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Figure 1. AIpparel. We present a multimodal foundation model for digital garments trained by fine-tuning a large multimodal model on
a custom sewing pattern dataset using a novel tokenization scheme for these patterns. AIpparel generates complex, diverse, high-quality
sewing patterns based on multimodal inputs, such as text and images, and it unlocks new applications such as language-instructed sewing
pattern editing. The generated sewing patterns can be directly used to simulate the corresponding 3D garments.

Abstract
Apparel is essential to human life, offering protection, mir-
roring cultural identities, and showcasing personal style.
Yet, the creation of garments remains a time-consuming
process, largely due to the manual work involved in design-
ing them. To simplify this process, we introduce AIpparel,
a multimodal foundation model for generating and editing
sewing patterns. Our model fine-tunes state-of-the-art
large multimodal models (LMMs) on a custom-curated
large-scale dataset of over 120,000 unique garments,
each with multimodal annotations including text, images,
and sewing patterns. Additionally, we propose a novel
tokenization scheme that concisely encodes these complex
sewing patterns so that LLMs can learn to predict them
efficiently. AIpparel achieves state-of-the-art performance
in single-modal tasks, including text-to-garment and
image-to-garment prediction, and enables novel multi-
modal garment generation applications such as interactive
garment editing. The project website is at https:
//georgenakayama.github.io/AIpparel/.

∗Equal Contribution.
†Work done as a visiting researcher at Stanford.

1. Introduction

Clothing plays a crucial role in society, providing protection
from the weather, reflecting societal norms, and serving as
a means of personal expression. A key stage in garment
production is the development of sewing patterns—a set of
flat 2D panels with standardized assembly instructions that
form a complete 3D garment [4]. Pattern making is a chal-
lenging task due to the complex geometric relationship be-
tween the 2D pattern and the draped 3D shape of the sewn
garment. Even an experienced tailor must go through multi-
ple iterations, incorporating feedback from various sources,
including verbal descriptions of the garment’s fit and feel, as
well as visual references of its appearance. To simplify the
pattern-making process, we explore strategies to leverage
emerging generative models with multimodal input, such as
text and images.

State-of-the-art sewing pattern prediction methods are
designed to work with one specific input modality, such
as 3D points [6, 14, 29], images [46, 50, 70, 75, 79], or
language [21]. While effective within their respective do-
mains, these single-modal approaches are often challeng-
ing to adapt to garment prediction tasks requiring differ-
ent or combined input modalities. Expanding these meth-
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ods to multimodal pattern prediction presents two primary
challenges. First, no large-scale multimodal sewing pattern
dataset is publicly available. Second, the capacity to accu-
rately interpret multimodal inputs typically only emerges in
large models with billions of parameters [1, 36]. It remains
uncertain how to efficiently scale existing methods to mod-
els of this size.

In this paper, we propose to build such multimodal gar-
ment generative models by extending an existing large mul-
timodal model (LMM) [36, 62, 74] to understand sewing
patterns with complex geometries. To achieve this, we an-
notate the largest sewing pattern dataset [31] with multi-
modal labels. Our annotated dataset is ten times larger than
those used by previous state-of-the-art generative meth-
ods [21, 29, 38], including over 120,000 unique sewing pat-
terns paired with detailed text descriptions, images, edited
sewing patterns, and editing instructions. Fine-tuning an
LMM to perform multimodal garment generation requires
representing complex garments in a format that LMMs can
understand—tokens. For this task, we develop a novel tok-
enization method that is both expressive in representing the
complex geometries of sewing patterns and concise enough
to fit within the limited context length of existing LMMs,
making fine-tuning computationally efficient.

Combining these components, we present AIpparel, a
large multimodal model for generating sewing patterns.
AIpparel can predict sewing patterns with complex geome-
tries and outperforms state-of-the-art methods in single-
modal garment prediction, often by a large margin. More-
over, our approach unlocks entirely new multimodal gar-
ment generation tasks. Our contributions include:
• We present GCD-MM, a multimodal sewing pattern

dataset extending the largest public dataset of sewing
patterns with multimodal annotations. We plan to pub-
licly release the dataset to inspire innovative garment pre-
diction capabilities and further enable research in multi-
modal garment generation.

• We develop a novel tokenization scheme and a new train-
ing objective for fine-tuning LMMs to predict sewing pat-
terns. This tokenization method is critical for retargeting
LMMs to multimodal garment prediction tasks efficiently.

• We present AIpparel, the first multimodal foundation
model for sewing pattern prediction capable of taking lan-
guage, images, and sewing patterns as input.

2. Related Works

Garment Generation. Prior works have studied learning-
based garment generation represented in various formats,
including images [5, 27], 3D meshes [17, 26, 33, 40,
41, 44, 49, 54, 57, 60, 81, 83, 85, 86], and sewing pat-
terns [21, 29, 38, 50, 68]. Our paper focuses on gen-
erating sewing patterns, which, compared to other repre-
sentations, are the industry standard and can be directly
used for downstream simulation and manufacturing. Ear-

lier works have explored a variety of different ways to gen-
erate and predict sewing patterns, including retrieval-based
methods [14, 20], predicting sewing pattern templates with
few parameters [25, 64, 65, 76], or cutting 3D scans into 2D
panels [16, 18, 37, 43, 55, 67]. These algorithms usually re-
quire heuristics, such as the output garment templates. This
limits their flexibility in extending to different input modal-
ities or more complex garment types. Further, researchers
have successfully applied deep learning methods to gener-
ate sewing patterns [21, 29, 38]. While these methods can
predict accurate sewing patterns based on input condition-
ing, they are task-specific models designed to work well
only in a single modality. Extending these single-modal
methods to a novel modality is difficult, in part because of
the lack of large-scale multimodal sewing-pattern datasets
and the requirement to redesign the network architecture.
While Wang et al. [68] can predict sewing patterns from
multiple modalities, including images, 3D garments, and
body measurements, their method is limited to predicting
simple garments with a predefined set of parameters. In this
paper, we aim to tackle the challenge of creating a large
multimodal generative model by curating the first multi-
modal garment dataset with complex garment geometries
and providing a scalable recipe building on existing large
multimodal models.

Extending Large Multimodal Models. Large multi-
modal models have gained significant attention for their
ability to understand language and images [2, 15, 48,
58, 62]. Efforts to extend LMMs to additional domains
typically fall into two categories. Optimization-free ap-
proaches [24, 39, 56, 69, 71, 74, 77] employ prompt en-
gineering. The other option is to fine-tune LMMs to
take the new modality as input and/or output. The lat-
ter approach was first introduced for vision-language mod-
els [36, 61, 84] and subsequent works extended it to other
modalities [11, 19, 32, 34, 72, 80]. Their approaches typi-
cally involve using pre-trained encoders [32, 34, 72] or stan-
dard discrete representations [11, 80] to convert the input
modalities into tokens and align them with the text feature
space of the LMMs. In particular, LLaVA [36] is pioneer-
ing in fine-tuning Large Language Models (LLMs) for vi-
sual understanding. It uses a pre-trained vision encoder to
encode images into tokens, and a trainable projection layer
to project the visual tokens into the LLM’s feature space.
We build our work on top of LLaVA by fine-tuning it to un-
derstand sewing patterns. This presents unique challenges,
however, due to the lack of pretrained encoders or learning-
efficient representations for sewing patterns. This motivates
us to design an efficient, learning-friendly tokenizer and a
fine-tuning objective for sewing pattern prediction.

