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Figure 1: Our phase manifold P is learned from datasets with drastically different skeletal structures without any supervision.
Each connected component in the manifold, visualized in a different color, is an ellipse embedded in high-dimensional space.
Semantically similar motions from different characters are embedded into the same ellipse.

ABSTRACT
We present a new approach for understanding the periodicity struc-
ture and semantics of motion datasets, independently of the mor-
phology and skeletal structure of characters. Unlike existing meth-
ods using an overly sparse high-dimensional latent, we propose a
phase manifold consisting of multiple closed curves, each corre-
sponding to a latent amplitude. With our proposed vector quantized
periodic autoencoder, we learn a shared phase manifold for multiple
characters, such as a human and a dog, without any supervision.
This is achieved by exploiting the discrete structure and a shallow
network as bottlenecks, such that semantically similar motions
are clustered into the same curve of the manifold, and the mo-
tions within the same component are aligned temporally by the
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phase variable. In combination with an improved motion matching
framework, we demonstrate the manifold’s capability of timing
and semantics alignment in several applications, including motion
retrieval, transfer and stylization. Code and pre-trained models for
this paper are available at peizhuoli.github.io/walkthedog.
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1 INTRODUCTION
What is in common between a dog’s walk and a human’s walk, or
that of an ogre? Understanding the intrinsic structure and semantics
of motion, regardless of the character’s morphology and skeletal
structure, lies at the heart of character animation research. In par-
ticular, motion retargeting and style transfer often rely on precise
alignment of source and target motions in the form of paired data,
posing severe limitations on their applicability. To make use of large
heterogeneous datasets, common approaches organize motions in
a discrete graph (motion graph [Kovar et al. 2002]) or a contiguous
field (motion field [Lee et al. 2010]) with great success for many
control and synthesis tasks. However, they fall short of handling
different character designs and diverse content in a unified space.
We argue that the main drawback of these methods is that their
similarity metrics are based on extrinsic pose features, which also
encode features of the skeleton and motion semantics. In this work,
we aim to learn an intrinsic motion representation that is agnostic
to the character morphology and can disentangle motion structure
from semantics without any labels or other supervision signals.

An intrinsic property of motion is its periodic structure. Com-
mon locomotion such as walking and running can be effectively
parameterized by a linear phase variable for motion control prob-
lems [Holden et al. 2017; Peng et al. 2018]. To this end, we pro-
pose a latent representation that decomposes motions into a 1D
phase and discrete amplitude vectors. This latent space forms a
one-dimensional manifold that consists of multiple connected com-
ponents, where each component is an ellipse corresponding to a
discrete amplitude vector. We term it a disconnected 1D manifold.
The possible choices of amplitudes are learned through vector quan-
tization [Van Den Oord et al. 2017], similar to a clustering process.
The discrete amplitude vectors serve as a narrow bottleneck to
regularize unsupervised learning of semantic motion clusters. The
number of amplitude vectors reflects the semantic diversity of the
motion dataset.

Formally, we propose a vector quantized periodic autoencoder
(VQ-PAE) that embeds motions into a disconnected 1D manifold.
The encoder projects a short input sequence into a 1D continuous
phase variable and a latent code from a small codebook. The decoder
reconstructs the input sequence using a simple two-layer convolu-
tion network with limited capacity to prevent memorization. The
codebook and the autoencoder are jointly learned end-to-end. The
small codebook size and the simple decoder enforce the seman-
tic structure in the latent space. For example, idling and running
will be far apart in the codebook because the decoder cannot re-
construct both from the same or similar input. On the other hand,
jogging and running may have to share the same code or be close
if the codebook size is small, as they are sufficiently similar when
phase-aligned. When learning VQ-PAEs from multiple characters,
such as a dog and a human, each character has their own VQ-PAE
to handle their unique morphology and skeletal features, but they
all share the same latent codebook. As a result, they are naturally
clustered semantically as enforced by the codebook size, without
any explicit supervision, but solely based on the intrinsic structure
of the motion. Note that the VQ-PAE is not meant to be a generative
model, given the intentional bottlenecks in the codebook and the

decoder. We make use of the latent representation but discard the
decoder after training.

We validate our design by learning VQ-PAEs from both a human
dataset and a dog dataset with a shared codebook. Examining the
average pose at each point on the manifold reveals that the learned
embeddings are both timing- and semantics-aligned between the
two characters. This highly structured and aligned phase manifold
opens up new possibilities for motion data organization, retrieval,
transfer and stylization. The phase manifold embedding can be
flexibly integrated with existing motion synthesis pipelines. For
example, given an unseen human motion, we can search the shared
manifold for the nearest neighbor of dogmotionwith similar seman-
tics and timing. We can further combine motion matching [Büttner
and Clavet 2015] with linear time warping supported by the 1D
phase variable to transfer semantically similar motions between the
human and the dog, without any paired data or pre-definedmapping
among the skeletal structures. In addition, we demonstrate appli-
cations of motion characterization on the MOCHA dataset [Jang
et al. 2023].

