
SAPE – Supplementary Materials

Amir Hertz Or Perel Raja Giryes Olga Sorkine-Hornung Daniel Cohen-Or

Contents

1 Encoding Types 2

2 Algorithms 3

3 Additional Experiments 4

4 Implementation Details 6

4.1 1D Signals Fitting . 6

4.2 Image Regression . 6

4.3 3D Occupancy . 6

4.4 2D Silhouettes Deformation . 7

4.5 3D Mesh Transfer . 8

5 Mesh Transfer Overview 9

5.1 Optimization Term . 9

5.2 Loss Feedback . 10

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

1 Encoding Types

In this section we describe the formulation of additional positional encodings. The input to the
encoding function is a position p ∈ Rd and the width of the encoding is specified by a hyper-
parameter n. The used encoding may have an additional hyperparameter σ that determines the
frequencies of the encoding (which also sets the Lipschitz constant of the encoding). A 2D example
for the described encoding types is shown in Fig. 1

Radial Basis Functions (RBF) [5] (ERBF : Rd −→ Rn)

ERBF (p) =

[
exp

(
−∥∆p,i∥2

b2i

)]
for 1 ≤ i ≤ n, (1)

where ∆p,i = p − ci, b ∈ Rn and ci ∈ Rd. The parameters ci are the centers of each encoding
and are uniformly sampled i.i.d. from [−1, 1]d. The value of 1/bi (where bi is the ith entry of b) is
randomly sampled i.i.d. from a uniform distribution with a standard deviation σ. Notice that the

Lipschitz constant of the RBF encoding grows linearly with
1

bi
.

Periodic Radial Basis Functions (EPRBF : Rd −→ R2n) As demonstrated by Sitzmann et al. [6]
MLP with a RBF encoding layer struggles to represent high frequencies functions. However, we have
found that we can improve the expressiveness of the RBF by making it periodic. We use the same
formula as the one of regular RBF but with a modification of the formulation of ∆p,i:

∆p,i = 2 ((p− ci)mod 2bi)− 2bi, 2 ((p− ci + bi)mod 2bi)− 2bi, (2)

where b ∈ Rm and ci ∈ Rd are randomly sampled as in the RBF case above.

To get an intuition to the improvement notice that (the formula holds both for RBF and PRBF):

∂ERBF

∂∆p,i
= −2∆p,i

b2i
exp

(
−∥∆p,i∥2

b2i

)
.

Since
∥∥∥∥∂ERBF

∂∆p,i

∥∥∥∥ −−−−−−−−→∥∆p,i∥−→∞
0, each RBF encoding can only represent high frequency in a single

location. Making ∆p,i periodic prevents this vanishing of the gradient to zero and therefore allows
the PRBF to represent high frequencies in multiple locations and not only at the center (where ∆p,i is
low for the regular RBF). Thus, it facilitate learning high frequency mapping across the entire domain
of p. Due to this advantage of PRBF, we use it in the experiments as it leads to better encoding.

Fourier Features [7] (EFFN : Rd −→ R2n) As shown in the papar, the FF encoding is given by

EFFN (p) = [cos(2πb⊤
1 p), sin(2πb⊤

1 p), ..., cos(2πb⊤
np), sin(2πbnp)]

⊤, (3)

where bi ∈ Rd are randomly sampled i.i.d. from a Gaussian distribution with standard deviation σ.
Similar to the RBF encoding, the Lipschitz constant of FF encoding grows linearly with ∥bi∥.

“Regular Positional Encoding” [4] (EPE : Rd −→ R2n)

EPE (p) = [cos(2iπpj), sin(2iπpj)]
⊤for 0 ≤ i < n, 1 ≤ j ≤ d

As can be seen, “Regular Positional Encoding” is a unique case of FF where the vectors bi are
parallel to the axes and their magnitude grows exponentially. In our experiments, we use the more
general FF encoding.