Garment Datasets. Garment datasets mostly fall into one
of the following three categories: 1) datasets based on 3D
scans of real-world garments [3, 9, 22, 41, 59, 73, 85],
2) datasets of designer-created garments [10, 87], and 3)



Dataset Total Text Image Edits

Wang et al. [68] 8k ✗ ✓ ✓
Korosteleva and Lee [28] 23.5k ✗ ✓ ✗
Sewfactory [38] 19.1k ✗ ✓ ✗
DressCode [21] 20.3k ✓ ✗ ✗
GCD [31] 130k ✗ ✓ ✗
GCD-MM (Ours) 120k ✓ ✓ ✓

Table 1. Modalities of Sewing Patter Datasets. GCD-MM is
a large-scale sewing pattern dataset with multimodal annotations,
including text, images, and edited patterns.

datasets containing mostly procedurally generated sewing
patterns [7, 26, 28, 38, 45, 51, 63, 66, 68]. While 3D gar-
ment scans and designer-created garments can accurately
capture the real-world complexity of garments, they are ex-
pensive to obtain, which limits the scale of these categories
of data. Our work focuses on leveraging large-scale pro-
cedurally generated sewing pattern datasets. To the best of
our knowledge, the largest synthetic sewing pattern datasets
available are DressCode [21], SewFactory [38], and Gar-
mentCodeData (GCD) [30, 31]. None of their annotations,
however, contain the full combinations of text, images, and
sewing pattern edits, making them insufficient for training
a multimodal sewing pattern generative model. To over-
come this data gap, we curate the first large-scale multi-
modal sewing pattern dataset by expanding GCD with an-
notations including text, editing pairs, and editing instruc-
tions. Tab. 1 compares different sewing pattern datasets and
their annotation modalities.

3. Method
We propose a large multimodal generative model for sewing
patterns by fine-tuning existing LMMs on a multimodal
sewing pattern dataset. For this purpose, we first cu-
rate a sewing pattern dataset with multimodal annotations
(Sec. 3.1). We then describe how to train our model, AIp-
parel, using an efficient tokenization scheme for sewing pat-
terns, with LlaVA 1.5-7B [36] as a base model (Sec. 3.2).

3.1. Multimodal GarmentCode Dataset
We create annotations covering many modalities to train
a multimodal sewing pattern generative model. Specif-
ically, we build on top of the largest existing sewing-
pattern dataset, GarmentCodeData (GCD) [31], to incor-
porate two other modalities: text descriptions and sewing
pattern pairs with editing instructions. We dub our dataset
GarmentCodeData-MultiModal (GCD-MM).

Text description of sewing patterns. To enable applica-
tions such as text-conditioned sewing pattern generation, it
is important to obtain detailed text annotation describing the
sewing patterns [8, 21]. He et al. [21] created short keyword
descriptions of sewing patterns by prompting GPT4V with
rendered images. However, this method suffers from hallu-

cination, and the short keywords are insufficient to describe
the garments in detail, leading to ambiguities. Our pipeline
improves on this by leveraging the design parameters as-
sociated with each synthetically generated sewing pattern
to create accurate descriptions that capture the garment’s
key features. Specifically, we develop a rule-based algo-
rithm to generate a set of short phrases, including a garment
type (e.g., “midi dress”, “godet skirt”) and brief descriptions
based on distinctive characteristics (e.g., “flared hem”, “V-
neckline”). To obtain the final sewing pattern description,
we prompt GPT-4o [74] using the rule-based short captions
and the rendered views of the draped garment. Our ap-
proach reduces GPT-4o’s hallucination and results in more
accurate descriptions in natural language. Please refer to
the supplementary for caption comparison with DressCode
and the prompts and rules we used to generate them.

Language-instructed Sewing Pattern Editing. We also
augment GCD with language-instructed editing annota-
tions. Specifically, we use the programming abstraction
from GarmentCode [30] to create paired sewing patterns
with corresponding text instructions describing the applied
edits. We first manually specify a series of sewing pat-
tern edits using the abstraction. This includes edits such as
adjustments in skirt and pants length, changing insert and
neckline styles, and adding or excluding a hood or sleeve.
For each modification, we generate captions using a text
template to describe the applied changes. See the supple-
mentary for editing templates and captions examples.

3.2. AIpparel

AIpparel fine-tunes LLaVA 1.5-7B on our GCD-MM
dataset to generate sewing patterns from multimodal input.
For this purpose, we need to encode sewing patterns into a
compact list of tokens for LLaVA’s input. We also propose a
novel fine-tuning objective that allows AIpparel to generate
both discrete tokens and continuous parameters. Figure 2
shows an overview of our method.

Pattern Representation. Following GCD [31], we define
sewing patterns as a set of 2D panels in 3D with stitching in-
formation. A sewing pattern P = (P, S) is a tuple consist-
ing of N panels P = {P1, . . . , PN} and stitching informa-
tion S. Each panel Pi is a planar surface with vertices Vi =

{v(i)1 , . . . , v
(i)
ni } and edges Ei = (e

(i)
1 , . . . , e

(i)
ni ), where each

edge contains two endpoints connecting (v
(i)
k , v

(i)
k′ ) with

k′ = k mod ni + 1. Since each panel is defined in its
own coordinate frame, we always set v(i)1 = 0 ∈ R2. An
edge can be a straight line, a quadratic or cubic Bézier
curve, or an arc, and includes its corresponding control
vertices c

(i)
k . Each panel also includes a rigid 3D trans-

formation R that transforms Pi into the global coordinate
frame for draping. Lastly, each panel contains a unique
name indicating the panel type for the designers. We define
stitching information S as a set of edge pairs among panel



Figure 2. Illustration of Our Method. AIpparel uses a novel sewing pattern tokenizer (light blue region) to tokenize each panel into a set
of special tokens (light green region). Panel vertex positions and 3D transformations are incorporated using positional embeddings (colored
arrows) to the tokens. AIpparel takes in multimodal inputs, such as images and texts (light orange region), to output sewing patterns using
autoregressive sampling (light grey region). Finally, the output is decoded to produce simulation-ready sewing patterns (light pink region).
See Section 3 for method details.

edges, i.e., S = {(e(i1)k1
, e

(j1)
l1

), . . . , (e
(im)
km

, e
(jm)
lm

)} where

each (e
(is)
ks

, e
(js)
ls

) indicates that edge e
(is)
ks

from panel Pis

will be stitched with edge e
(js)
ls

. See the supplementary for
representation details.

Sewing Pattern Tokenization. The sewing pattern rep-
resentation in GCD contains both continuous parameters,
such as panel vertex coordinates, and discrete parameters,
such as the number of panels and stitches. This poses
challenges in representing each sewing pattern compactly
as a set of tokens for the transformer’s prediction. Prior
works rely on extensive zero-padding to ensure that all
sewing patterns can be represented as a fixed-length vec-
tor [21, 29, 38]. This approach is impractical for the com-
plex sewing patterns found in GCD-MM, as it produces an
excessively long context. For example, the tokenization
scheme of He et al. [21] requires more than 30k tokens to
represent a typical sewing pattern in the GCD-MM dataset,
making it extremely inefficient for generation and learning.1

Inspired by recent work on vector graphics genera-
tion [13], we develop a tokenization scheme that efficiently
represents sewing patterns as a sequence of drawing com-
mands. Specifically, we introduce four special tokens to
indicate the start of a garment (<SoG>) and the end of a
garment (<EoG>), as well as the start of a panel (<SoP>)
and the end of a panel (<EoP>). With these tokens, each
sewing pattern can be represented as

Eg(P) = <SoG>Ep(P1, S) · · ·Ep(Pn, S)<EoG>, (1)

1See supplementary for a detailed analysis.

where Ep tokenizes panel P in the form of
<SoP> . . .<EoP>. Ep consists of three pieces of
panel information: name, transformation, and edges.
The panel name is tokenized using LLaVA-1.5-7B’s text
tokenizer and inserted after <SoP>. We introduce a new
token <R> and place it after the panel name to represent the
panel’s transformation. Each edge type also corresponds to
two special tokens, depending on whether the edge ends at
the starting endpoint: line (<L>, <cL>), quadratic Bézier
curve (<Q>, <cQ>), cubic Bézier curve (<B>, <cB>), and
arc (<A>, <cA>). We also introduce a set of stitching tag
tokens {<t1>, . . . ,<tM>,<tN>} to represent stitching
information S. We associate each edge with a stitching tag
so that (e(is)ks

, e
(js)
ls

) ∈ S iff there exists a ∈ {1, . . . ,M}
such that e(is)ks

and e
(js)
ls

are both associated with <Ta>. If
an edge is not stitched to another edge, it is associated with
the null tag <tN>. For example, a panel consisting of two
lines stitched together, one cubic Bézier curve and an arc is
tokenized as

<SoP>[panel name]<R><L><t1><L><t1>
<B><tN><cA><tN><EoP>.

