
2.4 GHz Pentium 4 machine.

The compressed representation consists of the indices
of the chosen anchors and the basis coefficients, which
are the locations of the anchor vertices in the original
model. The coefficients are uniformly quantized, and all
the data is encoded using an arithmetic encoder. How-
ever, since the locations and the indices of the anchors
are scattered across the mesh, entropy-encoding typically
does not further reduce the size of the representation.
Thus, roughly k log n bits are needed to represent the
indices of the k anchors and 3kq bits for the coefficients,
where q is the quantization level. Note that since our
scheme favors smooth reconstructions, the approximated
shapes do not suffer from “jaggies” effects that would
be caused by quantization of all the x, y, z coordinates.
We used q between 10 to 12 bits.

The results of approximations using varying numbers
of basis vectors are shown in Figures 1 and 6. One can
observe that the main features of the models, such as
extruding parts, are captured in the very early stages
of the progressive scheme (i.e. with a small number of
basis vectors). We have compared our results with the
method of Karni and Gotsman [7]. The spectral basis
of the mesh Laplacian [7] is a natural candidate for
comparison with our geometry-aware bases, since both
compression methods preserve the mesh connectivity,
unlike the compression schemes that require semi-regular
remeshing [3]–[6]. We have carried out such a compar-
ison; however, it is limited to small meshes only. As
discussed above, the spectral method requires computing
a partial eigendecomposition of the Laplacian, which
is time- and space-consuming. We used MATLAB’s
eigs function to find the first several eigenvectors of
some submeshes of the Camel model (see Figure 5).
Computation of the first 1000 eigenvectors of a mesh
with 3220 vertices took about 4 minutes on a 2.4 GHz
machine with 2 GB or RAM. The computation used
more than 1 GB of RAM, and indeed, on a similar
machine with only 1 GB of RAM, the computation
took about 20 minutes due to paging. Computing the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 8

TABLE I
RUNNING TIMES IN SECONDS OF THE DIFFERENT COMPONENTS OF SOLVING THE LINEAR LEAST-SQUARES SYSTEMS. Factor STANDS

FOR THE FACTORIZATION TIME OF THE NORMAL EQUATIONS MATRIX; Solve IS THE TIME OF SOLVING FOR A SINGLE MESH FUNCTION

BY BACK-SUBSTITUTION; Average update IS THE AVERAGE TIME SPENT ON UPDATING THE FACTORIZATION BY ONE RELAXED ANCHOR

(THE NUMBERS IN PARENTHESES DENOTE THE RANGE OF ANCHOR AMOUNTS OVER WHICH THE AVERAGE WAS COMPUTED). Worst-case
STANDS FOR THE LONGEST UPDATE TIME OBSERVED OVER THE UPDATES OF THE PREVIOUS COLUMN.

Model # vertices Factor Solve Average update (range) Worst-case
Camel hump 1334 0.031 0.002 0.00007 (1–1000) 0.0002
Camel mouth 3210 0.101 0.006 0.0002 (1–3000) 0.0003
Camel leg 3220 0.121 0.006 0.0002 (1–3000) 0.0004
Camel head 11381 0.503 0.029 0.0010 (1–10000) 0.0013
Pig 28747 1.558 0.065 0.0020 (1–28000) 0.0032
Camel 39074 2.096 0.073 0.0021 (1–39000) 0.0034
Feline 49864 2.750 0.110 0.0025 (1–49000) 0.0034
Max Planck 100086 7.713 0.240 0.0110 (1–100000) 0.0120
Igea 134345 11.826 0.444 0.0200 (1–130000) 0.0215

first 1000 eigenvectors of a mesh representing the entire
head of the camel, with 11,381 vertices, took about
21 minutes on the 2 GB RAM machine. On larger
meshes, the eigenvector computation simply failed due
to lack of memory. For example, we were not able
to compute more than about 5000 eigenvectors of the
11,381-vertex mesh, even on a machine with 2 GB RAM.
We note that MATLAB’s eigs function uses a state-of-
the-art sparse eigensolver called ARPACK [25], which is
implemented in Fortran. Thus, this performance is not
due to MATLAB’s interpreter and nor to a poor choice of
algorithm; it is essentially the inherent cost of computing
eigenvectors.