Our key contributions are summarized as follows:
• A novel phase manifold designed for both timing and seman-
tics alignment. We also show that the manifold is compact,
disentangled, and highly structured.
• A demonstration of using narrow bottlenecks and intrinsic
structure of motions to achieve alignment among hetero-
geneous datasets, without any supervision, self-supervised
losses, or skeletal structure correspondences.
• Applications with an improved motion matching framework
on the phase manifold for motion retrieval, transfer and
stylization.

2 RELATEDWORK
In this section, we review the related work mainly on clustering
and organizing motion capture datasets. We take a deeper look
into the works related to phase in terms of motion organization.
Motion retargeting and style transfer are also related, in the sense
of bridging different characters and distilling the core content of
motions. We briefly review them at the end of this section.

Organizing and clustering motion dataset. Organizing a large-
scale motion capture dataset is a difficult yet important task for
applications. Graph-based methods [Kovar et al. 2002; Arikan and
Forsyth 2002] find similar patterns of poses, cluster them into the
same node, and use the edges to represent transition motions be-
tween nodes. This approach allows interactive control by mapping
the user control to paths on the graph. Min and Chai [2012] use
key-frame-based segmentation to construct the graph structure and
build probabilistic-based to increase the expressiveness and diver-
sity of generated motion. At the same time, similar probabilistic
models on graph structures are proposed. Park et al. [2011] organize
a motion capture dataset using context-free grammar learned from
segments clustered with Partitioning Around Medoids (PAM) algo-
rithm based on pose level similarity. Aristidou et al. [2018] notice
that semantic similarity may not be reflected by low-level repre-
sentations such as poses and propose to learn a high-dimensional
representation of motion motifs and motion signatures. Since the
discrete structures lack expressiveness and responsiveness, Lee
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Figure 2: Architecture of VQ-PAE. Starting with a short motion sequence X ∈ R𝐽 ×𝑇 , the encoder learns an intermediate
representation using convolution. The representation is fed into the timing and the amplitude branch for predicting the phase
𝜙 , the frequency 𝑓 and the amplitude A of the pivot frame (rendered with mesh). A vector quantization (i.e. nearest neighbor
search) is used in the amplitude branch to ensure the structure of the phase manifold. Note the codebook A is shared among
multiple VQ-PAEs. We calculate the embedding P of the sequence assuming the frequency and amplitude stay constant in the
sequence. The predicted phase manifold sequence is then passed through a convolutional decoder to reconstruct the input
motion. Components with learnable parameters are marked in blue.

et al. [2010] take another approach and learn a continuous field for
motion. However, to generate motion, reinforcement learning is
required to progress in the learned field. Motion matching [Büttner
and Clavet 2015] skips the organization of data and directly finds
the best match of the current state and control signal in the dataset
and replays the sequence. It is among the methods with the highest
quality and is widely used in industry.With the progress of tokeniza-
tion [Dhariwal et al. 2020; Rombach et al. 2022] with VQ-VAE [Van
Den Oord et al. 2017], it is becoming more and more popular for
organizing human motion [Geng et al. 2023], and demonstrated
great success in multi-modal tasks [Guo et al. 2022; Siyao et al.
2022; Zhang et al. 2023]. However, completely discretizing the la-
tent space makes it difficult to capture the continuous nature of
motion, and the learned latent space is usually less compact, making
it difficult to construct a shared latent space for multiple characters.

Exploiting periodicity and phase. Using phase and frequency do-
mains to organize motion is closely related to our method. Park
et al. [2002] propose to align motions by the key-frames such as
foot-contact as key poses, and warping the motion with the guid-
ance of key poses so motions at different speeds can be interpolated.
It serves as an early inspiration for the introduction of phase and
is part of the inspiration for our frequency-scaled motion match-
ing in Section 4. Unuma et al. [1995] demonstrate style transfer
can be performed in the frequency domain. The introduction of
phase into neural networks demonstrated great success. It origi-
nally started with 1D phase [Holden et al. 2017] coming from a
semi-automated labeling process and quickly expanded into multi-
ple dimension hand-crafted phase that is able to handle complex
and non-periodic motions [Starke et al. 2019]. Starke et al. [2020]
attach a phase to each limb to deal with complex multiple con-
tacts. DeepPhase [Starke et al. 2022] proposes periodic autoen-
coders (PAEs), enabling learning on a continuous and expressive
multi-dimensional phase manifold. It has been proven successful
in applications like pose estimation [Shi et al. 2023] and motion
in-betweening [Starke et al. 2023]. However, the learned phases and
amplitudes are usually entangled, making it difficult to separate the
timing and high-level semantics of motion. The sparsity of motion

data leaves a large portion of the phase manifold invalid and can
lead to implausible motions when used for synthesis, and it will
be even more challenging to learn a shared phase manifold for
multiple characters. We provide a comparison with DeepPhase of
the disentanglement of phase manifolds in Section 5.3.

