
To appear in the ACM SIGGRAPH conference proceedings

A Sketch-Based Interface for Detail-Preserving Mesh Editing

Andrew Nealen
TU Darmstadt

Olga Sorkine
Tel Aviv University

Marc Alexa
TU Darmstadt

Daniel Cohen-Or
Tel Aviv University

Abstract

In this paper we present a method for the intuitive editing of sur-
face meshes by means of view-dependent sketching. In most ex-
isting shape deformation work, editing is carried out by selecting
and moving a handle, usually a set of vertices. Our system lets the
user easily determine the handle, either by silhouette selection and
cropping, or by sketching directly onto the surface. Subsequently,
an edit is carried out by sketching a new, view-dependent handle
position or by indirectly influencing differential properties along
the sketch. Combined, these editing and handle metaphors greatly
simplify otherwise complex shape modeling tasks.

Keywords: Sketch Based Model Editing, Laplacian Surface Edit-
ing, Differential Geometry, Sketching, Deformations

1 Introduction

A few strokes suffice to sketch the main features of a shape. This
is why designers still prefer using pen and paper to invent and
communicate, and explains the great success of sketch-based shape
modeling approaches, such as SKETCH [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. In this work, we add to the existing
toolbox of sketch based shape modeling techniques. Our contribu-
tion is a tool for sketching significant shape details on already exist-
ing coarse or detailed shapes. We believe the important first step of
creating the basic shape from scratch is essentially solved: either
based on sketching (apart from the pioneering works mentioned
above, see also [Karpenko et al. 2002; Igarashi and Hughes 2003;
Bourguignon et al. 2004]) or using other modeling techniques. Ide-
ally, a sketch-based modeling system for 3D shapes should use the
very same sketches that designers would draw on a piece of paper
to convey the shape. What are these lines? As pointed out by Hoff-
man and Singh [1997], the human visual system uses silhouettes as
the first index into its memory of shapes, making everyday objects
recognizable without color, shading or texture, but solely by their
contours. In the area of non-photorealistic rendering (NPR), sil-
houettes have been used extensively [Gooch and Gooch 2001] and
recently they have been extended to suggestive contours: curves on
the shape that might be silhouettes in nearby views [DeCarlo et al.
2003]. The apparent presence of a feature line in a picture of a
shape results from an abrupt change in illumination. Apart from
view dependent features for which this happens or might happen in
a nearby view, change of illumination generally correlates with cur-
vature. Lines of curvature extrema (i.e. ridges and ravines) have,
therefore, also been used in NPR for conveying shape.

Figure 1: With a few strokes we have greatly increased the expres-
siveness of the CAMEL model (bottom left). See Fig. 2 for details.

We come to the conclusion that sketching a shape is inverse
NPR. Consequently, we design a sketch-based modeling interface
using silhouettes and sketches as input, and producing contours,
or suggestive contours, and ridges/ravines. The user can sketch a
curve, and the system adapts the shape so that the sketch becomes a
feature line on the model, while preserving global and local geom-
etry as much as possible. As the requested properties of the sketch
cannot or should not always be accommodated exactly, users only
suggest feature lines.

It might seem obvious to let users alter contours, or ask for a line
in space to be a feature line. Interestingly, our concurrent goals of
preserving the global and local geometry during the edit while using
feature lines for defining the edit are difficult to implement using
traditional approaches: typical sketching tools [Igarashi et al. 1999;
Karpenko et al. 2002; Fleisch et al. 2004] do use silhouettes, how-
ever, they create only smooth shapes. Some operations of sketching
techniques might preserve geometric detail, however, they are not
based on inserting feature lines into the shape [Draper and Egbert
2003; Kho and Garland 2005]. In general modeling environments,
such as space deformation techniques (e.g., [Sederberg and Parry
1986; Singh and Fiume 1998]) and multi-resolution or subdivision
mesh modeling approaches [Zorin et al. 1997; Kobbelt et al. 1998;
Biermann et al. 2000], it can be difficult to incorporate the displace-
ment of a feature curve: these approaches provide a basis that spans
a space of shapes; the requested displacement has to be translated
into coefficients of this basis. In general, this might be impossible,
and an approximate solution typically leads to a difficult inverse
problem (see also Botsch and Kobbelt [2004]). Our idea becomes
realizable through the recent trend to cast mesh modeling problems
as discrete Laplace or Poisson models [Alexa 2003; Botsch and
Kobbelt 2004; Sorkine et al. 2004; Yu et al. 2004; Sumner and
Popović 2004]. Within this framework, it is easy to displace a set
of edges (e.g., sketch a new position of an identified contour) while
preserving the geometric details of the surface as much as possible.
However, most of the feature lines we want to use have specific
differential properties, either absolute or relative to the viewing di-
rection, and they might not coincide with edges on the mesh. We
therefore extend the framework of Laplace/Poisson mesh model-
ing in the following ways: (a) we accommodate constraints on the
normals and the curvature; (b) we allow constraints to be placed

