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Figure 1: A collection of appearance-mimicking surfaces generated with our algorithm.

Abstract

We consider the problem of reproducing the look and the details of
a 3D object on a surface that is confined to a given volume. Classic
examples of such “appearance-mimicking” surfaces are bas-reliefs:
decorations and artwork depicting recognizable 3D scenes using only
a thin volumetric space. The design of bas-reliefs has fascinated
humankind for millennia and it is extensively used on coins, medals,
pottery and other art forms. We propose a unified framework to cre-
ate surfaces that depict certain shapes from prescribed viewpoints, as
a generalization of bas-reliefs. Given target shapes, viewpoints and
space restrictions, our method finds a globally optimal surface that
delivers the desired appearance when observed from the designated
viewpoints, while guaranteeing exact, per-vertex depth bounds. We
use 3D printing to validate our approach and demonstrate our results
in a variety of applications, ranging from standard bas-reliefs to
optical illusions and carving of complex geometries.

CR Categories: I.3.5 [Computer Graphics]: Computational geom-
etry and object modeling—Curve, surface, solid, and object repres.
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1 Introduction

Bas-reliefs are thin surfaces whose normals resemble the normals of
a different surface or a general 3D scene, giving a (false) impression
of depth when observed from the right viewpoint. Bas-reliefs have
been used for centuries in artistic masterpieces, and are ubiquitous
on coins and medals. The most common bas-reliefs are thin layers
of stone or ceramic covering a single object, but they can also be
fragmented into disconnected slices to obfuscate the shape, creating
interesting optical illusions (Figure 2).

The design of bas-reliefs has been a subject of interest in computer
graphics in the past two decades. A bas-relief is essentially a 2.5D

(c) Jonty Hurwitz, 2014

Figure 2: We draw inspiration from the art of Jonty Hurwitz, build-
ing sculptures of fragmented and disconnected slices to obfuscate
the shape and creating interesting optical illusions.
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Figure 3: Inspired by street artwork painted over the steps of a
staircase, we use our algorithm to embed a 3D model of an owl into
a staircase. Constrained to a thin layer, the relief does not affect the
function of the staircase, while being much more resistant than paint
to erosion and aging.

image, which has a strong relation with the depth buffer used in
the standard graphics pipeline. Most works have proposed to create
bas-reliefs from given digital 3D scenes by either directly compress-
ing the depth buffer of the scene’s rendering or by working in the
gradient domain, where the final model is obtained by solving a
Poisson equation.

In this work, we define appearance-mimicking surfaces (AMS) that
generalize bas-reliefs, lifting their restriction to a height field. Our
generalization makes the reliefs usable at a wider range of viewing
angles, while still guaranteeing self-intersection free results, which
is mandatory for subsequent fabrication.

Specifically, we develop a mathematical framework to compute
surfaces whose normals optimally approximate the normals of a
given 3D shape or scene, while strictly obeying given depth- or
volume-confinement constraints. Direct fitting of normals and spatial
constraints is in general a challenging, nonlinear problem, which
led previous works to employ heuristics that circumvent difficult
numerical optimizations. Unfortunately, giving up the constrained
optimization of normals means forfeiting bounds on geometry and
appearance distortion in the resulting relief. Instead, we propose
a novel view-dependent surface representation which allows us to
cast the optimization as a quadratic program. The resulting problem
formulation is convex, and we are guaranteed to find the optimal
solution under feasible constraints.

Differently from previous works, our method does not rely on raster-
ization of the input geometry and the depth buffer. AMS are gener-
ated by deforming the input mesh without modifying its connectivity,
thereby increasing the algorithm’s efficiency, details preservation
and allowing to easily transfer surface attributes. As a positive side
effect of our representation, we can exactly satisfy per-vertex depth
constraints and we can “project” the target shapes on disconnected
and arbitrarily shaped surfaces, as shown in Figure 3.

Our algorithm is controllable and robust, enabling to design compli-
cated appearance-mimicking surfaces with minimal user effort. We
test our method in a variety of applications, such as the design of
optical illusions in architectural settings and the creation of carving
patterns on complex geometries. To verify the realism of our model
and lighting assumptions, we validate our results via 3D printing.