Motion retargeting and style transfer. Gleicher [1998] proposed
one of the earliest method for motion retargeting, by directly opti-
mizing on low-level motion representations. Other optimization-
based methods [Lee and Shin 1999; Choi and Ko 2000; Tak and Ko
2005] are also proposed to improve the result. However, those meth-
ods mainly focus on transferring motions to a new skeleton, instead
of building a common representation for different characters. This
is only addressed with deep learning based methods [Villegas et al.
2018; Lim et al. 2019; Aberman et al. 2020a; Li et al. 2023], where
a common latent space among different characters is learned. Al-
though they may not need paired data, the same or homeomorphic
skeletons are required such that the learning and auxiliary losses
can be applied, while our method does not have this constraint. It is
also demonstrated by Kim et al. [2022] that with paired examples, it
is possible to retarget between bipeds and quadrupeds. In combina-
tion with the view of dynamic systems, Kim et al. [2020] show that
a common latent space for two similar dynamic systems for bipeds
or pendulums can be learned with a pair of autoencoders. For style
transfer, Xia et al. [2015] propose to use KNN search to build the
style regression model. Aberman et al. [2020b] disentangles the
style code and content code with a labeled dataset. Jang et al. [2023]
make a further step to distinguish stylization and characterization,
pushing the boundary of style transfer further. Our method can
achieve a similar effect by treating each style as a separate dataset
and using the alignment ability to transfer the content.

3 PHASE MANIFOLD
In this section, we introduce the design of our disconnected 1D
phase manifold, which allows us to align motions with a single
timing variable while creating a narrow bottleneck and forcing our
framework to cluster semantically similar motions into the same
connected component of the phase manifold. We then describe
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our vector quantized periodic autoencoder (VQ-PAE) to learn the
embedding of motions from one dataset. Finally, we explain the
approach for training multiple VQ-PAEs on different datasets into
a common phase manifold.

3.1 Disconnected 1D phase manifold
We construct a phase manifold such that the timing is controlled by
a 1D phase variable. Given an input motion sequence X ∈ R𝐽 ×𝑇 ,
where 𝐽 and 𝑇 indicate the degree of freedom and the number of
frames, respectively, we aim at mapping each frame X𝑖 to a point
𝑝 = Ψ(A, 𝜙) ∈ R𝑑 on the phase manifold P, parameterized by a
1D phase variable 𝜙 ∈ (− 1

2 ,
1
2 ] and a vector amplitude A ∈ R2𝑑 .

We choose the mapping Ψ to be

Ψ(A, 𝜙) = A0 sin(2𝜋𝜙) + A1 cos(2𝜋𝜙), (1)

an ellipse embedded in R𝑑 , where A0,A1 ∈ R𝑑 are the first and
second half of A, respectively. In contrast to 𝜙 , which can take
any value in (− 1

2 ,
1
2 ], A can only be chosen from a finite codebook

A ⊂ R2𝑑 with size 𝐾 . Thus, our phase manifold P can be formally
defined as {Ψ(A, 𝜙) | A ∈ A, 𝜙 ∈ (− 1

2 ,
1
2 ]}. This construction

gives us a latent space that is a collection of ellipses, as shown in
Figure 1, where we collect samples of P by uniformly sampling
the phase 𝜙 on each ellipse P𝑖 = {Ψ(A𝑖 , 𝜙) | 𝜙 ∈ (− 1

2 ,
1
2 ]} and

use PCA to reduce dimension for visualization. In this manifold, a
class of motions with similar semantics is embedded into the same
ellipse. Note there is a one-to-one mapping between ellipses P𝑖
and amplitudes A𝑖 . This allows us to flexibly scale the size of the
bottleneck by changing the size ofA. A properly chosen bottleneck
size is the key to learning an expressive yet semantically aligned
phase manifold.

3.2 Vector quantized periodic autoencoder
Starke et al. [2022] introduce periodic autoencoder (PAE) for learn-
ing a continuous phase manifold. To learn a discrete amplitude
space, we utilize the vector quantization technique to cluster the
amplitude vectors into a learnable codebook A. The architecture
of our vector quantized periodic autoencoder (VQ-PAE) is demon-
strated in Figure 2.