1

To appear in the ACM SIGGRAPH conference proceedings

Figure 2: Our mesh editing tool in action. Top row [(1)-(6)]: First, we open the mouth of the CAMEL model (1) by detecting an object
silhouette, and sketching an approximation of the lip shape we want (2) (See Section 3). Note that in (2) the yellow curve is the original
object silhouette, the green curve is the user sketch, and the dark blue region is the result of a previously placed sketch. By sketching directly
onto the model (3) we produce a handle (yellow) by which we can lift the eyebrow with the green sketch. For the creation of sharp features
we sketch the feature line (4) and then scale the affected Laplacians to produce either a ravine (5) or a ridge (6) (See Section 4.2). Bottom
row [(7)-(12)]: If we are not yet satisfied with the ridge in (6), we can edit the newly created object contour using our silhouette tool (7).
Sketching a ravine under the eye by geometry adjustment (See Section 4.1) is shown in (8) and (9). Finally, we sketch a subtle suggestive
contour near the corner of the mouth in (10) and (11) (See Section 4.3), resulting in the SCREAMING CAMEL model (12), shown in Fig. 1.

on virtual vertices, i.e. vertices placed on edges that only serve to
implement the constraints but are never added to the mesh; (c) we
incorporate a tangential mesh regularization, which moves edges
onto sharp features while ensuring well-shaped triangles.

This mesh modeling framework together with a user-interface
mostly based on sketching suggested feature lines onto or around a
shape, indeed, yields an intuitive shape modeling technique.

2 Mesh modeling framework

The basic idea of the modeling framework is to satisfy linear mod-
eling constraints (exactly, or in the least squares sense), while pre-
serving differential properties of the original geometry. This tech-
nique has recently been presented in various fashions and we only
briefly explain the main concepts. For more detailed explanations
see the references given below. One way of deriving these lin-
ear constraints is to ask that the Laplacian of the original geom-
etry be preserved in the least squares sense [Alexa 2003; Lipman
et al. 2004]. Let the mesh be represented as a graph G = (V,E),
consisting of vertices V and edges E. Let V = (v1,v2, . . . ,vn),
vi = (vix ,viy ,viz) ∈ R

3 be the original geometry and ∆ the Laplace
operator, then the deformed geometry V′ is defined by the con-
strained minimization

V′ = argmin
W

‖∆V−∆W‖2, (1)

where the vertices might be weighted differently to trade-off be-
tween modeling constraints and the reproduction of original surface
geometry. Note that this is equivalent to solving a linear system of
the form AV′ = b in the least squares sense. If the original surface
was a membrane, the necessary constraints for the minimizer lead to
∆2V′ = 0, which has been advocated by Botsch and Kobbelt [2004]
in the context of modeling smooth surfaces. If, in contrast, the orig-
inal surface contained some detail, the right-hand side is non-zero
and we arrive at a variant of the discrete Poisson modeling approach
of Yu et al. [2004].