Figure 5 summarizes the comparison results for the
tested small meshes in the form of rate-distortion curves.
Typically, up to 10 - 20% of the n eigenbasis vectors are
needed for visually lossless reconstruction. As suggested
by Karni and Gotsman [7], we quantized the spectral
coefficients to 14 bits. Stronger quantization leads to
distortion of the reconstructed shape even when more
than 50% of the full basis is used, since quantization in
the transformed domain behaves differently than quan-
tization in the standard basis. The spectral coefficients
were compressed with an arithmetic encoder. The rate-
distortion curves report three error metrics as a function
of the file size of the compressed geometry: the max-
norm error, the L2 error measured by the Metro tool [26]
and a simple RMS of distance between the mesh vertices.
The graphs show that our method does a better job in
terms of the max-norm metric, which is perhaps not sur-
prising because the anchor selection scheme specifically
aims at minimizing this norm. As for the L2 and simple
RMS metrics, the two algorithms perform practically the
same. For the Camel hump mesh, which is fairly smooth
and featureless, the geometry-oblivious spectral method

performs only slightly better.
It should be mentioned that to alleviate the computa-

tion problem of the spectral basis, Karni and Gotsman [7]
propose to partition the mesh into patches, each of small
enough size to make its spectral decomposition feasible.
In their subsequent work, Karni and Gotsman [12] use
fixed bases, derived from 6-regular connectivity patches.
However, partitioning the mesh is prone to visible dis-
continuity artifacts along the boundaries between the
submeshes, similar to the blocking artifact in JPEG
encoding. We emphasize that our method is computation-
ally efficient while it achieves nearly equal performance
in terms of compression ratios.

VI. CONCLUSIONS AND DISCUSSION

We have presented a method to approximate the
geometry of a shape based on its connectivity and a
number of anchor vertices. The “tagging” of the anchors,
together with the connectivity, yield a geometry-aware
basis that spans a subspace which is close to the given
shape. The coefficients that approximate the shape in
that subspace are readily given by the spatial location of
the anchors. Reconstructing the approximated shape only
requires the solution of a sparse least-squares problem.
The technique is simple and easy to implement given the
required linear algebra building blocks. The complexities
of the geometry and the connectivity of the irregular
mesh are completely hidden by the linear algebra ob-
jects, the matrices and the vectors. The efficiency of
the technique stems from the existence of sophisticated
linear algebra tools, such as sparse-matrix factorizations,
updating techniques, and so on.

There are a number promising directions for future
work. One is the relationship between the triangle count
reduction and geometry encoding [27], [28]. The scheme

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 9

that we presented is not fully progressive, in the sense
that the mesh has always the full connectivity. It would
be desirable to find a way to incorporate geometry-aware
bases into progressive meshes [29], [30].

Another direction is to study the relation of our bases
to non-uniform B-spline bases. We can view these bases
along three axes: their orthogonality, their supports, and
their applicability to irregular 3D meshes. In this design
space, our method can be described as non-orthogonal,
globally-supported bases for irregular meshes. The po-
tential computational difficulties that are normally posed
by non-orthogonality and global support are avoided here
since we do not compute the basis vectors explicitly.

Our method can also be viewed as a family of regu-
larization methods for a discrete ill-posed problem [31].
Any lossy geometry-encoding method tries to describe
mesh functions with many degrees of freedom using
relatively little data. Therefore, any such method is by
definition ill-posed (many shapes have the same com-
pressed representation). In our case, the data consists of
the indices of the anchors and the values that the shape
attains there. To reconstruct a unique shape from this
data, one must add a side condition. The condition that
we attach is a smoothness condition, that we impose in
this irregular discrete case using the Laplacian matrix.
To improve smoothness even further and/or to make the
algorithmic challenges more manageable, we can relax
the equality constraints at the anchors and replace them
with either penalties or box constraints. This viewpoint
would lead to exactly the same algorithms that we have
developed in this paper.