A desired mapping from motion to phase manifold should satisfy
the following properties for an input motion sequence X ∈ R𝐽 ×𝑇

containing roughly a cyclic motion:
• Phase linearity: the phase 𝜙 should increase as linearly as
possible over time.
• Amplitude constancy: the amplitude A should be as constant
as possible over time.

To achieve those two properties, we use a similar approach as
PAE [Starke et al. 2022] by using an encoder to predict the amplitude
A, the phase 𝜙 and the frequency 𝑓 , which is the change rate of
phase over time, at the center frame, i.e. the pivot frame, of a short
input motion sequence X. We then assume the two properties hold
for the whole input sequence X and extrapolate the phase linearly
with the predicted frequency to the whole sequence. We calculate
the embeddings using Equation (1) with extrapolated phases and
amplitudes. A decoder is then used to reconstruct the input motion
sequence from the predicted embedding. A decent reconstruction

Figure 3: Details of phase calculation module.

can only be achieved if the learned mapping is close to phase linear
and amplitude constant.

Encoder. The encoder consists of a 2-layer 1D convolutional
network mapping the input to an intermediate representation. The
intermediate representation is then fed into two branches, namely
the timing branch and the amplitude branch, each responsible for
the prediction of phase, frequency and amplitude, respectively. We
denote the relative timing of each frame in the sequence w.r.t. the
pivot frame as T = {𝑡𝑖 }𝑇𝑖=1, where 𝑡𝑖 = [𝑖 − (𝑇 + 1)/2] Δ𝑇 . Note we
choose 𝑇 to be an odd number such that the pivot frame is unique,
and Δ𝑇 is the frame time of the dataset.

Timing branch. The timing branch starts with a 1D convolution
with kernel size 1, mapping the multi-dimensional intermediate
representation to a 1-channel temporal signal. A phase calculation
module is used on the temporal signal to predict the phase 𝜙 and
frequency 𝑓 . The detailed architecture of the phase calculation
module is shown in Figure 3. PAE [Starke et al. 2022] uses the
power of each frequency bin calculated by fast Fourier transform
(FFT) as weights to calculate the average frequency. However, it
produces unstable frequencies as the input phase shifts even when
it is a sinusoidal signal with a non-integer frequency. We find that
using a small multi-layer perceptron (MLP) on the powers produces
more robust frequency prediction. We use the equations presented
by Mason [2022] to calculate the phase 𝜙 , which helps with the fact
that 𝜙 is not a continuous parameterization of the phase manifold.
Please refer to the supplementary material for more details.

Amplitude branch. As the amplitude should be nearly constant
over time, we first apply an average pooling on the temporal axis
on the intermediate representation. AnMLP is followed to get a raw
prediction of amplitude Ã. Since the possible choices of amplitude
are finite, we use a vector quantization layer to find the nearest
neighbor A = argminA𝑖 ∈A ∥Ã − A𝑖 ∥2.

Decoder. With phase linearity and amplitude constancy assump-
tions, the phase variable of the input motion can be calculated by
Φ = 𝜙 + 𝑓 · T with the relative timing T . The embedding of the
input motion sequence can then be calculated by P = Ψ(A,Φ).
The decoder is a 2-layer 1D convolutional network that maps the
embedding back to the original motion space.

Loss function. We use the following loss function to train our
VQ-PAE:

Lrec = ∥X − X̃∥2,
Lvq = ∥sg(Ã) − A∥2 + ∥Ã − sg(A)∥2,

(2)

where X̃ is the reconstructed motion sequence, sg(·) is the stop
gradient operator. The first loss is the reconstruction loss of the VQ-
PAE the second loss is the vector quantization loss [Van Den Oord
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Figure 4: Overview of training multiple VQ-PAEs on hetero-
geneous datasets. A common phase manifold is guaranteed
by using a shared codebook A.

et al. 2017]. The total loss is

L = Lrec + 𝜆vqLvq, (3)

and 𝜆vq is a hyperparameter. For a detailed network architecture
and hyperparameter settings, please refer to the supplementary
material.

3.3 Learning a common phase manifold among
VQ-PAEs

To align motions among different datasets, a common phase mani-
fold can be learned with a shared codebook A and no additional
supervision as shown in Figure 4. Without loss of generality, we
illustrate the training process of two VQ-PAEs on two datasets
D1 and D2 with different skeletal structures in this section. The
training process can be easily extended to more datasets.

The loss for training two VQ-PAEs can be written as

L = Lrec1 + Lrec2 + 𝜆vqLvq, (4)

where Lrec1 and Lrec2 are the reconstruction losses of the two VQ-
PAEs, andLvq is the vector quantization loss of the shared codebook
A. During training, we optimize two VQ-PAEs at the same time.
Note that we do not need any skeletal topology correspondences
due to the use of simple 1D convolution and MLPs.