The modeling operation is typically localized on a part of the
mesh. This part of the mesh is selected by the user as the region of
interest (ROI) during the interactive modeling session (with a lasso
tool). The operations are restricted to this ROI, padded by several
layers of anchor vertices. The anchor vertices yield positional con-
straints v′i = vi in the system matrix A, which ensure a gentle transi-
tion between the altered ROI and the fixed part of the mesh. Based

on the constraints formulated so far, local surface detail is preserved
if parts of the surface are translated, but changes with rotations and
scales. One way of dealing with this is to define local rotations per
vertex a priori. Lipman et al. [2004] compute these rotations from
a smoothed solution of Eq. 1, Yu et al. [2004] let the user specify
a few constraint transformations and then interpolate them over the
surface. However, we would like to incorporate the treatment of di-
rections into the modeling phase so that some of the details have a
fixed (normal) orientation, while others may rotate. Thus, we adopt
the approach of Sorkine et al. [2004], who define the local rotations
and scales by comparing one-rings between V and V′. However,
we discretize the Laplace operator using cotangent weights as rec-
ommended by Meyer et al. [2003]. The conditions to be satisfied
lead to an overdetermined system of linear equations of the form
AV′ = b, which we solve in the least squares sense according to the
normal equations AT AV′ = AT b. For information on how to derive
the rows resulting from Eq. 1 see [Sorkine et al. 2004].

We extend this framework towards constraints on arbitrary points
on the mesh. Note that each point on the surface is the linear combi-
nation of two or three vertices. A point on an edge between vertices
i and j is defined by one parameter as (1−λ)vi +λv j, 0 ≤ λ ≤ 1.
Similarly, a point on a triangle is defined by two parameters. We
can put positional constraints v̂i j on such a point by adding rows to
the system matrix A of the form

(1−λ)v′ix +λv′jx = v̂i jx , (2)

Furthermore, we extend the framework by using other forms of dif-
ferentials to achieve some additional effects. Let δi be the Laplacian
of vi, the result of applying the discrete Laplace operator to vi, i.e.

δi = vi − ∑
{i, j}∈E

wi jv j, (3)

where ∑{i, j}∈E wi j = 1, and the weights wi j are determined using
the cotangent weights [Meyer et al. 2003]. An important benefit
of this weighting is that δi points in the normal direction, and the
length ‖δi‖ is proportional to the mean curvature around vertex i.
This allows us to prescribe a certain normal direction and/or curva-
ture for a vertex, simply by adding a row to A of the form

v′i − ∑
{i, j}∈E

wi jv′j = δ ′
i . (4)

Setting the normal direction is necessary for contours and sugges-
tive contours, setting the curvature – for ridges or ravines.

2

To appear in the ACM SIGGRAPH conference proceedings

To access the tangential location of vertices, we use the umbrella
operator [Kobbelt et al. 1998] as a discrete Laplacian and relate it
to the cotangent weighted Laplace operator. We exploit this for
regularizing the mesh in tangential direction, by asking that

v′i −d−1
i ∑

{i, j}∈E

v′j = vi − ∑
{i, j}∈E

wi jv j, (5)

where di is the degree of vertex i. The rationale behind this opera-
tion is this: the uniformly weighted operator generates a tangential
component, while the cotangent weighting does not. Asking that
they are equivalent is essentially solving the Laplace equation but
only for the tangential components. The result is a mesh with well
shaped triangles, preserving the original mean curvatures as long as
the tangential offset is not too large. Note that we typically restrict
this operation to small regions, so that large tangential drift cannot
occur.

In the following sections, we explain how to use these basic
building blocks for satisfying user-defined feature lines on a mesh.

3 Silhouette sketching

Our goal is to identify areas of the model which are easily recog-
nized, and for which our memories hold vast databases of possible
variations, and then apply these variations by sketching them. The
idea is simple yet effective: after defining a region of interest on
the surface and a camera viewpoint, we select (and trim) one of the
resulting silhouettes, and then sketch a new shape for this silhouette
(see Fig. 3).

For the computation of silhouettes on polygonal meshes,
various methods are available, see [Hertzmann 1999]. We
have chosen to use object space silhouettes, and include the
ability to switch between edge silhouettes (mesh edges, for
which one adjacent face is front-facing and one is back-facing)
and smooth surface silhouettes [Hertzmann and Zorin 2000].
Hertzmann and Zorin [2000] determine the silhouette on mesh
edges e = (vi,v j) by linearly interpolating corresponding vertex
normals ni,n j: a silhouette point p = (1−λ)vi +λv j on e has to
satisfy ((1−λ)ni +λn j) · (p− c) = 0, where c is the viewpoint.
Silhouette points on edges are connected by segments over faces.