The contributions of this paper can be summarized as follows:

1. We cast the generation of appearance-mimicking surfaces as
a quadratic program. Our algorithm is guaranteed to find the
unique solution that approximates the shading of the original
model.

2. Our method allows versatile depth control, enabling to carve
bas-reliefs on complex objects and with precise spatial con-
straints.

3. We extend bas-reliefs beyond height fields and validate our
results via 3D printing.

2 Related work

Height field compression. The digital generation of bas-reliefs
was pioneered by Cignoni et al. [1997], who created bas-relief mod-
els of given 3D objects by linearly compressing (squeezing) the
depth map of their rendering, obtained using OpenGL-based raster-
ization. By swapping the linear compression with more advanced
nonlinear and adaptive scaling functions, it is possible to increase
the visual quality [Sun et al. 2009]. Nonetheless, there is no direct
connection between the compression of the geometry and the light-
ing equation: the surface normals may significantly change after
the squeezing operation, and the resulting bas-reliefs are prone to
looking different from the desired appearance, requiring a heuristic
post-processing step to add details and increase the depth illusion.

Gradient field compression and Poisson reconstruction. A
breakthrough in the generation of digital bas-reliefs has been pro-
posed in [Weyrich et al. 2007], where instead of compressing the
height field directly, modifications are applied to its surface gradients,
and a new height field matching the manipulated gradients in the
least-squares sense is extracted by solving the Poisson equation (a
linear system). Many variants of this algorithm have been explored
[Song et al. 2007; Kerber et al. 2009; Bian and Hu 2011; Zhang
et al. 2013], with different kinds of filters applied to the gradients, or
to the final surface in post-processing. However, all these methods
suffer from the intrinsic limitation that the modified gradients are in
general not integrable, and the normals of the surface generated in
the Poisson step can be far from the desired normals.

Laplacian compression. Ji et al. [2014] propose to directly min-
imize the L2 difference between the Laplacian of the bas-relief
height field and the depth discontinuity free surface computed from
a rendered normal image. This approach allows for artistic editing
in the 2D domain and produces higher-quality results than previous
methods. However, their formulation is limited to height fields and
does not provide exact pointwise control over the depth of the gener-
ated bas-reliefs. They use a penalty based approach to control the
thickness of the height field which depends on multiple parameters.
Furthermore, they only consider an orthographic projection in their
optimization. Our approach lifts both limitations, providing realistic
results under perspective viewing, as well as precise and fine-grained
depth/volume control.

Encoding the height field and depth control. The majority of
the methods mentioned above encode the height field as an im-
age, and only few methods work directly on the input 3D geometry
representation. While the former approach greatly simplifies the im-
plementation of the algorithm, the latter approach allows to preserve
the sharp details in the scene and the original modeling resolution.
In this paper, we decided to use a mesh-based approach, but it is
straightforward to adapt our algorithm to work on depth images.

To the best of our knowledge, none of the existing methods allow
fine-grained control of the depth: They provide a parameter that
controls the maximum depth of the bas-relief, but they cannot be



Figure 4: Appearance-mimicking surface of the Dragon Head model
constrained to carve a V-shaped, thin geometry.

used to create bas-reliefs that fill a complex volume shape. Our
method can guarantee that the sculpture will be contained within
a specific depth volume, specified as a per-vertex range, and it
optimally uses the entire available space (Figure 4).

Bas-relief ambiguity. If a surface with Lambertian reflectance
is viewed orthographically from a fixed view point, there is a set
of transformations of the object’s geometry and the corresponding
light sources which do not change the perceived shading and self-
shadowing of the object, making it impossible for an observer to
determine its true geometry. This is known as the “Generalized
Bas-relief Ambiguity” (GBA) [Belhumeur et al. 1999] and even
holds for slight changes of the viewpoint. Unfortunately, this is
not applicable for real world scenarios where the perspective has to
be taken into account and in general no assumptions can be made
about the position and direction of the illumination. Chandraker
et al. [2005] and Tan et al. [2011] analyze (inter-)reflections and
show how they can be utilized to overcome the GBA to recover the
geometry from photometric stereo where the light source directions
and strengths are unknown.