However, directly optimizing Equation (4) can lead to situations
where part of the entries inA are only used by one VQ-PAE, causing
disparity in the embeddings of D1 and D2. This is also a common
problem for regular VQ-VAEs that many entries in the codebook are
not used. Zheng and Vedaldi [2023] propose a simple yet effective
reinitialization technique to solve this problem for training with
one VQ-VAE. We adapt their method to the training of multiple
VQ-PAEs.

Reinitialization of A. At the beginning of training, A is initial-
ized with uniform ditribution U[−1/𝐾, 1/𝐾] and 𝐾 = |A|. For
simplicity, we discuss the reinitialization of A for one VQ-PAE. At
each training iteration step, the decayed running average usage
𝑁
(𝑡 )
𝑖

at the 𝑡-th iteration of each entry A𝑖 in A by the VQ-PAE is
updated by

𝑁
(𝑡 )
𝑖

= 𝛾𝑁
(𝑡−1)
𝑖

+ (1 − 𝛾) 𝑛
(𝑡 )
𝑖

𝑁
, (5)

where 𝑛 (𝑡 )
𝑖

is the number of times A𝑖 is used by the VQ-PAE at
the 𝑡-th iteration, 𝑁 is the number of amplitudes produced by the
encoder being quantized at each iteration and 𝛾 is the decay rate.

Intuitively, entries with low usage are more likely to be reinitial-
ized. We choose to reinitialize the less frequently used entries to
a randomly chosen amplitude produced by the encoder. Formally,
the reinitialization target 𝑍𝑖 of entry A𝑖 is sampled such that closer
outputs are preferred to maximize the utilization of the codebook
by

P(𝑍𝑖 = �̃�𝑘 ) ∝ exp(−∥A𝑖 − Ã𝑘 ∥2), (6)
where {Ã𝑘 } are the raw amplitudes predicted by the encoder in
this iteration. At an update step, every entry in the codebook is
linearly interpolated to the reinitialization target with a weight 𝛼𝑖
by

𝛼𝑖 = exp
(
−𝑁𝑖

10
1 − 𝛾 − 𝜖

)
, (7)

A𝑖 = (1 − 𝛼𝑖 )A𝑖 + 𝛼𝑖𝑍𝑖 , (8)

where 𝜖 is a small constant acting as a regularizer. We set 𝛼𝑖 such
that less frequently used A𝑖 is interpolated more towards a ran-
domly picked output of the encoder. Note the temporal superscript
(𝑡) is omitted for simplicity. Since the codebook is shared among
multiple VQ-PAEs, the reinitialization of A is performed as the
average update of all VQ-PAEs produced by Equation (8). An entry
will converge to a stable value only if it is frequently used by all
VQ-PAEs. For more details and reasoning of the setting of 𝜖 and 𝛾 ,
we refer the readers to the work of Zheng and Vedaldi [2023]. A is
reinitialized at every training iteration before the gradient descent
step.

Existing methods for learning a common latent space for mo-
tions with different skeletons [Villegas et al. 2018; Aberman et al.
2020a] usually require at least partially specified skeletal topology
correspondences and additional implicit supervision such as cycle
consistency [Zhu et al. 2017] and adversarial training [Goodfellow
et al. 2020]. In contrast, our method achieves a common phase man-
ifold with only a shared codebookA and no additional supervision,
while semantics and timing alignment are naturally provided. Re-
lying on the intrinsic periodicity of motions, this phase manifold
can be used to model different character topologies including biped
and quadruped without extra class-specific designs.

4 FREQUENCY-SCALED MOTION MATCHING
After the training of our VQ-PAEs, we can obtain the corresponding
manifold embedding 𝑝𝑖 ∈ P for every frame 𝑖 in the dataset, by
using the encoder to encode a 1-second motion sequence centered
at frame 𝑖 . Although relying on a single point on the manifold to
represent a pose can be ambiguous, since themanifold is designed to
be compact, a sequence ofmanifold points contains rich information
to retrieve a motion sequence from the database. In fact, within
a single cycle, the possible progress of phase, characterized by
all possible mappings from time to phase 𝑔 : [0, 1] → (− 1

2 ,
1
2 ], is

very expressive. To exploit the expressiveness in a sequence, we
demonstrate that it is possible to use motion matching [Büttner
and Clavet 2015] on the phase manifold and improve it with the
explicit phase variable.