During editing, the user first picks one of the connected compo-
nents, and then interactively adjusts the start and end point by drag-
ging them with the mouse. Note that degenerate silhouette edge

Figure 3: Sketching a very recognizable ear silhouette: we detect,
select, crop and parameterize an object silhouette (yellow, the green
and red balls represent begin and end vertices respectively), and
then sketch a new desired silhouette (green).

paths might lead to multiply connected curves, resulting in non-
intuitive user interaction. Smooth silhouettes [Hertzmann 1999]
remedy this problem on smoothly varying surfaces, and only for
models with distinct sharp features (such as CAD models), mesh
edges are used as silhouettes. In any case, the selected silhouette
segment is represented as a set of points qi on the mesh.

After selecting a silhouette segment, the user sketches a curve
on the screen, representing the suggested new silhouette segment.
The sketch is represented as a polyline in screen space. The vertex
locations si on this polyline result in constraints on mesh vertices
as follows: First, silhouette vertices qi are transformed to screen
space, i.e. the first two components contain screen space coordi-
nates, while the third contains the z-value. Then, both curves are
parameterized over [0,1] based on edge lengths of the screen space
polylines. This induces a mapping from qi to {s j}, defining a new
screen space position q′

i (note that q′
i retains the z-value of qi).

Figure 4: Sketching an approximate CAMEL lip by reducing the
weights on the positional constraints for silhouette vertices.

The new position q′
i in screen space is transformed back to model

space and serves as a positional constraint. Note that when using
smooth surface silhouettes, on-edge constraints have to be used (see
Eq. 2). Additionally, varying the weighting of positional constraints
along the silhouette against Laplacian constraints leads to a trade
off between the accurate positioning of silhouette vertices under
the sketch curve, and the preservation of surface details in the ROI.
To achieve this, we simply multiply the affected rows in A and b
with the selected weighting factor. For example, the result in Fig. 3
follows the sketch closely, whereas the sketch in Fig. 4 only hints
at the desired lip position.

This method works well even for moderately noisy and bumpy
surfaces and preserves details nicely (see Fig. 5). Note that for
very noisy surfaces, object space silhouette paths and loops may
become arbitrarily segmented, in which case our silhouette sketch-
ing method is no longer applicable. In such cases, sketch editing
can be performed relative to any user-defined curve sketched man-
ually onto the surface, as was done for lifting the eyebrows of the
CAMEL, see Fig. 2(3).

The matrix AT A is computed and factored once for each ROI and
silhouette curve selection, and we simply solve for each sketch by
back substitution [Toledo 2003]. Some editing results in Fig. 1 were
obtained by using the silhouette editing capabilities of our system:
sketching larger ears, opening the mouth and modifying the nose
contour.

Figure 5: Editing the bumpy ARMADILLO leg: although the silhou-
ette (yellow) in the ROI (blue) has substantial depth variation and
the desired silhouette (green) is smooth, properly weighting the po-
sitional constraints retains the surface characteristics after the edit.

3

To appear in the ACM SIGGRAPH conference proceedings

4 Feature and contour sketching

4.1 Geometry adjustment

Suppose we intend to create a potentially sharp feature where we
have drawn our sketch onto the mesh. To create a meaningful fea-
ture (i.e. a ridge, ravine or crease) on a mesh, we must first adjust
the mesh geometry to accommodate such a feature directly under
the sketch, since in our setting the sketch need not run along an edge
path of the mesh. To illustrate this, see Fig. 6(a), where the sketch
path {si} (green) follows the edges on the left, but runs perpendicu-
lar to them on the right. By applying repeated subdivision we could
have locally adjusted the mesh resolution, but for situations similar
to the one in Fig. 6(a), many levels of subdivision would be neces-
sary to properly approximate the sketch with an edge path. Another
option would be to cut the mesh along the sketch; however, we have
found a simpler method that avoids increasing the mesh complexity,
yields nice feature lines and well-shaped triangles while retaining
the original mesh topology. In detail:

The triangles in the ROI are transformed to screen space; trian-
gles intersecting {si} are gathered (Fig. 6(a), dark triangles) and the
begin and end mesh vertices are identified.