The smoothness side condition that regularizes the
reconstruction is clearly unsuitable for models that are
not smooth. Our method is, however, suitable for models
with localized sharp features, as long as many anchors
are used in the vicinity of the sharp features. The repro-
duction of sharp features near anchors can be controlled
by the weights of smoothness constraints versus the
weights of location constraints.

We believe that this work contributes to a more
profound understanding of shapes represented by irreg-
ular meshes. There is a broad spectrum of techniques
to select a basis for effectively representing geometry,
ranging from splines and parametric free-form surfaces
to wavelet bases for image encoding. Recently, re-
searchers began proposing using over-complete bases.
This technique, known as basis pursuit [32], starts with
a large and redundant set of basis vectors, and uses an
optimization algorithm to try to find a combination of
very few basis vectors that well approximate a given
input vector (shape). This can sometimes lead to very
sparse representations, but the costs of generating the

basis vectors and finding a sparse representation are
considerable. In that context, our method can be seen
as a specific over-complete basis, and as a way to
generate a sparse representation without resorting to an
optimization or search algorithm.

ACKNOWLEDGMENT

We thank the editor and the reviewers for their
comments and suggestions on this work. Models are
courtesy of Cyberware, Stanford University and Max-
Planck-Institut für Informatik. This work was supported
in part by grants 572/00 and 8001/02 from the Israel
Science Foundation (founded by the Israel Academy of
Sciences and Humanities), by grant 2002261 from the
US-Israeli Binational Science Foundation, by the Israeli
Ministry of Science, by an IBM Faculty Partnership
Award and by the German Israel Foundation (GIF).

REFERENCES

[1] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney,
Level of Detail for 3D Graphics. Elsevier Science Inc., 2002.

[2] T. Lyche, “Knot removal for spline curves and surfaces,” in
Approximation Theory VII, E. W. Cheney, C. K. Chui, and L. L.
Schumaker, Eds. Academic Press, Boston, 1993, pp. 207–227.

[3] M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresolution
analysis for surfaces of arbitrary topological type,” ACM Trans-
actions on Graphics, vol. 16, no. 1, pp. 34–73, January 1997.

[4] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive
geometry compression,” in Proceedings of ACM SSIGGRAPH
2000, 2000, pp. 271–278.

[5] L. Kobbelt, “Discrete fairing and variational subdivision for
freeform surface design,” The Visual Computer, vol. 16, no.
3-4, pp. 142–158, 2000.

[6] N. Litke, A. Levin, and P. Schröder, “Fitting subdivision sur-
faces,” in IEEE Visualization 2001, 2001, pp. 319–324.

[7] Z. Karni and C. Gotsman, “Spectral compression of mesh
geometry,” in Proceedings of ACM SIGGRAPH 2000, July
2000, pp. 279–286.

[8] P. H. Chou and T. H. Meng, “Vertex data compression through
vector quantization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 8, no. 4, pp. 373–382, 2002.

[9] O. Sorkine, D. Cohen-Or, and S. Toledo, “High-pass quantiza-
tion for mesh encoding,” in Proceedings of ACM/Eurographics
Symposium on Geometry Processing, Aachen, Germany, 2003.

[10] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math.
Journal, vol. 23, pp. 298–305, 1973.

[11] G. Taubin, “A signal processing approach to fair surface de-
sign,” in Proceedings of SIGGRAPH 95, 1995, pp. 351–358.

[12] Z. Karni and C. Gotsman, “3D mesh compression using fixed
spectral bases,” in Graphics Interface 2001. Canadian Infor-
mation Processing Society, 2001, pp. 1–8.