Given the phase embedding sequence P of an input motion se-
quence, we use motion matching to retrieve a motion sequence
from the database, with phase embedding as the control signal in
the classical motion matching algorithm. For more details of the
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w/o frequency scaling w/ frequency scaling source motion

Figure 5: The running motions in Dog and Human-Loco
dataset are of different frequencies. With frequency scal-
ing, the motion with correct semantics is matched.

implementation, please refer to the supplementary material. We
also compare the result performance of motion transfer on the dog-
human setup with skeleton-aware networks (SAN) [Aberman et al.
2020a], the state-of-the-art for skeletal motion retargeting between
different skeletal structures. SAN heavily requires end-effector ve-
locity consistency between the source and target characters and
struggles to transfer motion with a large difference in skeletal struc-
ture as shown in Figure 7.

A common problem in motion matching is there is a trade-off
between responsiveness and smoothness. This can be mitigated by
using variable replay lengths 𝑇0 depending on the control signal.
However, this requires a lot of manual tuning and is not robust
to different inputs. In addition to this problem, directly applying
vanilla motion matching for motion transfer is not ideal, as there
might not be a motion clip in the database sharing the same seman-
tics and frequency as the input motion, causing timing or semantics
misalignment.

Algorithm 1 Frequency-scaled motion matching
𝑖 ← 1
Jstart ← initial pose descriptor
while 𝑖 < 𝑇 do

𝑘 = argmin𝑘 c(𝑖, 𝑘)
Output Y𝑘 :𝑘+𝑡 (𝑘) linearly interpolated to length 𝑡 (𝑖)
𝑖 ← 𝑖 + 𝑡 (𝑖)
Jstart ← J𝑘+𝑡 (𝑘)

end while

With the help of our phase manifold, we can solve both problems
by performing matching on a fixed number of cycles instead of a
fixed number of frames. We demonstrate the details with 1 cycle
and this can be easily extended to arbitrary cycles. Given a motion
sequence X and its corresponding frequencies F = {𝑓𝑖 } predicted
by the VQ-PAE, for each starting frame 𝑖 , we define its period 𝑡 (𝑖)
as the first frame 𝑗 such that

∑𝑖+𝑗
𝑘=𝑖

𝑓𝑘Δ𝑇 ≥ 1, thus X𝑖:𝑖+𝑡 (𝑖) roughly
corresponds to one cycle of motion. During motion matching, in-
stead of using a fixed number of frames 𝑇0, we query every period
of the input manifold, while the query is conducted on sequence
with 1-period length in the database, as shown in Algorithm 1 and
Equation (9). We denote the phase sequences of the database withQ,
the pose descriptor used to measure the similarity between frames
with J and the pose with Y. As a result, when more agile motions,
i.e. motions with higher frequency and lower period, are involved,

the matching steps will be carried out more frequently and thus the
motion will be more responsive. On the other hand, by allowing
interpolating the output motion to the same frequency as the input,
we achieve a more accurate timing and semantics alignment, as
shown in Figure 5. The transition cost function c(𝑖, 𝑘) is defined as:

c(𝑖, 𝑘) = 𝑑 (P𝑖:𝑖+𝑡 (𝑖) ,Q𝑘 :𝑘+𝑡 (𝑘) ) +𝜆1∥Jstart − J𝑘 ∥22 +𝜆2∥𝑡 (𝑖) − 𝑡 (𝑘)∥
2,
(9)

where 𝑑 (P,Q) can be calculated by linearly interpolating their
phases to the same length, chosen to be 1/Δ𝑇 , and calculating
the squared distance between them. The third term is introduced
because we favor the motion with similar frequency and discourage
large temporal interpolation. Note that 𝑡 (𝑖) in the database and the
fixed length interpolation of Q𝑖:𝑖+𝑡 (𝑖) can be precomputed, so the
commonly used acceleration techniques for motion matching can
still be applied to speed up the search.

5 APPLICATIONS AND EVALUATIONS
We evaluate our disconnected 1D phase manifold in terms of timing
alignment and semantic alignment on several datasets. We show
that our method can be used for improving motion matching with
the predicted 1D phase. With our improved motion matching, we
show that it is possible to achieve motion transfer and motion
stylization by performing motion matching on the phase manifold.

5.1 Datasets
We use three datasets in our experiment. The Dog dataset [Zhang
et al. 2018] and Human-Locomotion dataset [Starke et al. 2019] con-
tain mostly locomotion including walking, running, jumping and
idling. The MOCHA dataset [Jang et al. 2023] is a recently proposed
highly stylized and characterized motion dataset. It contains a wide
range of motions on different characters, including clown, ogre,
princess, robot and zombie. For a detailed demonstration of the
dataset, we refer the readers to Jang et al. [2023]. In the following
sections, we train our VQ-PAEs with two combinations of datasets:
Dog and Human-Locomotion and MOCHA-Clown and MOCHA-
Ogre. We refer to the former as human-dog setting and the latter as
stylized setting. In addition, we show that it is possible to learn a
shared latent space for multiple datasets with different characters,
such as Dog, Human-Locomotion, and MOCHA by extending Equa-
tion (4) with additional reconstruction losses and training multiple
VQ-PAEs together. Please refer to 3:10 in the accompanying video
for a demonstration.