An edge path Vp = (vp1 ,vp2 , . . . ,vpn) that is close to {si} is com-
puted by solving a weighted shortest path problem in the edge graph
of the ROI. The weight for each edge is the sum of its vertices’
screen space distance to {si}. The resulting edge path vertices are
generally not on, but close to {si} (shown in red in Fig. 6(a)).

Figure 6: Creating a ravine-like crease: in (a) the green sketch given
by the user is approximated by the red edge path on the original
geometry. We adjust the geometry to lie directly under the sketch
by orthogonal projection along the tangent plane (b), and then relax
the area around the sketch (c). Now we can create the crease by
scaling the Laplacians along the edge path (d), resulting in a sharp
feature, even for this coarsely sampled surface.

screen

tangent plane

vsvsc

vo

voc

sketch

n

voc

n

δi,umbrellaδi,cotangentv1

v2

V1
'

V2
'

n

v1

v2

screensketch

Figure 7: Adjusting edge path vertices to lie under the sketch curve
(left): an object-space edge path vertex vo is projected to vs in
screen space, from there orthogonally projected onto vsc on the
sketch curve, and then projected back onto the tangent plane de-
fined by the normal at vo, yielding the new vertex position voc.
Relaxing the sketch region (right): to ensure a good triangulation
after adjusting the geometry, we perform a relaxation of the edge-
path vertices (allow them to move along the sketch path) and nearby
vertices by constraining δi,umbrella to δi,cotangent in the least squares
sense. Qualitatively, this moves v1 and v2 to v′1 and v′2, while keep-
ing voc under the sketch.

The path vertices Vp are mapped onto closest edges of the sketch
path {si} in screen space; corresponding z-values are computed
from restricting each vertex to move on its tangent plane, as de-
fined by the original vertex normal (Fig. 7, left). The resulting edge
path closely follows the sketch curve (Fig. 6(b)), yet may introduce
badly shaped triangles.

We improve triangle shapes by relaxing vertices close to the
sketch so that their umbrella Laplacian equals the cotangent Lapla-
cian in the least squares sense (See Fig. 7, right, and Section 2).
For the vertex relaxation we must solve a linear system, much like
the actual editing solver, but with constraints given by Eq. 5. Ob-
viously, the edge path vertices must remain under the sketch path
during this procedure. To ensure this, while also giving the edge
path vertices a valid degree of freedom, we add them as positional
constraints (Section 2), and additionally add averaging constraints
of the form

v′pi
− 1

2
v′pi−1

− 1
2

v′pi+1
= 0, (6)

for all vertices in Vp excluding the begin and end vertices. The av-
eraging constraint loosens the positional constraint, allowing edge
path vertices to move between their adjacent vertices in the path.
Adjusting the ratio of weights between positional and averaging
constraints leads to a trade-off between accurately approximating
the sketch, and some possibly desired path smoothing.

We have experienced no detrimental effects when applying this
procedure on meshes which approximate the underlying smooth
surface well, even in areas of high curvature. Also, small changes
might be tolerable, as this region will be subsequently edited.

After the geometry adjustment step, the surface is prepared for
editing operations in the vicinity of the sketch.

4.2 Sharp features

To create a sharp feature along the edge path, we adjust the Lapla-
cians of path vertices when constructing the A matrix by prescrib-
ing the Laplacian transform for sketch vertices without flexibility to
rotate or scale (i.e., as in Eq. 4). Since we discretize the Laplacian
using the cotangent weights, we can simply scale the Laplacians
of edge path vertices, resulting in a ridge or ravine, depending on
the sign. If the Laplacian evaluates to zero, as is the case for flat
surfaces, we instead scale the surface normal and prescribe it as
the new Laplacian. As described in Section 3, we factor the matrix
AT A once we have selected a sketch, and can then quickly evaluate
the results of varying scales by dragging the mouse up and down.
The creation of a sharp ridge is shown in Fig. 6(d). Alternatively,

4

To appear in the ACM SIGGRAPH conference proceedings

we can add some amount to the Laplacians, making the change ab-
solute rather than relative. This works well in regions with high
curvature variation along the sketch.

We have found it to be very convenient to create a ridge using
our modeling framework, and thereafter treat it as a silhouette from
a different camera position and edit it as outlined in Section 3. This
technique was applied in the creation of the wavy ridge along the
nose of the CAMEL model in Figures 1 and 2(7).