Compared to the DressCode tokenizer [21], our proposed
scheme uses around 100 times fewer tokens to describe the
same garment. On average, we represent a sewing pattern
with around 250 tokens with a maximum of 838 tokens on
GCD-MM, whereas DressCode uses more than 30k tokens
for each sewing pattern on the same data.

Notation. From now on, we use bold letters (e.g., X ∈
RN×D) to denote the input embedding sequence to the



Figure 3. Image-to-Garment Prediction (Qualitative). GCD-MM (Left): our model can reconstruct suitable sewing patterns from the
input image alone. In contrast, SewFormer does not produce simulation-ready sewing patterns despite fine-tuning. SewFactory (Right):
SewFormer produces inaccurate panels (top row) and incorrect garment types (bottom row) while AIpparel accurately recovers sewing
patterns from the images, resulting in superior simulation results. See Sec. 4.1.

Dataset Method Panel L2 (↓) #Panel Acc (↑) #Edge Acc (↑) Rot L2 (↓) Transl L2 (↓) #Stitch Acc (↑)

Sewfactory SewFormer 3.3 89.8 99.3 .008 0.8 99.2
AIpparel 2.8 93.9 99.9 .005 0.6 99.8

GCD-MM SewFormer-FT 12.3 79.4 44.7 .040 4.5 2.8
AIpparel 5.4 85.2 82.7 .020 2.7 77.2

Table 2. Image-to-Garment Prediction (Quantitative). AIpparel achieves state-of-the-art performance in both datasets and surpasses
SewFormer-FT by a large margin on GCD-MM.

transformer. We denote the i-th embedding in X as Xi,
and X<i,X>i are sliced sequences before or after the i-the
embedding, respectively. We use fϕ to denote the language
transformer from LLaVA. We use X to denote tokens be-
fore passing through fϕ and H = fϕ(X) as the output
hidden features from the transformer.

Continuous Parameters. The tokenization scheme in
Eq. 1 does not include any continuous parameters such as
vertex positions, control points for edges, or rigid transfor-
mation of panels. Prior works represent continuous param-
eters as quantized tokens in discrete space [21, 47]. This
introduces quantization error for the continuous parame-
ters and uses more tokens per panel, leading to a longer,
inefficient representation. Inspired by recent approaches
of extending LMMs [19, 32], we propose using small re-
gression heads to map hidden features of the transformer
to the continuous parameters. Specifically, we define an
MLP g

(e)
θ : RD → RC to map LLaVA’s hidden features

from the last layer to vertices and control points. As illus-
trated in Fig. 2, g(e)

θ takes the output embedding correspond-
ing to the token right before the edge type token. Con-
cretely, if the i-th token, Xi, corresponds to an edge-type

token for edge e, its associated output embedding H<i =
fϕ(X<i) ∈ R(i−1)×D is used to predict e’s endpoint and
control parameters via g

(e)
θ (Hi−1). Similarly, we also de-

fine a transformation regression head g
(R)
θ′ : RD → R7

mapping the hidden features of <R>’s previous token to a
translation T ∈ R3 and a rotation quaternion q ∈ H. In this
way, continuous parameters are regressed using small re-
gression heads that are jointly trained with the transformer,
leading to more efficient context length usage in represent-
ing sewing patterns. At training time, we use ground-truth
parameters for supervision, and during generation, we use
the last hidden feature from the output for regression should
an edge-type token or a transformation token be sampled.

Positional Embeddings. To include information on con-
tinuous parameters in the sewing pattern tokenization de-
fined in Eq. 1, we include the second endpoint of each edge
as a positional embedding added to the token embedding.
Specifically, we define h

(e)
φ : R2 → RD as a two-layer per-

ceptron. For each edge e = (v1, v2) with an edge-type to-
ken embedding of Xi, we add h

(e)
φ (v2) to Xi to inform the

language model fϕ of the vertex positions. We also define



h
(R)
φ′ : R7 → RD to be the projection function for trans-

formations. The transformation parameters (t, q) ∈ R7 for
each panel are projected using h

(R)
φ and added to the token

embedding for <R>. At training time, we use ground-truth
vertex and 3D transformations as positional embeddings,
and during generation, we use the parameters predicted by
the regression heads.

Training. We keep both the vision encoder and projection
frozen, and fine-tune all weights in the language model fϕ,
regression heads g

(e)
θ , g

(R)
θ′ , and the positional embedding

projection layers h(e)
φ , h

(R)
φ′ . The fine-tuning loss is defined

as a combination of cross-entropy (CE) on the discrete to-
kens and L2 loss on the continuous parameters:

L = CE(fϕ(X<−1),X1>)

+ λ
∑
e′

∥∥∥g(e)
θ ◦ fϕ

(
X<ie′

)
− ve

′

2

∥∥∥
2

+ λ
∑
R′

∥∥∥g(R)
θ′ ◦ fϕ

(
X<iR′

)
−R′

∥∥∥
2
.

(2)

Here,
∑

e′ is the sum over all edges in the sewing pattern’s
sequence X . For each edge e′, its second endpoint is de-
noted as ve

′

2 . Similarly,
∑

R′ is the sum over all the transfor-
mations. We do not explicitly include the positional embed-
ding in Eq. 2, but it is added according to the rules defined
in the previous paragraph.

4. Experiments
We validate the effectiveness of our model on multiple tasks
and conduct an ablation study on the key technical designs.

Training Details. We train AIpparel on GCD-MM mul-
timodal data samples for image-to-garment and text-to-
garment generation, as well as text-based garment editing.
We randomly split GCD-MM into train-validation-test sub-
sets with a 90:5:5 ratio. All of our results on GCD-MM
below are predicted using a single model. See the supple-
mentary for a complete implementation and training setup.

Metrics. To quantitatively measure our sewing pattern
predictions, we use reconstruction metrics established by
previous works [29, 38]. Given a pair of generated and
ground-truth sewing patterns, we measure 1) Panel L2, Rot
L2, and Transl L2: average vertex, rotation and translation
L2 distance between predicted and ground-truth panels; 2)
#Panel Accuracy: percentage of sewing patterns with cor-
rectly predicted number of panels; 3) #Edge Accuracy: per-
centage of correctly predicted edges in each correctly pre-
dicted panel; 4) #Stitch Accuracy: accuracy of predicted
stitches compared to ground truth. To save space in compact
tables, we report Accuracy, the product of #Panel Accuracy
and #Edge Accuracy, to provide a comprehensive measure-
ment of garment reconstruction quality. All L2-based met-
rics are measured in centimeters except for rotation.

4.1. Image to Sewing Pattern Prediction

We test our model’s capability to reconstruct garments from
a single image using two datasets: SewFactory [38] and
GCD-MM. For the baseline, we compare with SewFormer’s
pre-trained model on the SewFactory dataset. Because Sew-
Former did not release their train–test split for their pre-
trained model, we use a custom split for a fair comparison.
For GCD-MM, we fine-tune SewFormer until its validation
loss no longer improves. We denote it as SewFormer-FT.