5.2 Motion alignment
We examine the average pose at each point of the manifold to verify
its alignment effect. Since our 1D phase manifold is a compact em-
bedding of motions, the mapping from 𝑝𝑖 to pose space is naturally
a one-to-many mapping. However, it is not trivial to obtain the
average on a continuous space. We propose to train a small MLP
for each dataset that minimizes the following loss:

Lpose = E(𝑝𝑖 ,Y𝑖 )∼D𝑘
∥Y𝑖 −𝑀𝑘 (𝑝𝑖 )∥2, (10)

where 𝑀𝑘 is the MLP for dataset D𝑘 that maps a point in P to
pose space, and (𝑝𝑖 ,Y𝑖 ) are pairs of manifold embedding and the
corresponding pose in the dataset D.
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Figure 6: Motion retrieval. We retrieve motions at different
frequencies in the same connected component containing
motions of a dog moving up and down. From left to right the
frequency decreases, corresponding to fast jumping, jumping
up and sitting back, and slowly standing up and sitting back.
Please refer to 1:17 in the accompanying video for a more
comprehensive result.

We uniformly sample phase variables with different amplitudes
to get the embeddings and use the learned MLP to predict the
corresponding poses. The results are shown in Figure 1. It can be
seen that even for drastically different characters like a dog and
a human, where neither the semantic nor the timing alignment is
well defined, the average poses from different datasets at the same
manifold point provide a reasonable alignment on the semantic level.
This is only possible if semantically similar motions are mapped
into the same amplitude and poses with similar timing are mapped
into the same phase, otherwise, the average poses would be noisy
andmeaningless. For more results, please refer to the accompanying
video.

5.3 Disentangling phase and amplitude
In both phase manifolds designed by us and by DeepPhase [Starke
et al. 2022], the phase represents timing and the amplitude repre-
sents motion content. We examine the phase-amplitude entangle-
ment by training the same MLP mapping from the phase manifold
to pose space as in Section 5.2. By taking the amplitude from one
motion sequence or a static pose and the phase from another motion
sequence, we predict the corresponding pose using the trained MLP.
It can be seen in Figure 8 that our method can learn a disentangled
phase manifold, but the manifold from DeepPhase fails due to the
entanglement and non-compactness in using a multi-dimensional
phase.

5.4 Motion retrieval
We show a simple example that by varying the frequency 𝑓 , we
can retrieve semantically similar motion at different frequencies
by searching the nearest neighbor in the phase embeddings of
the dataset, as shown in Figure 6. Formally speaking, given an
amplitude A ∈ A and a frequency 𝑓 , we generate a uniformly
distributed phase sequence Φ𝑓 = {𝜙𝑖 }𝑁𝑖=1 with 𝜙𝑖 = 𝑖 𝑓 Δ𝑇 , and
𝑁 = 1/(𝑓 Δ𝑇 ) such that Φ covers exact one cycle with frequency 𝑓 .
We then retrieve the desired motion with nearest neighbor search
by comparing the constructed embedding sequence Ψ(A,Φ𝑓 ) and
the embedding sequences of the motions with length 𝑁 from the
dataset. Please refer to the accompanying video for a detailed result.

Table 1: Per-frame mean joint position error (cm) using MLP.

Size of A 8 16 32 64 128 512

Dog [2018] 1.86 1.67 1.41 1.24 1.19 0.87
Human-Locomotion [2019] 1.29 1.26 1.19 1.13 1.08 1.01
MOCHA-Clown [2023] 11.6 10.1 9.97 9.86 9.29 6.50
MOCHA-Ogre [2023] 12.2 11.3 10.9 9.85 9.42 7.70

Table 2: Manifold overlapping percentage.

Size of A 8 16 32 64 128 512

human-dog 100 100 100 67.8 5.42 0.00
stylized 100 100 100 100 92.3 10.3
human-dog (no reinit.) 100 73.6 64.2 52.5 1.32 0.00

5.5 Motion stylization and characterization
An immediate application of our improved motion matching can be
motion stylization and characterization. We show that by training
different VQ-PAEs on different characters from MOCHA [Jang
et al. 2023] dataset in a shared phase manifold, we can transfer the
core content of motion among different characters, and stylize the
motion according to a specific character dataset as shown in Figure 9.
We are able to achieve a similar effect as the motion stylization
method proposed by Jang et al. [2023] with a much simpler setup.
Since the code for MOCHA [Jang et al. 2023] is not available, we
provide a qualitative comparison in the accompanying video.