[13] H. Zhang and E. Fiume, “Butterworth filtering and implicit
fairing of irregular meshes,” in Proceedings of Pacific Graphics
2003, 2003, pp. 502–506.

[14] R. Ohbuchi, A. Mukaiyama, and S. Takahashi, “A frequency-
domain approach to watermarking 3d shapes,” Computer
Graphics Forum, vol. 21, no. 3, pp. 373–382, 2002.

[15] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of spherical
parameterization for 3D meshes,” in Proceedings of ACM
SIGGRAPH 2003, 2003, pp. 358–363.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 10

200 300 400 500 600 700 800 900 1000 1100 1200

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Camel hump (1334 vertices)

filesize (bytes)

Spectral L error
Geometry-aware L error
Spectral RMS error
Geometry-aware RMS error
Spectral L2 (Metro)
Geometry-aware L2 (Metro)

8

8

1000 1500 2000 2500 3000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Camel leg (3220 vertices)

filesize (bytes)

Spectral L error
Geometry-aware L error
Spectral RMS error
Geometry-aware RMS error
Spectral L2 (Metro)
Geometry-aware L2 (Metro)

8

8

500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Camel mouth (3210 vertices)

filesize (bytes)

Spectral L error
Geometry-aware L error
Spectral RMS error
Geometry-aware RMS error
Spectral L2 (Metro)
Geometry-aware L2 (Metro)

8

8

Fig. 5. Rate-distortion curves for small parts of the Camel model. The graphs display different error measures: L∞ stands for maxi ‖pi − p̃i‖
where pi = (xi, yi, zi); RMS stands for the root-mean-square geometric distance between corresponding vertices in the original and
approximated models; L2 error was measured using the Metro tool. Our experiments show that the geometry-aware approximation method
is very close to the spectral method in its performance. The L∞ error of our method tends to be smaller, while the L2 error is practically
the same.

Original model, 39074 vertices 100 basis vectors, e=0.01 600 basis vectors, e=0.0022 1200 basis vectors, e=9.8·10−4 3600 basis vectors, e=2.07·10−4

0.5KB (0.10 bits/vertex) 3.3KB (0.69 bits/vertex) 6.7KB (1.40 bits/vertex) 19.8KB (4.15 bits/vertex)

Original model, 49864 vertices 100 basis vectors, e=0.0098 500 basis vectors, e=0.0034 4000 basis vectors, e=0.0012 9000 basis vectors, e=7.2·10−4

0.6KB (0.09 bits/vertex) 2.8KB (0.46 bits/vertex) 22.2KB (3.65 bits/vertex) 50.1KB (8.23 bits/vertex)

Original model, 100086 vertices 100 basis vectors, e=0.0078 1000 basis vectors, e=0.0027 3000 basis vectors, e=0.0013 10000 basis vectors, e=4.22·10−4

0.6KB (0.05 bits/vertex) 6.1KB (0.50 bits/vertex) 18.2KB (1.49 bits/vertex) 60.5KB (4.95 bits/vertex)

Fig. 6. Reconstruction of several models using an increasing number of geometry-aware basis vectors. The sizes of the encoded geometry
files are displayed below the models. The letter e denotes the L2 error value. Refer to Table I for the timings.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 2, MARCH/APRIL 2005 11

[16] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, “Implicit
fairing of irregular meshes using diffusion and curvature flow,”
in Proceedings of ACM SIGGRAPH 99, Aug.8–13 1999, pp.
317–324.

[17] M. Isenburg, S. Gumhold, and C. Gotsman, “Connectivity
shapes,” in Proceedings of IEEE Visualization 2001, 2001, pp.
135–142.

[18] O. Sorkine and D. Cohen-Or, “Least-squares meshes,” in Pro-
ceedings of Shape Modeling International. IEEE Computer
Society Press, 2004, pp. 191–199.