Tab. 2 shows quantitative comparisons on the two
datasets. AIpparel outperforms the baselines on both
datasets, suggesting that our method outputs more accurate
sewing patterns than the baseline. In particular, AIpparel
shows a large performance improvement over SewFormer-
FT on the difficult GCD-MM dataset, indicating the effec-
tiveness of our method in predicting more complex sewing
patterns. Fig. 3 shows qualitative results. The two exam-
ples on the left show that SewFormer-FT fails to recon-
struct simulatable garments despite fine-tuning. This sug-
gests that SewFormer cannot adapt to complex garments
with small panels and diverse edge types. In contrast, our
model predicts sewing patterns matching the input images,
including small panels such as the waistband on the top row
and the sleeve cuffs at the bottom. The two examples on
the right show results on SewFactory [38]. The pre-trained
SewFormer fails to predict the garment in the top row with
sleeves and the bottom row’s skirt as a pair of pants, while
AIpparel correctly predicts the sewing patterns based on the
inputs.

4.2. Multimodal Garment Generation

We evaluate the effectiveness of AIpparel in various mul-
timodal garment generation scenarios. Specifically, we as-
sess its performance on a set of 100 garments with 5 types
of multimodal inputs (20 test samples each): 1) texts, 2)
images, 3) a combination of text and images, 4) open-ended
prompts that require reasoning, and 5) editing instructions.
Success in such a benchmark requires the model to make
accurate predictions conditioned on a variety of different
multimodal input formats, as well as having an understand-
ing of common-sense knowledge. Refer to Fig. 4 for gener-
ation examples in these tasks. We abbreviate the text input
for compactness. Refer to the supplementary for complete
examples.

Because no existing work handles multimodal sewing
pattern generation, we adopt state-of-the-art (SOTA) single-
modal generative methods, i.e., SewFormer-FT and Dress-
Code, to perform multimodal tasks. For this purpose, we
augment these baselines using multimodal models, e.g.,
GPT-4o [74] and DALL-E [8], to translate the multimodal
inputs to their input domains (i.e., images and short key-
word description). To ensure translation accuracy, we man-
ually inspect the results before querying SewFormer-FT and
DressCode. We denote them as Sewformer-FT† and Dress-



Figure 4. Multimodal Sewing Pattern Prediction (Qualitative).
AIpparel accurately predicts sewing patterns that follows the in-
puts better than the baselines. See Sec. 4.2.

Method Accuracy (↑) Panel L2 (↓)
SewFormer-FT† 10.3 22.4
DressCode† 0.6 31.0
AIpparel 59.0 6.1

Table 3. Multimodal Sewing Pattern Prediction. Compared to
single-modal methods augmented with existing LMMs, our model
outperforms both baselines by a large margin.

Code†, respectively. In comparison, our model can directly
perform all five categories of multimodal tasks without re-
lying on external modules.

We report quantitative comparisons in Tab. 3, measured
between the reference and predicted sewing patterns. Com-
pared with single-modal baselines, AIpparel performs sig-
nificantly better. Fig. 4 shows qualitative comparisons. The
first row validates the method’s reasoning ability by asking
for a suitable sewing pattern for a specific occasion (e.g.,
a “semi-formal garden party”). We use DressCode† as our
baseline. Notice that DressCode† generates a mini-skirt that
does not match well the description of a “semi-formal gar-
den party”. Our model outputs a godet skirt that is more
appropriate for this occasion. The second row shows an ex-
ample of sewing pattern generation given a combination of
image and text. SewFormer-FT† fails to generate a plausi-
ble sewing pattern due to the garment’s complexity, whereas
AIpparel reconstructs the complex garment closely follow-
ing both visual and textual cues, such as the sleeve and skirt
length in the image, and the waistline and neckline descrip-
tions in the text.

Figure 5. Sewing Pattern Editing (Qualitative). Our model fol-
lows the editing instructions more accurately compared with the
baseline by accurately including a hood to the tank top (top row)
and elongating the skirt (bottom row). See Sec. 4.3.

Method Accuracy (↑) Panel L2 (↓)

Sewformer* 9.5 18.6
DressCode* 37.0 13.7
AIpparel 83.4 1.5

Table 4. Sewing Pattern Editing. We use SOTA LMMs such
as GPT-4V and DALL-E to facilitate both baselines to perform
this multimodal editing task. Our model still outperforms both
baselines by a large margin.

4.3. Language-driven Sewing Pattern Editing
We validate AIpparel’s ability to perform sewing pattern
editing. Given a sewing pattern and text-based editing in-
structions, the model is tasked with editing the pattern ac-
cording to the prompt without altering the overall style of
the garment. Since the existing sewing pattern generation
models, DressCode and SewFormer, are not designed for
this task, we adapt them for editing using a pre-trained In-
structPix2Pix [12] and GPT4o [74]2. We denote them as
DressCode* and SewFormer*, respectively.

We report quantitative comparisons in Tab. 4. Our model
outperforms the baselines in both metrics by a large mar-
gin, indicating that AIpparel performs more accurate edits
than the baselines while minimally affecting the rest of the
sewing patterns. Qualitative results are shown in Fig. 5.
DressCode produces results visibly deviating from the in-
put garment. For example, DressCode changes the tank top
to a full-length dress in the top row and the tight skirt to

2See supplementary for details



Methods Accuracy (↑) Panel L2 (↓) Time (↓)

DressCode 38.4 22.4 52.2s
Ours w.o. reg. 79.0 7.2 3.4s
Ours 85.0 6.1 2.1s

Table 5. Ablation. Our tokenizer outperforms DressCode in all
metrics while being more than 25 times faster at inference time.
Our objective (Eq. 2) also improves performance compared to the
cross-entropy-only variant.

a flared one in the bottom row. These mistakes arise be-
cause DressCode requires external modules to translate the
sewing pattern to short keywords for input, losing impor-
tant information about the original garment style during the
process. In contrast, AIpparel directly accepts the sewing
pattern and textual instructions as input, allowing it to ac-
curately perform the minimal edits required to modify the
garment according to the instructions, as demonstrated in
both examples.

4.4. Ablation Study

We validate our key technical contributions in an ablation
study. Specifically, we compare our tokenizer described in
Sec. 3 with the existing tokenization scheme from Dress-
Code [78]. We also perform an ablation study on our pro-
posed mixed fine-tuning objective in Eq. 2, comparing it
with a cross-entropy-only objective (“Ours w.o. reg”). We
use text-to-garment prediction on DressCode’s dataset as
our ablation task to compare with DressCode’s pre-trained
model. For a fair comparison, we use the same backbone as
DressCode and only change the tokenizer and training ob-
jectives. To implement “Ours w.o. reg.”, we quantize vertex
positions, edge control parameters, and 3D transformations
into 256 bins, which are then predicted using next token
prediction. See the supplementary for implementation de-
tails.

Tab. 5 shows the ablation results compared to our full
model in text-to-garment tasks. The results are averaged
over 100 samples from DressCode’s test set. Compared
to DressCode, our tokenizer, both with and without regres-
sion loss, significantly improves the reconstruction fidelity,
as demonstrated by the large improvement in the metric
values. Furthermore, by using a mixed training objective
in Eq. 2, the reconstruction quality of sewing patterns im-
proves significantly, demonstrating the effectiveness of our
objective. In addition to quality improvements, our tok-
enization drastically accelerates generation (25× speedup)
compared to DressCode, as shown in the same table. The
reported times show the average wall-clock time required to
generate and decode a single garment in seconds, measured
for each method on a single A6000 GPU. Fig. 6 displays re-
constructed sewing patterns from all three methods. Notice
that DressCode’s prediction does not accurately reflect the
language description (i.e., the top row’s skirt is not flared)

and shows geometry artifacts (bottom row, boxed region).
Meanwhile, our proposed tokenizer and training objective
predict garments with the best visual quality and alignment
with the textual description.