5.6 Ablation study
We study the impact of codebook size and usage of reinitialization
of A on the performance of our method.

Codebook size. Choosing an appropriate codebook size is critical
for our framework, as a small codebook size will not be able to
capture the different semantics, and a large codebook makes the
alignment on semantics less accurate. We measure the expressive-
ness of a learned phase manifold by calculating the mean joint
position error when using MLP to reconstruct the input motion
from the phase manifold embeddings, using the same setting as in
Section 5.2. Note that MOCHA datasets have a larger error due to
a large number of transitions between amplitudes, which cannot
be captured by the per-frame decoding MLP, but can be faithfully
reconstructed by the motion matching algorithm using a sequence
of embeddings as input. As shown in Table 1, the expressiveness
reaches a plateau when the codebook size is larger than 64 for Dog
and Human-Loco dataset, and 64 for MOCHA dataset, but peaks
at 512. However, we also show that the percentage of embeddings
in the dataset that lies on a shared connected component decreases
with the codebook size, as shown in Table 2. This indicates that a
large codebook size can cause a disparity in the learned manifold
embeddings, in favor of higher expressiveness. Although size 512
improves on expressiveness, it fails to create sufficient overlapping
between datasets. Thus, we choose |A| = 32 for the human-dog
setting and |A| = 64 for the stylized setting in our experiments
according to the results.
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Reinitialization of A. With the help of reinitialization adapted
from Zheng and Vedaldi [2023], every entry in A is used by both
VQ-PAEs, which is crucial for building a common phase manifold.
When disabled, the phase manifold overlapping percentage drops
as shown in Table 2.

6 DISCUSSION AND CONCLUSION
In this work, we present a disconnected 1D phase manifold for
motion alignment, leveraging the intrinsic periodicity of motions.
We show that the alignment can be achieved thanks to the carefully
designed structure of the latent space. With the proposed vector
quantized periodic autoencoder, we can embed motions from dif-
ferent characters with different skeletal structures or morphologies
into the same phase manifold without any supervision or skeletal
structure correspondences. We demonstrate that when integrated
withmotionmatching, various applications such asmotion retrieval,
transfer, and stylization can be achieved.

The key success of our simple motion alignment lies in the lim-
ited capability of the shallow VQ-PAE, which prevents a large distor-
tion between the motion representation and the latent embeddings,
and the design of the compact latent space, a collection of ellipses
embedded inR𝑑 . For semantic alignment, the structural similarity
between motion datasets is explicitly reflected in the latent space
through the amplitudes. For example, running motions are clus-
tered into ellipses with larger amplitudes, while idling motions
are clustered into ellipses with smaller amplitudes. As for timing
alignment, the anisotropic structure of the ellipses (Equation (1)) is
crucial. Although we expect the phase variable to progress linearly
through an entire motion cycle, the progress of the phase manifold
is not linear. This guarantees, for example, that crucial points in
motions such as foot contacts, are mapped to the vertices of ellipses.
However, this alignment is not always perfect: as can be seen at
3:01 in the accompanying video, a mismatch of the left and right
foot contact exists, since no joint correspondence is provided, so
the left and right body parts are indistinguishable.

While our current framework provides good timing alignment,
the semantics alignment is not always perfect. It requires carefully
picking the right codebook size to balance between expressiveness
and the amount of overlap among datasets. It also implicitly requires
the datasets to contain semantically similar motion distributions.
For example, the backward motion is presented in the Human-Loco
dataset but not in the Dog dataset, so the Human backward walking
is aligned with forward walking for Dog. In the future, it would
be interesting to automatically learn the size of A and filter out
motions that are not semantically similar. In addition, the residual
amplitude, removed by the quantization, could be potentially used
for representing “styles” of motions within the same semantics.

Our current framework is not generative. It would be interest-
ing to explore the possibility of generating new motions from the
phase manifold. Another promising direction for future research
is training the PAEs with other 1D input signals, such as a music
dataset, e.g. for a tightly aligned music-to-dance generation.
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source motion transfered motion SAN [2020a]

Figure 7: Motion transfer. Our framework can transfer motions between different characters preserving the semantics. However,
SAN [2020a] produces implausible results because of unstable adversarial training.

Figure 8: Phase and amplitude disentanglement. Our method generates motion combining the semantics from the amplitude
input and the timing from the phase input, while DeepPhase [2022] generates implausible motions due to the entangled phase
manifold.

source motion (ogre) transfered motion (clown)

Figure 9: Motion characterization. The walking motion of the ogre is transferred to the clown. Our method preserves the
semantics of the motion, while the result motion is highly characterized.
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