2

Regular Positional encoding Fourier features

RBF RBF grid

Figure 1: Encoding types. In order to learn a high frequency function, the input to the network, p, is
encoded to a high dimensional space by a family of encoding functions E characterize by increasing
size of Lipschitz constants.

2 Algorithms

The SAPE algorithm is summarized as pseudo-code below. See Section 4 in the paper for a detailed
description of the motivation behind the various modules in the algorithm.

Algorithm 1: SAPE Algorithm

Hyperparameters: Coordinates mapping function E : Rd 7→ Rn,
Encoding-weights grid resolution gr

d, Weight progression policy Φ, Convergence threshold ε
Input: Samples of coordinates p ∈ Rd, Corresponding signal values y ∈ N.

1 randomly initialize network weights θ0.
2 initialize encoding weights α0 ∈ gr

d.
3 for training step t ∈ T do

/* Obtain encoding mask per interpolated grid weights by p */
4 αt[p]←− interpolateαt(p)

5 xt ←− αt[p]
⊤
E(p) /* Map coordinates to network input */

6 ŷt ←− fθ(xt) /* Obtain network prediction, per coordinate p */
7 for grid coordinate gp ∈ gr

d do
/* If weighted grid coordinate loss is above threshold */

8 if L(ŷt,y) ≥ ε then
/* Increase weight for encoding frequencies */

9 αt+1[p]←− Φ(αt[p])
10 end
11 end
12 θt+1 ←− θt − β∇θt

L(ŷt,y)
13 end

3

3 Additional Experiments

We show here additional experiments of the image regression task.

Standard deviation of the frequencies

PS
N

R

Ground Truth &
Sampled Pixels

SAPE + FF

FF

SAPE + PRBF

PRBF

σ 1 10 20 30 40
Figure 2: 2D image regression with an increasing size of the standard deviation of the encoding
frequency.

Robustness to the frequency distribution. We show in Figure 2 another example to the one in
the paper where we evaluate the implicit image regression task with increasing size of the standard
deviation σ of the encoding frequency distribution– the distribution of ∥bi∥ for the Fourier Features
encoding (3) and the distribution of 1/bi for the Periodic RBF (1).

4

In this example, we train the networks on 25% of the pixels and measure the PSNR of the whole
image. We show the mean score and error bars of 10 experiments for each network configuration and
a selection of σ.

Robustness to sample size. In this experiment we test the quality of the reconstruction on different
values of sample rates– number of pixels we train the network on. Qualitative results are shown in
Figure 3 and quantitative results are shown in Figure 4.

In this example, we use σ = 20 for the SAPE networks and σ = 15 for FF and PRBF networks. We
show the mean PSNR score and error bars of 10 experiments for each network configuration and a
selection of sample rate.

SAPE + FF

FF

SAPE + PRBF

PRBF

Sampled pixels

Sample rate 10% 20% 30% 40% 50%

Figure 3: 2D image regression with increasing size of the training pixels sample rate.

5

Sample rateGround Truth

PS
N

R
Figure 4: 2D image regression with increasing size of the standard deviation – encoding frequency.

4 Implementation Details

We describe below the network configuration and hyperparameters we used in our experiments.

We report the run times of the optimizations on a single GeForce GTX TITAN X GPU with 12GB
memory size.

4.1 1D Signals Fitting

In the 1D example (Figure 2 in the paper) we train the networks to fit a 1D function by fitting 26 points
sampled from the underlying signal. The different networks contains 2 hidden layers of size 32. The
Fourier Features configuration is composed of 256 frequencies randomly sampled from a Gaussian
distribution with standard deviation with σ = 3. Each model is trained for 10000 iterations using the
Adam [2] optimizer with default settings (β1 = 0.9, β2 = 0.999, ε = 10−8). We use a learning rate
of 10−5 for the encoding based networks. Due to slow convergence, we use a learning rate of 10−4

for the baseline configuration (“No Encoding”). Each optimization took about 20 seconds.