Figure 6. Ablation (Qualitative). DressCode’s tokenizer pro-
duces unrealistic patterns (second row, boxed region) and does not
match the text input (i.e., “flared hem”). In contrast, our tokenizer
outputs geometrically regular sewing patterns accurately aligning
with the inputs. See Sec. 4.4.

5. Discussion

We introduce AIpparel, a 7B-parameter multimodal founda-
tion model for garment sewing patterns. To train AIpparel,
we curate GCD-MM, a large-scale dataset with complex
sewing patterns and multimodal annotations. Moreover, we
develop a novel sewing pattern tokenizer and a mixed train-
ing objective for fine-tuning LMMs on GCD-MM. AIpparel
achieves state-of-the-art results on single-modal and multi-
modal sewing-pattern-generation tasks, enabling new appli-
cations like language-driven sewing pattern editing.
Limitations and Future Work. While the current rep-
resentation enables the digitalization of complex sewing
patterns, it is still constrained to garments representable
by manifold surfaces. Design elements like pockets re-
quire non-manifold structures. A promising direction is
to develop an efficient representation that accurately mod-
els non-manifold features while remaining compatible with
LMMs. Fabricating the generated garments is another in-
teresting direction, which requires consideration of physical
and material constraints during sewing pattern prediction.
Broader Impacts. While we believe our model can ad-
vance AI-assisted fashion design, we acknowledge potential
risks we inherit from the pre-trained LLaVA model. For in-
stance, generative AIs can spread misinformation or create
biases potentially harmful to society. We do not condone
these and other improper usage of our model.



Conclusion. Vision-language and other large multimodal
models capture web knowledge and enable reasoning for
many downstream applications. By fine-tuning LMMs
to understand sewing patterns, we take first steps to-
wards a vision-language-garment model that transfers web
knowledge to garment generation and editing, unlocking a
plethora of applications for fashion design and fabrication.
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S1. Details on GarmentCodeData-Multimodal (GCD-MM)
We expand on the data curation process of GCD-MM. Specifically, in Sec. S1.1, we detail the specifics of generating text
descriptions for the sewing patterns. In Sec. S1.2, we elaborate on how we generate the edited sewing patterns and their
associated editing instructions. Lastly, in Sec. S1.3, we show statistics comparing sewing patterns in GCD-MM and sewing
patterns in previous datasets used by DressCode [21] and SewFormer [38].

S1.1. Text Description Generation
We generate two types of sewing pattern descriptions for each garment in GCD-MM. The first is a detailed natural language
description of the sewing pattern, while the second outlines a suitable occasion for wearing the garment. For captioning
purposes, we use a standardized body type corresponding to the mean shape and pose derived from SMPL.

Obtaining pattern descriptions happens in two steps. First, we generate keywords describing the simulated garments using
the design parametrization of each garment. Generated based on GarmentCode [30], each garment is characterized by a set
of continuous and categorical parameters. We generate descriptions for each garment using the following rules:
• Categorical parameters: We assign the categorical label when appropriate. For instance, a godet skirt is classified

as such. Some categorical parameters do not suffice - a shirt can signify anything from a crop top to a dress. For these
instances, we add additional checks consulting additional parameters.

• Continuous parameters: We define thresholds and assign different qualitative labels for garments above and below them.
Parameters such as sleeve length or collar width are obvious examples.

• Dependent parameters: Most parameters have no impact on the final garment, as they only become relevant when certain
categorical parameters are set. We design rules that consider these edge cases. Only when a godet skirt is set, does
the num inserts become relevant. We include all relevant dependent parameters that have a structural effect on the
garment.
Similar to DressCode, we first generate a garment type description and a collection of keywords that contain the specific

description based on our rule-based approach. Note that each rule can contribute several keywords. See Figure S1 for the
examples.

In the second stage, we use these generated keywords in combination with a render of the front and back of the garment to
prompt GPT-4o. We construct the prompt such that GPT-4o objectively describe the garment using the characteristic features
of the garment provided by the generated keywords and renders. In addition, we include instructions to focus on information
crucial for our learning problems, such as panel connectivity and stitching patterns, while ignoring irrelevant information,
such as colors or interpretations.

The following is the system prompt that we used:



DressCode: jacket; short sleeves; with a hood; fitted 
garment
Ours: An upper-body garment; both sleeves; short 
sleeves; with lapels

DressCode: trousers; long length; wide fit; front slit; 
high waist
Ours: A maxi skirt; narrow waistband; skirt with front 
slit; skirt with back slit; skirt with side slit

Figure S1. Comparison between our Short Captions and DressCodes’. This figure shows the short captions created by DressCode and
our method for two different garments. DressCode produces keywords that do not align with the garment (red).

You are a fashion expert tasked with providing concise and neutral descriptions of garments based on the provided
textual information. Your descriptions should focus on specific stitching details and how different panels are connected
(such as seam placements and stitching patterns), as well as any distinctive characteristics and design elements of the
garment. When describing the garment’s appearance, use precise and concrete language, avoiding generic phrases or
broad descriptions. Do not mention that seams are visible; instead, describe where seams or panels are located to
indicate construction details. Do not include any impressions, subjective interpretations, or unobservable aspects. Avoid
mentioning colors or any references to images. Keep the descriptions brief and to the point, avoiding unnecessary words.
Use only the information provided.

Here we present the user prompt:

Please generate a concise and neutral description of a garment, focusing on specific stitching details, how different panels
are connected, and including any distinctive characteristics and design elements, based on the following information:
- **Title**: {title}
- **Description**: {description}
Provide a brief description that emphasizes stitching and construction details (such as seam placements, panel connec-
tions, and stitching patterns), along with precise visual observations about the garment’s appearance, including style,
silhouette, length, and any unique design features or distinctive characteristics. Avoid using generic phrases or broad de-
scriptions; instead, provide specific details about the garment’s features. Do not mention that seams are visible; instead,
describe where seams or panels are located to indicate construction details. Do not include any impressions, subjective
interpretations, or unobservable aspects. Avoid mentioning colors or any references to images. Keep the description
succinct and avoid unnecessary words. Use only the information provided.

The second type of caption describes an occasion for which a garment is suitable. In this prompt, we ask the model not
to pay attention to the garment’s colors which only highlight different panels and are not semantically relevant. Instead, we
ask it to focus on the shape and description. We use the same information as before to prompt GPT-4o. This is the system
prompt:



Ours: This upper-body garment features short
sleeves and lapels, indicating a structured yet 
casual design…

DressCode: This jacket features a fitted 
silhouette with short sleeves and an attached 
hood…

Reference Garment

Figure S2. Captions generated using GPT-4V.

You are an expert in fashion design and garment analysis. When provided with images of garments and their metadata,
focus solely on their shape and stitching. Note that different colors in the images represent different panels of the
garment and are not indicative of style or color choices. Ignore colors and any visible seams meant only for stitching
information. The metadata includes a title and a description, which is a list of short attributes; use these to inform your
understanding. Based on this information, provide only a detailed, but concise, description of a single occasion where
the given garment would be appropriate to wear. Do not include any other information in your response.

and here is the user prompt:

Given the following garment’s metadata and images (remember that colors and seams are only for panel representation
and stitching information), please provide only a detailed, but concise, description of a single occasion where this
garment can be worn. Do not include any other information in your response.
Here is the metadata:
Title: {title}
Description: {description}

Effect of GPT version in caption quality. While GPT-4o potentially increases the accuracy of generated captions, the
in-context knowledge about various design parameters crucially helps the model to generate captions more faithful to the
garment design. Fig. S2 shows the same captions in Fig. S1 of supp, generated instead using GPT-4V. Notice that DressCode’s
caption contains severe flaws (in red) due to inaccurate in-context prompting. Ours do not have these flaws because we prompt
GPT-4V with design-parameter-inspired content. We will update Fig.S1 to include this example in the revision.