4.3 Smooth features and suggestive contours

Applying the editing metaphor described in the previous section can
only create sharp features. To enable smooth features or suggestive
contours, we need to influence the Laplacians of more vertices than
only those lying on the edge path. Additionally, for suggestive con-
tours, we intend to manipulate curvature in the viewing direction.
Thus, we need to rotate the Laplacians w.r.t. an axis which is or-
thogonal to both viewing and normal vectors. After performing the
geometry adjustment of Section 4.1, given the viewing position c,
we gather and segment vertices within a user-defined sketch region
around the edge path as follows (Fig. 8, top):

• For each path vertex vpi with normal npi (the yellow vectors in
Fig. 8) we compute the radial plane ri, which passes through
vpi with plane normal nri = (vpi − c)×npi (the blue vectors
in Fig. 8). Now we can segment the vertices in the sketch re-
gion Vs = (vs1 ,vs2 , . . . ,vsn) such that each sketch region ver-
tex is associated with one such plane (ergo, each vertex in Vs
belongs to one edge path vertex).

• Each vertex in Vs is assigned to the radial plane it is clos-
est to, where the distance of vs j to plane ri is measured as
d j = orthodist(ri,vs j)+dist(vpi ,vs j). Here, orthodist mea-
sures orthogonal distance to the plane, and dist is the Eu-
clidean distance between vpi and vs j . We take Euclidean dis-
tance into account to avoid problems which occur when two
different path vertices have similar radial planes, and further-
more to limit the support of the sketch region.

In Fig. 8 (top image), we show one such segmentation, where
the edge path vertices are highlighted with red circles and the seg-
mentation is color coded (i.e. all vertices of the same color are
associated with the path vertex of that color).

Figure 8: Top: view dependent vertex segmentation and rotation
axis assignment. Bottom left: scaling all Laplacians in the sketch
region by the same factor produces smooth ridges and ravines. Bot-
tom right: rotating all Laplacians by an angle of −π/2 w.r.t. the
blue rotation axes results in a suggestive contour.

Figure 9: Adding a strong cheekbone to the MANNEQUIN model
by sketching a suggestive contour.

Once we have this segmentation, one possible operation is to uni-
formly scale (or add to) the Laplacians of all sketch region vertices.
Complementing the sharp features of Section 4.2, this operation
gives us smooth bumps and valleys (Fig. 8, bottom left). By setting
the Laplacians to zero we can flatten specific regions of the mesh.

An alternative editing behavior results from rotating all Lapla-
cians w.r.t. their respective rotation axes (given by above segmen-
tation) by a user-defined angle, determined by dragging the mouse
left or right. Note that rotation by π is identical to scaling by minus
one. For angles in the ranges [0,π) and (π,2π] we create varying
radial curvature inflection points (Fig. 8, bottom right), resulting
in suggestive contours [DeCarlo et al. 2003] such as the cheekbone
shown in Fig. 9. Note that these inflection points are not necessarily
directly under the sketch, since they result from the Laplacian sur-
face reconstruction and the boundary constraints around the ROI.

5 Discussion

Generating plausible and visually pleasing shapes and deformations
is far from trivial: while our capability to derive a mental model
from everyday shapes around us is well developed, we fail to prop-
erly communicate this to a machine. This is why we have to model
in a loop, constantly correcting the improper interpretation of our
intentions.

The quality of shape editing, therefore, depends on two factors:
the time required by the system to update the shape after user com-
mands and how well the shape change reflects our mental model of
that process. The update time is a potential bottleneck in our ap-
proach, as the necessary matrix factorization and back substitution
depend on the number of vertices and not the complexity of the edit
operation. For example, ROI sizes of 5.5K/12K/33K vertices re-
quire 0.7/2.5/7.0 seconds for factorization and 0.035/0.07/0.25 sec-
onds for back substitution on an Intel P4/2.0 GHz. On the other
hand, we believe we have improved the match between the mental
model and shape updates, though this is obviously hard to quantify.