4.2 Image Regression

For the ablation experiments and the evaluations (Table 1 in the paper, left) we trained the networks
(MLP, 3 hidden layers with 256 channels) for 5000 iterations. The Fourier Features and periodic RBF
were trained with 256 unique frequency levels.

Unless specified otherwise, for Fourier Features, we use the reported configurations in [7]: σ = 10
for the natural images dataset and σ = 14 for the text dataset. For the Periodic RBF we chose σ
by evaluations on the provided hold-out set. We found that σ = 14 works best. Unless specified
otherwise, for SAPE, we use σ = 20 and an encoding masking grid of size 128× 128.

Each optimization took about 5 minutes.

Additional qualitative results for this task are shown in Figure 5.

4.3 3D Occupancy

In the 3D Occupancy evaluations (Table 1 in the paper, middle) we trained the networks to classify
an input 3D coordinate for residing inside or outside the training shape.

We train the networks (MLP, 4 hidden layers with 256 channels and a sigmoid at the output) for 50
epochs on the 9 million sampled points with batch size of 5000. The Fourier Features and periodic
RBF were trained with 256 frequencies.

We used σ = 12, as reported in the official implementation of FFN [7] and σ = 16 for the Periodic
RBF, selected by running on a hold-out example. For SAPE, we used σ = 20. For the encoding

6

Figure 5: Additional 2D regression comparisons. THe network traind on 25% of the pixesl.

masking grid, we used a grid size of 643 for the Thingi10k [8] evaluation and for the more challenging
meshes from TurbuSquid1 we used grid size of 128× 128.

Each model was trained using the Adam optimizer with the default settings (β1 = 0.9, β2 =
0.999, ε = 10−8) and learning rate of 10−4.

Each optimization took about 1 hour.

4.4 2D Silhouettes Deformation

In this evaluation (Table 1 in the paper, right) we trained the networks to deform a unit circle
represented as a polyline to a target 2D point cloud of a silhouette shape.

We trained the networks (MLP, 3 hidden layers with 256 channels) for 10000 iterations. The Fourier
Features and periodic RBF were trained with 256 frequencies.

We used σ = 4 for both FF and Periodic RBF encoding distributions which were selected by grid
search on a hold-out set. For SAPE, we used σ = 8.

Each model was trained using the Adam optimizer with its default settings (β1 = 0.9, β2 =
0.999, ε = 10−8) and learning rate of 10−5 for the encoded networks, 10−4 for the base MLP
and 10−6 for SIREN since it may become unstable with higher lr. Each optimization took about 2
minutes.

1https://www.turbosquid.com

7

https://www.turbosquid.com

Ground truth No encoding Siren FF SAPE + FF

Figure 6: 3D Occupancy comparison on selected meshes from Thingi10k [8] dataset.

Ground truth No encoding Siren FF SAPE + FF

Figure 7: 3D Occupancy comparison on selected meshes from TurboSquid.

4.5 3D Mesh Transfer

In this evaluation (Table 2 in the paper) we trained the networks to transfer a 3D source mesh to a
target shape.

We trained the networks (MLP, 4 hidden layers 256 channels) for 10000 iterations. The Fourier
Features and periodic RBF were trained with 256 frequencies.

We used σ = 3 for both FF and Periodic RBF encoding distributions which were selected by a grid
search on a hold-out set. For SAPE, we used σ = 6.

Each model was trained using the Adam optimizer with its default settings (β1 = 0.9, β2 =
0.999, ε = 10−8) and learning rate of 10−4.

Additional overview for this task optimization is given in Section 5 of this appendix. Additional
qualitative results for this task can be seen in Figure 8.

An optimization process for this task takes about 5 minutes.

As shown in Figure 9, in the 2D silhouette and mesh transfer settings, our method may result with
distorted output when dealing with target shapes with high cavities, or if not enough correspondence
points between the source and the target shapes have been marked (mesh transfer task only).