S1.2. Generation of Editing Data Sample
To generate paired garments representing before-and-after edits, we use design parameters from the GCD dataset and system-
atically apply one of five pre-defined transformation rules. The modified design parameters are then converted into garments
using GarmentCode [30].

Each garment from GCD is first evaluated to determine which transformation rules are applicable. One rule is then
randomly selected and applied. Due to limitations in GarmentCode’s design space, not all edited design parameters can be
converted into sewing patterns. As a result, GCD-MM comprises 120k garment pairs that are successfully generated from
the 130k garments in GCD, while approximately 10k garments remain unpaired.

The transformation rules include adjustments to garment lengths (sleeves, pants, skirts), collar type changes, modifications
to garment symmetry, toggling the presence of hoods, and structural edits to style elements (e.g., changing the number of
inserts in godet skirts). Each rule takes the existing design parameters as input and applies a targeted change. For instance,



Figure S3. Dataset Statistics Comparisons. Notice that GCD-MM in general contains larger variations in the number of panels, edges,
and stitches in the sewing patterns. This poses additional challenges in designing a sewing pattern generation method with GCD-MM.

SewFactory [38] DressCode’s Dataset [21, 28] GCD-MM

Edge Types L, QB L, QB L, QB, CB, A
Number of Sewing Patterns 13700 20292 127629

Table S1. Dataset Statistics Comparison. L=Line, QB=Quadratic Beziér, CB=Cubic Beziér, A=Arc. GCD-MM shows a larger variation
in both numbers of panels, edges, and stitches than previous sewing pattern datasets. For Panel, edge, and stitching statistics, refer to
Figure S3.

length adjustments alter sleeves, pants, or skirts by 50% of their initial length, constrained by the maximum length specified
in GarmentCode. Similarly, collar types are randomly reassigned from a predefined set, garment symmetry is toggled, and
hoods are added or removed.

These rules are designed for three key reasons: (1) they produce clear and concise edits that can be succinctly summarized;
(2) they encompass varying levels of editing complexity, from minor panel length adjustments to major structural modifi-
cations involving new panels and altered stitching; and (3) for all garments in the dataset, at least one rule can always be
applied.

To document each transformation, we generate descriptive sentences for the edited garments using a rule-based approach.
Here are a set of examples:

Godet skirt: ”Increase the number of inserts in the skirt by $x.”
Pants: ”Make the pants longer.”
Shirt: ”Switch the collar type from $currCollar to $newCollar.”

In total, the defined rules enable 52 distinct, describable modifications, ensuring a diverse and well-documented dataset of
garment editing pairs.

S1.3. Sewing Pattern Statistics
GCD-MM uses sewing patterns fitted on a default body from the GarmentCodeData (GCD) dataset [31], which are pro-
cedurally generated sewing patterns using the programming abstraction of GarmentCode [30]. Compared with the sewing
patterns used by SewFormer [38] and DressCode [21], GCD contains more complicated and diverse sewing patterns. For
detailed documentation and comparison with existing datasets and procedural sewing pattern generators, please refer to Gar-
mentCodeData [31]. Here, we briefly show some statistics comparing these different datasets.

GCD exhibits more diverse and detailed garment feature variations than the previous dataset, including fitted garments,
correct sleeve shapes, more collar types, more skirt types, cuffs, and asymmetric features (tops, asymmetric skirt cuts). All
of these characteristics make sewing patterns from GCD more complicated than existing sewing pattern datasets.

Comparatively, datasets used by SewFormer [38] and DressCode [21] are procedurally generated sewing patterns from an
older programming abstraction [28]. While this programming abstraction can also generate sewing patterns for the types of
garments described above, all its variations are from changes in the vertex and control point positions while fixing the number
of panels, edges, and stitches the same. This constraint significantly limits the variations exhibited in the datasets used by



Figure S4. Visualization of Sewing Patterns. Random sewing pattern samples from the datasets used by AIpparel and the baselines are
visualized. Notice that compared to prior works, GCD-MM exhibits more complex sewing patterns in general.

SewFormer and DressCode. Figure S4 showcases randomly sampled sewing patterns as well as their draped renderings
from GCD and sewing patterns used by SewFormer and DressCode. We see that sewing patterns from GCD are generally
more complex and diverse than the previous dataset. Table S1 and Figure S3 show a statistical comparison in terms of the
number of edges, panels, stitches, and edge types between sewing patterns in GCD-MM, SewFactory [38], and dataset used
by DressCode [21]. Notice that comparatively sewing patterns in GCD-MM exhibit the largest variation in all of the statistics,
demonstrating the difficulty of the dataset. In particular, because of this difficulty gap, previous methods such as SewFormer
and DressCode exhibit poor performance despite fine-tuning their network on GCD-MM. See Section S3 for details.

S2. Implementation Details on AIpparel
We include details about the network architecture and training hyperparameters of AIpparel.

S2.1. Network Architecture
As described in Section 3 of the main paper, AIpparel is built on top of LLaVA-1.5 7B [36]. Therefore, the majority of the
network, except for the newly added regression heads g(e)

θ , g
(R)
θ′ , and the positional embedding projection layers h(e)

φ , h
(R)
φ′ ,

are identical to LLaVA-1.5 7B. For completeness, we only summarize the key parameter values we used here. Please refer
to their paper for architectural details. LLaVA-1.5 7B fine-tunes LLama 2 [62] with a vision encoder on a visual question-
answer dataset. Specifically, it has a context length of 4049 and a hidden dimension of 4096. Its language model is a 32-layer
transformer with 32 head attention layers. Its vision encoder is CLIP [52]. Each image is converted into 255 clip tokens
before getting projected into the language model’s embedding space using a custom projector.

To extend LLaVA-1.5 7B for sewing pattern prediction, we expand the vocabulary of the model to include the special
tokens defined in Section 3.2 of the main paper. In total, this results in 122 additional tokens added to the vocabulary of
LLaVA-1.5 7B. Each of the tokens is initialized to be the average embedding from the existing vocabulary.

Besides additional vocabulary, we also add two additional regression heads g
(e)
θ , g

(R)
θ′ , and the positional embedding

projection layers h(e)
φ , h

(R)
φ′ to the architecture described above. As described in Section 3 of the main paper, the regression

heads will take the output hidden embedding from the language transformer to regress vertex and control point positions using
g
(e)
θ and the transformation with g

(R)
θ . Specifically, both of the regression heads are two-layer perceptrons with ReLU non-

linearity. Both heads map the 4096-dimensional output embedding to the parameter space. For g(e)
θ , the output dimension

is 8, representing vertex and control points in different channels. Specifically, the first two channels as vertex regression,
mapping to the second endpoint of the associated edge. The next four are used for control points to the quadratic and cubic



Bézier curves. Finally, if the associated edge is an arc, the last two channels are used to map to an additional point on the
arc besides the two endpoints. During training, only the associated channels for each edge are supervised and the unused
channels are masked out for back propagation. With the same architecture, g(R)

θ has an output dimension of 7, with the first
3 being the translation and the last four being the rotation represented in quaternion.

Finally, the positional embedding layers are also two-layer perceptions with ReLU non-linearity. h
(e)
φ maps the 2-

dimensional vertex coordinate to a 4096-dimensional hidden embedding. The output is then added to that edge type token’s
vocabulary embedding before inputting through the language transformer. Similarly, h(R)

φ maps the 7-dimensional transfor-
mation for each panel to a 4096-dimensional hidden embedding. Then the output is added to the vocabulary embedding of
the transformation token <R>.

Both the regression heads and the positional embedding projection layers are initialized to have zero weights in the final
layer so that the output before fine-tuning is unaltered.