[19] M. Adlers, “Sparse least squares problems with box con-
straints,” Division of Numerical Analysis, Department of Math-
ematics, Linköpings Universitet, Linköping, Sweden, Linköping
Studies in Science and Technology (Theses) 689, 1988.

[20] T. A. Davis and W. W. Hager, “Modifying a sparse cholesky
factorization,” SIAM Journal on Matrix Analysis and Applica-
tions, vol. 20, no. 3, pp. 606–627, 1999.

[21] N. Alon, P. Seymour, and R. Thomas, “A separator theorem
for nonplanar graphs,” Journal of the American Mathematical
Society, vol. 3, pp. 801–808, 1990.

[22] D. L. James and D. K. Pai, “Artdefo: accurate real time
deformable objects,” in Proceedings of ACM SIGGRAPH 99,
1999, pp. 65–72.

[23] D. Chen, D. Cohen-Or, O. Sorkine, and S. Toledo, “Algebraic
analysis of high-pass quantization,” Tel Aviv University,” Tech-
nical Report, May 2004.

[24] S. Toledo, TAUCS: A Library of Sparse Linear Solvers, version
2.2, Tel-Aviv University, Available online at http://www.tau.ac.
il/∼stoledo/taucs/, Sept. 2003.

[25] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Im-
plicitly Restarted Arnoldi Methods. Philadelphia: SIAM, 1998.

[26] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measur-
ing error on simplified surfaces,” Computer Graphics Forum,
vol. 17, no. 2, pp. 167–174, 1998.

[27] D. King and J. Rossignac, “Optimal bit allocation in compressed
3D models,” Computational Geometry, Theory and Applica-
tions, vol. 14, no. 1-3, pp. 91–118, 1999.

[28] P. Alliez and C. Gotsman, “Recent advances in compression of
3D meshes,” in Proceedings of the Symposium on Multiresolu-
tion in Geometric Modeling, september 2003.

[29] H. Hoppe, “Progressive meshes,” in Proceedings of ACM SIG-
GRAPH 96, August 1996, pp. 99–108.

[30] J. C. Xia and A. Varshney, “Dynamic view-dependent sim-
plification for polygonal models,” in Proceedings of IEEE
Visualization ’96, 1996, pp. 327–334.

[31] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion. Philadelphia: SIAM,
1997.

[32] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal on Scientific
Computing, vol. 20, no. 1, pp. 33–61, 1999.

Olga Sorkine received the BSc degree in
mathematics and computer science from Tel
Aviv University in 2000. Currently, she is
a PhD student at the School of Computer
Science at Tel Aviv University. Her research
interests are in computer graphics and include
shape modeling, mesh processing and approx-
imation.

Daniel Cohen-Or is an Associate Professor at
the School of Computer Science at Tel Aviv
University. He received a BSc in both Mathe-
matics and Computer Science (1985), an MSc
in Computer Science (1986) from Ben-Gurion
University, and a PhD from the Department of
Computer Science (1991) at State University
of New York at Stony Brook. His current
research interests include rendering, visibility,

shape modeling and image synthesis.

Dror Irony is a PhD student in the School of
Computer Science at Tel Aviv University. He
received his BSc in mathematics and computer
science in 1996 and his MSc in computer
science in 2000, both from Tel Aviv Univer-
sity. Dror’s Master thesis dealt with a new
parallel communication-efficient dense linear
solver and some related theoretic and practical
results. His research today is focused in stable

direct algorithms for sparse and banded matrices. From 1996 until
2000, Dror worked for Motorola Communication Israel.

Sivan Toledo is an associate professor of
Computer Science at Tel Aviv University. He
received his BSc and MSc from Tel Aviv
University, both in 1991. He received his PhD
from MIT in 1995, and worked as a postdoc-
toral associate at the IBM TJ Watson Research
Center and at the Xerox Palo Alto Research
Center before joining Tel Aviv University in
1998.