8

Source Target No encoding Siren FFN SAPE

Figure 8: Additional mesh transfer results.

Source Target No encoding Siren FFN SAPE

Figure 9: Limitation of the geometric tasks. Without the set of correspondence points for the mesh
transfer task, or complex 2D silhouette, our method struggles to fit to the target shape.

5 Mesh Transfer Overview

In Section 5.1 we lay out in detail the optimization terms of the Mesh Transfer problem. In Section
5.2 we explain the feedback loss of SAPE for this task.

5.1 Optimization Term

In this task, we would like to transfer a 3D source meshM to a target shape T , which is represented
by a mesh or a point cloud. The MLP receives the vertices ofM and outputs transformed vertices,
such that together with the source tessellation, the optimized mesh M̂ fits the target shape while
respecting the structure of the source mesh in terms of its triangulation and local structure.

In addition, we may utilize a set of marked correspondence points {vi, ui}ki=1 between the source
mesh and the target shape. The corresponding points enable the estimation of an initial affine
transformation fromM to T , followed by a biharmonic deformation [1] in which the corresponding
points are set to be the boundary conditions.

The optimization loss for this task is composed of a distance loss and a structural term:

L
(
M̂ | T , M

)
= Ld

(
M̂ | T

)
+ γLs

(
M̂ |M

)
.

The distance loss is given by

Ld

(
M̂ | T

)
= ch

(
M̂, T

)
+

k∑
i=1

∥v̂i − ui∥22, (4)

where ch(M̂, T) is a symmetric chamfer distance between uniformly sampled points on the optimized
mesh and the target shape. In addition, we keep the k correspondence points close by minimizing

9

the squared distance between them, where v̂i and ui are pairs of corresponding points on M̂ and T ,
respectively.

The structural loss measures the discrete conformal energy between the optimized mesh and the
source mesh:

Ls

(
M̂ |M

)
=

1

N

N∑
i=1

 ∑
j∈R(i)

∥α̂j − αj∥22

 ,

where the first summation is over the N vertices ofM and the second iterates on the angles in the
1-ring of v̂i with respect to the original angles in the source mesh.

To prevent numerical issues caused by skinny faces, we utilize the quality measure for a triangular

face [3], Qf =
4
√
3Af

∥e1∥2 + ∥e2∥2 + ∥e3∥2
, where Af is the area of the face and ∥ei∥ is the length of

its i-th edge. When Q→ 0, the face approaches to degenerate zero area. To prevent such cases we
penalize by 1−Qf all the faces in M̂ with quality Qf < 0.1.

5.2 Loss Feedback

We adjust SAPE to support the mesh transfer (and also the 2D silhouette) task by using the mesh
(polygon for 2D silhouettes) connectivity as the grid which stores the masking parameters α.

The progression control is made with regard to the chamfer loss which aggregates the loss of randomly
sampled points on the optimized mesh (polygon).

We provide feedback over the loss (equation 7 in the paper) using the barycentric coordinates of the
sampled points as the interpolation weights.

References
[1] Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. Bounded biharmonic weights for

real-time deformation. ACM Trans. Graph., 30(4), 2011.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Hsueh-Ti Derek Liu, Vladimir G Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec
Jacobson. Neural subdivision. ACM Transactions on Graphics (TOG), 39(4):124–1, 2020.

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[5] Michael James David Powell. Restart procedures for the conjugate gradient method. Mathemati-
cal programming, 12(1):241–254, 1977.

[6] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

[7] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. NeurIPS, 2020.

[8] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000 3d-printing models. arXiv
preprint arXiv:1605.04797, 2016.

10

	Encoding Types
	Algorithms
	Additional Experiments
	Implementation Details
	1D Signals Fitting
	Image Regression
	3D Occupancy
	2D Silhouettes Deformation
	3D Mesh Transfer

	Mesh Transfer Overview
	Optimization Term
	Loss Feedback