S2.2. Training Details

AIpparel is trained for a total of 12,750 steps with a total batch size of 320, and a learning rate of 0.00005 with cosine
learning rate decay to zero in 15,000 steps. We also warm-start the fine-tuning from zero learning rate to the default in the
first 100 steps. We use λ = 0.1 to balance the regression losses and the cross-entropy loss in Equation (2) of the main paper.
We use DeepSpeed ZeRO Stage 2 [53] to parallelize the training on 8×H100 GPUs. The entire training took around 312
H100 GPU hours. We train on all modalities in our GCD-MM jointly. Specifically, we include four different modalities
from GCD-MM: text → sewing pattern, image → sewing pattern, text and image → sewing pattern, and sewing pattern and
editing instruction → edited sewing pattern. During each training step, the batch is formed by randomly sampling each of
the four modalities with a preset sampling ratio. Specifically, we sample images, texts, image+text, and editing data with
the ratio of 3:2:4:1. We randomly split our dataset into 90%, 5%, and 5% for training, validation, and testing. All of our
qualitative results are samples from the testing split. While previous works [21, 29, 38] use relative coordinates to represent
the control point coordinate, we use absolute coordinates to represent the additional edge parameters. Prior to training, we
normalize vertex coordinates and transformation using the global mean and standard deviation computed from all sewing
patterns in GCD-MM. Additionally, for input to the positional embedding projection layers, we discretize the input into 256
discrete values ranging between ±4 standard deviation values for robustness during generation.

S3. Experiment Details And Additional Results
We detail the experiment setup and baselines for the result section (Section 4 of the main paper). Further, we also include
additional ablation results and qualitative comparisons.

S3.1. Sewing Pattern Prediction from Images

Setup & Baseline Details. We will describe the image-to-garment prediction experiment showcased in Section 4.1 of the
main paper in detail. We will also report comparisons on two datasets: GCD-MM and SewFactory.

For GCD-MM, we use our model trained with multimodal data described in Section S2.2 to evaluate the qualitative and
quantitative results showcased in Table 2 and Figure 3 of the main paper. To compare with SewFormer [38], we adapt its
pre-trained model for sewing pattern prediction on GCD-MM. Specifically, we expand the per-panel query embedding from
its default number of 23 to 75 to accommodate all the different panel classes present in GCD-MM. We initialize the newly
added panel query embeddings as the average embedding from the pre-trained weights. Similarly, we expand the per-edge
embedding from 14 to 39. Furthermore, because GCD-MM contains cubic Bézier curves and arcs, which the SewFactory
dataset does not have, we also extend per-edge parameterization from using four channels (2+2: endpoint + optional quadratic
Bézier control points) to seven channels (2+4+1: endpoint, control point parameters, arc flag). Specifically, the arc flag takes
a value of 0 or 1, indicating if the edge is an arc. If the arc flag is 1, the first two control points would take a value equal to the
relative coordinate of the third point on the arc. If the arc flag is zero, then the four channels will be the relative coordinates
of the two control points in the Bézier curve. We keep the network architecture the same except for the above modifications.
We fine-tune the pre-trained SewFormer model adapted as above for a total of 16 epochs on the same training split AIpparel
is trained on, using a learning rate of 0.00005 and a batch size of 8 on 2×Quadro RTX 8000 GPUs. Except for these, we use
the default hyperparameters provided by SewFormer. The validation loss no longer increases after 16 epochs, so we stop the
training and use it for comparison.

For comparison on SewFactory, we use the pre-trained SewFormer model as our baseline. However, because the Sew-
Former authors did not release their train and test split, we show a comparison on a custom test set for this experiment.
Specifically, we first train AIpparel on SewFactory data, with a different random split, from scratch for a total of 3750 steps



on 8×A100 GPUs using the same hyperparameter settings as described in Section S2.2. Then, we evaluate our model on the
custom test set. In this way, we ensure a fair comparison with the baseline as the test set should contain a mixture of training
and testing examples for both methods.

Additional Qualitative Visualization. Figure S5 showcases additional image-to-garment prediction result comparisons to
the SewFormer baseline in both the GCD-MM (left) and SewFactory (right) datasets. Our model in general predicts more
correct sewing patterns following the guidance of the input image than SewFormer.

Sewing Pattern Prediction from In-the-wild MultiModal Inputs. While AIpparel is trained on procedurally generated
sewing patterns and annotations, it is able to generalize the in-the-wild input due to the large-scale data it trains on, as well as
the world-level knowledge that it inherits from the large multimodal model. Figure S7 showcases our model’s sewing pattern
prediction from an in-the-wild image with GPT-generated text descriptions.

S3.2. Sewing Pattern Prediction from Texts

We showcase additional text-to-sewing pattern generation visualization from AIpparel in Figure S6. Notice that our method
is able to output correct sewing patterns from long, detailed text descriptions. Moreover, our generated sewing patterns also
closely follow the key characteristics described in the text input.

S3.3. Sewing Pattern Prediction from Multimodal Input

Setup. For our multimodal evaluation, we utilize 20 samples for each of the following modality combinations: (1) image,
(2) text, (3) image + text, (4) occasion, and (5) editing. These samples are generated following the procedure outlined in
Section S1. To ensure proper testing, these test samples are entirely distinct from the training and validation sets used in
other experiments.

To benchmark our method, we compare it against two state-of-the-art baselines: SewFormer and DressCode. SewFormer
processes image-based inputs, while DressCode is designed for text-based inputs. Since these baselines are limited to specific
modalities, we convert multimodal inputs into formats compatible with their architectures. For SewFormer, we use DALL-E
2 to generate a single 512x512 image from non-image inputs using tailored prompts. For DressCode, we convert inputs into
keyword-based formats with GPT-4o.

The evaluation of our method and these baselines is conducted using Garment Accuracy, a metric defined as the product
of Panel Accuracy and Edge Accuracy, which quantifies the percentage of garments reconstructed with the correct number
of panels and edges. Additionally, we measure the squared distance between the predicted and ground-truth vertex positions
to assess the geometric accuracy of the reconstructions.

Baselines. To generate an image input from a non-image modality, we use DALL-E 2 to produce a single 512x512 image.
The prompt used for generation always begins with:

Create an image of a single garment worn by a mannequin. The mannequin should be front-facing and in t-pose.

The prompt is tailored to each input modality by appending the following continuations.

• Text: Make sure that the garment follows this description: + text
• Occasion: Make sure the garment suits the following occasion: + text
• Editing: Make sure the garment looks like if this edit + edit + was applied to the garment.

Similarly, to convert any input modality into a keyword-based format compatible with DressCode, we design distinct
prompts based on the modality. Each prompt is constructed as a concatenation of the following starting phrase:

Describe the garment in a list of comma separated keywords. Give a maximum of 5 keywords.

and a modality specific continuation:
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Figure S6. Text-conditioned sewing pattern generation. AIpparel generates accurate sewing patterns closely following the text descrip-
tions. Notice that the characteristics described in the bolded phrases all appear in the generated sewing patterns.



Figure S7. In-the-wild Image to Garment Example. Our model is able to predict a sewing pattern more aligned with the input image
compared to the baselines. Notice that SewFormer did not drape correctly, resulting in a missing bottom.

• Text: Make sure that the garment follows this description: + text
• Image: Make sure that the garment looks like this image.
• Text + Image: Make sure that the garment looks like this image and follows this description: + text.
• Occasion: Make sure the garment suits the following occasion: + text
• Editing: Make sure the garment looks like if this edit + edit + was applied to the garment.