From a user’s point of view, our system is similar to other sketch-
based editing interfaces [Igarashi et al. 1999; Karpenko et al. 2002;
Draper and Egbert 2003; Kho and Garland 2005], while it differs
algorithmically: the above methods are based on space warps and
variational implicits, whereas our representation is aimed at surface
detail preservation. Our method inherits the simplicity of the user
interface, and enables the creation of interesting and useful surface
edits, both for inexperienced users and modeling professionals.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful
comments and suggestions. This work was supported in part by

5

To appear in the ACM SIGGRAPH conference proceedings

Figure 10: Some results: a deformed FANDISK with a few more sharp features, a rather surprised MANNEQUIN with more than just an extra
contour around the eye, and droopy-eared, big-nose BUNNY with large feet.

grants from the European Network of Excellence AIM@SHAPE
(FP6 IST NoE 506766), the Israel Science Foundation (founded by
the Israel Academy of Sciences and Humanities) and by the Israeli
Ministry of Science.

References

ALEXA, M. 2003. Differential coordinates for local mesh morph-
ing and deformation. The Visual Computer 19, 2, 105–114.

BIERMANN, H., LEVIN, A., AND ZORIN, D. 2000. Piecewise
smooth subdivision surfaces with normal control. In Proceedings
of SIGGRAPH 2000, 113–120.

BOTSCH, M., AND KOBBELT, L. 2004. An intuitive framework
for real-time freeform modeling. ACM Trans. Graph. 23, 3, 630–
634.

BOURGUIGNON, D., CHAINE, R., CANI, M.-P., AND DRET-
TAKIS, G. 2004. Relief: A modeling by drawing tool. In First
Eurographics Workshop on Sketch-Based Interfaces and Model-
ing, 151–160.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Trans. Graph. 22, 3, 848–855.

DRAPER, G., AND EGBERT, P. 2003. A gestural interface to free-
form deformation. In Proceedings of Graphics Interface 2003,
113–120.

FLEISCH, T., RECHEL, F., SANTOS, P., AND STORK, A. 2004.
Constraint stroke-based oversketching for 3D curves. In First
Eurographics Workshop on Sketch-Based Interfaces and Model-
ing.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Render-
ing. A.K. Peters.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In Proceedings of SIGGRAPH 2000, 517–526.

HERTZMANN, A. 1999. Introduction to 3D non-photorealistic ren-
dering: Silhouettes and outlines. In Non-Photorealistic Render-
ing. SIGGRAPH 99 Course Notes.

HOFFMAN, D. D., AND SINGH, M. 1997. Salience of visual parts.
In Cognition, vol. 63(1), 29–78.

IGARASHI, T., AND HUGHES, J. F. 2003. Smooth meshes for
sketch-based freeform modeling. In 2003 ACM Symposium on
Interactive 3D Graphics, 139–142.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3D freeform design. In Proceedings of
SIGGRAPH 99, 409–416.

KARPENKO, O., HUGHES, J. F., AND RASKAR, R. 2002. Free-
form sketching with variational implicit surfaces. Computer
Graphics Forum 21, 3, 585–594.

KHO, Y., AND GARLAND, M. 2005. Sketching mesh deforma-
tions. In Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games, 147–154.

KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P.
1998. Interactive multi-resolution modeling on arbitrary meshes.
In Proceedings of SIGGRAPH 98, 105–114.

LIPMAN, Y., SORKINE, O., COHEN-OR, D., AND LEVIN, D.
2004. Differential coordinates for interactive mesh editing. In
International Conference on Shape Modeling and Applications,
181–190.

MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H.
2003. Discrete differential-geometry operators for triangulated
2-manifolds. Visualization and Mathematics III, pages 35–57.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Computer Graphics (Pro-
ceedings of SIGGRAPH 86), vol. 20, 151–160.

SINGH, K., AND FIUME, E. L. 1998. Wires: A geometric defor-
mation technique. In Proceedings of SIGGRAPH 98, 405–414.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry processing, 179–188.

SUMNER, R., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. ACM Trans. Graph. 23, 3, 399–405.

TOLEDO, S. 2003. TAUCS: A Library of Sparse Linear Solvers.
Tel Aviv University.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient
field manipulation. ACM Trans. Graph. 23, 3, 644–651.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
Sketch: An interface for sketching 3D scenes. In Proceedings of
SIGGRAPH 96, 163–170.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Interac-
tive multiresolution mesh editing. In Proceedings of SIGGRAPH
97, 259–268.

6