S3.4. Sewing Pattern Editing

We detail the baseline methods we used for Table 4 and Figure 5 in the main paper. Using existing models, we extend
SewFormer and DressCode to translate the sewing pattern and editing instructions to their input domains. Specifically, for
SewFormer, we take the editing instruction and rendered image from GCD-MM and translate the rendering image using a
pre-trained InstructPix2Pix [12] with the editing instruction as input. The output from InstructPix2Pix is a garment image
generated based on the editing instructions and the input rendering. With this input image, we query the SewFormer-FT
baseline to obtain the final sewing pattern. For DressCode, we use GPT4V to translate the editing instructions and rendered
image into short keywords that describe the edited garment. This is then used to query the pre-trained DressCode and obtain
the sewing pattern. The text prompt we use for querying GPT4V is the following:

You are given a list of attributes describing a garment. Your task is to modify the list according to an editing instruction
provided.
To accomplish this: 1. If the attribute related to the instruction already exists in the description, locate and modify it to
reflect the new information. 2. If the attribute is not present, add a new entry to the description that fulfills the instruction.
3. Ensure that no other attributes are altered unless necessary for consistency or clarity following the modification.
Once the changes are complete, return the list of attributes, without any additional information.

We evaluate this task using the test split of GCD-MM, containing approximately 6,000 editing samples.

Additional Qualitative Visualization Figure S8 shows additional visualization of the editing tasks as shown in Figure 5
of the main paper. Notice that our model is able to correctly edit the sewing pattern with a diverse set of instructions.

S3.5. Ablation Study

Setup & Baseline Details. Table 5 in the main paper shows an ablation study on our proposed tokenization scheme in
Section 3.2 of the main paper. As described in Section 4.4, we use text-to-image as our ablation task to conduct an equal
comparison of our model with DressCode [21]’s pre-trained model. Futhermore, we swap our tokenizer into DressCode’s
model, to ensure an equal comparison. We also do the same for the configuration, Ours w.o. reg., which uses the proposed
sewing pattern tokenization scheme without the usage regression heads. We train both models from scratch with a learning
rate of 0.0006 and a total batch size of 512 on 2×Quadro RTX 8000 GPUs, for a total of 30,400 steps until convergence.



Figure S8. Additional Visualization for Sewing Pattern Editing. The task is to predict a sewing pattern that closely matches the input
sewing pattern while following the editing instructions (text above the arrow). Notice that despite the diverse kinds of editing instructions
we give, our methods can output sewing patterns that closely follow the instructions and the input sewing pattern. In the meanwhile, the
baseline cannot achieve a similar effect because it takes only takes in text as input, losing structural details.

Additional Ablation Study. Table S2 shows a qualitative comparison studying the effectiveness of full model fine-tuning
versus LoRA [23] fine-tuning. The table reports reconstruction metrics on the image-to-garment prediction task on GCD-



Method Panel L2 (↓) #Panel Acc (↑) #Edge Acc (↑) Rot L2 (↓) Transl L2 (↓) #Stitch Acc (↑)
LoRA 13.7 31.6 45.4 .020 5.1 .088
AIpparel 5.4 85.2 82.7 .020 2.7 77.2

Table S2. Ablation Study: Fine-tuning Comparison. The scores are reported on the image-to-garment prediction tasks on GCD-MM
dataset. The metrics indicate that full model fine-tuning significantly outperforms LoRA fine-tuning, allowing the base model to better
adapt to sewing pattern understanding.

Method Panel L2 (↓) #Panel Acc (↑) #Edge Acc (↑) Rot L2 (↓) Transl L2 (↓) #Stitch Acc (↑)
6 layers 5.93 83.6 81.0 .008 2.9 74.3
5 layers 6.10 84.2 80.7 0.010 2.8 73.4
4 layers 5.94 83.2 81.3 0.011 3.0 74.7
3 layers 5.92 83.7 80.9 0.010 2.9 73.7
2 layers 5.4 85.2 82.7 .020 2.7 77.2

Table S3. Ablation Study: Number of Layers in Regression Heads. The scores are reported on the image-to-garment prediction tasks
on GCD-MM dataset.

MM dataset. For the LoRA model, we use rank 8 and only fine-tune the query and key projection layers following previous
works [19, 32]. The model is trained with the same hyperparameter settings described in Section S2.2 for 8250 steps. The
metrics indicate that the full fine-tuning model significantly outperforms the LoRA fine-tuned version, indicating that fine-
tuning all weights in the language transformer is essential for understanding sewing patterns.

Additional Qualitative Visualization. Figure S9 shows additional visualizations for the ablation study in Section 4.4 of
the main paper. Notice that our model in general demonstrates better sewing pattern prediction ability than DressCode. This
can be seen in the pants prediction in the second and third rows of the figure, where DressCode does not predict the correct
sewing pattern.

S3.6. Draping Details
We use the draping pipeline provided by GarmentCode [30] for converting sewing patterns to a 3D mesh of the garment
draped on a standard female SMPL model in A-pose. Specifically, the draping process consists of creating the boxed mesh
and using Nvidia-Warp [42] for cloth simulation. To obtain the garment in arbitrary poses and in a motion sequence, we
follow the simulation pipeline provided by PhysAvatar [82], which uses Codimensional Incremental Potential Contact (C-
IPC) [35] simulation for cloth simulation. For simulation details, please refer to Zheng et al. [82]. Finally, the simulated
mesh sequence is imported to Blender for texturing and rendering.

S3.7. Human Study
We conducted a user study to compare sewing patterns generated from multimodal inputs using AIpparel with those using
baselines. Specifically, we deployed 10 multiple-choice questions asking which garment better aligns with the input prompts
while maintaining realism. The questions contain a combination of sewing patterns generated from images, texts, and editions
of existing sewing patterns from different methods. We collected responses from 73 participants and Fig. S10 shows the
favorability comparison for each modes of generation. AIpparel is more favorable in all modes, aligning with our quantitative
and qualitative results.

S4. Discussion
We expand our discussion in Sec. 5 of the main paper to include further limitations, future work, and social impact.

S4.1. More Discussion on Limitations and Future Work
Due to computational resource constraints, we only train AIpparel on part of the GCD data, and AIpparel outputs a single
modality, sewing pattern. As the community gets more computing resources, we are excited to see works extending our
methods to larger datasets with richer annotations. It is an interesting direction to further scale up AIpparel to study the
emergence of abilities like few-shot or in-context generalization to novel garment generation tasks or perform chain-of-
thoughts to achieve a complex garment design. It is also an interesting direction to study how to further enlarge sewing



Figure S9. Additional Visualizations for Ablation Study.



Figure S10. User Favorability Comparison of Apparel vs. Baselines for Multimodal Generation.

pattern datasets with more variations and more annotations. For example, reflecting realistic variations of fabric properties
can enable more accurate sewing pattern prediction.

Bias and Comprehensiveness of GCD-MM. AIpparel can inherit the bias from the sewing pattern dataset used to create
GCD-MM. In fact, GarmentCodeData [31] discusses such biases in its limitation section including only sewing patterns fitted
to statistical models computed from a pool of healthy European and North American adults, hence limiting the size variations
within the sewing patterns of GCD. However, we note that our data curation pipeline outlined in the paper can be used for
other sources. By applying our pipeline to other, less biased, and more comprehensive sewing pattern datasets, we can still
improve their quality by creating annotations for the sewing patterns.

S4.2. Further Societal Impacts
Besides the concerns of hallucination and bias that we inherit from our base model, LLaVA, we also acknowledge that our
generated sewing patterns might not produce suitable garments for all communities, due to the limited body type and style
selections within the data we trained on. It is important to study how to improve our method and dataset annotation on more
diverse sewing patterns and body types in the future.

Another potential risk of our work is the potential bias we inherit from foundation models in our annotation generation
process. Because we use large models such as GPT-4V for data generation, existing biases in these models will also be
included in our generated annotations. However, because the prompts we used (see Section S1.1) encourage the model to
generate descriptions based on the given images and keyword phrases, we did not find any immediate systematic bias present
in our annotations.
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