Camouflaging and artistic applications. Embedding multiple
objects into a single sculpture has interested many researchers and
artists. The 2D version of this problem is known as image camouflag-
ing [Chu et al. 2010], where multiple images are concealed inside a
large and complex scene. The first extension to 3D was proposed in
[Sela and Elber 2007], where the silhouettes of multiple objects are
embedded in a single model that matches some prescribed silhou-
ettes from a set of predefined viewpoints. A similar idea has been
used in [Mitra and Pauly 2009] to create shadow-art sculptures. In
[Alexa and Matusik 2010], [Bermano et al. 2012] and [Baran et al.
2012], a special surface with an optimized micro-structure is used
to display multiple images, which can be selected by changing the
lighting conditions. A similar effect is obtained with a completely
different technique in [Elber 2010], where multiple images are sliced
and encoded in a set of thin pillars which align to form the desired
image only in a prescribed viewpoint. Our technique can be used
to design bas-reliefs from given 3D models and project them onto
complex geometric scenes to camouflage 3D objects (Section 4).

Several works considered inverse problems related to reliefs.
Zatzarinni et al. [2009] extract the relief layer from scanned ar-
tifacts using robust height function fitting for archeological analysis
purposes. Kolomenkin et al. [2011] reconstruct a fitting bas-relief
surface of certain thickness given completely flat input in form
of line drawings. They employ Laplacian-based surface inflation,
where the Laplacian vectors are hallucinated from the given curves.
Since in our setting the target shape is given, the exact normals and
Laplacians are readily available for fitting.

3 Method

An appearance-mimicking surface is a surface that looks similar to
another from a fixed perspective, while having a different geometry.

Lighting model. Assuming a Lambertian material with direc-
tional lights and no specular component, we can model the color of
a surface point p as:

Ip = kaia +
∑

l∈lights

(l · np) id (1)

where ka is an ambient reflection coefficient, ia is the ambient color
of the material, l is the light direction, np is the surface normal at
point p and id is the diffuse color. In this setting two meshes will
result in identical renderings if for each point (or pixel) on the view
plane the angle between the corresponding normal on the surface and
the given light direction is identical. Belhumeur et al. [1999] defined
this as the “Bas-Relief Ambiguity” for the orthographic case and
formulated a set of invariant transformations of the surface geometry
and the corresponding light sources. In real world scenarios the
lighting direction l is often not known in advance and difficult to
control (e.g. the sunlight). Therefore, if an object is confined to a
smaller space, we are looking for a deformation of the geometry
which tries to preserve the surface normals to minimize the visual
difference under various illumination conditions.

View-dependent surface similarity. We chose to constrain
each point p′ of the deformed surface
S to stay on the ray emanating from a
viewpoint o in the direction of p (see
inset). This representation naturally
preserves the surface normals under
uniform scaling of the geometry for a
fixed perspective. It allows us to de-
fine a surface similarity d(S,S0,o)
to measure the perceived difference
of the surface S0 and its deformed
state S when observed from a fixed
viewpoint o:

d(S,S0,o) =

∫
S

∥∥∥nSφ(p,o) − nS
0

p

∥∥∥2 dp. (2)

Here, φ(p,o) denotes the pointwise identification of the surface
S0 with its deformed version S. Note that we integrate over S to
incorporate the change in the deformed surface area. In this work,
we use a variational approach to compute an appearance-mimicking
surface that minimizes the distance d, given user-provided thickness
constraints.

Surface discretization. We represent the surface S as a triangle
meshM = {V,F}, where V is an n-by-3 matrix that stores the
coordinates of the vertices and F is an m-by-3 matrix encoding the
connectivity. We can equivalently represent the ith vertex vi of S
as:

vi = o + ‖vi − o‖ vi − o

‖vi − o‖ = o + λi
vi − o

‖vi − o‖ , (3)



where λi = ‖vi − o‖. Without loss of generality, we can assume
that o = (0, 0, 0) and simplify Eq. (3):

vi = λiv̂i, where v̂i = vi/‖vi‖. (4)

Fixing the directions v̂i, the positions of the vertices ofM can be
expressed as a vector λ = {λ1, λ2, ..., λn}. In this representation,
all vertices defined by a choice of λi will project to vi if seen from
the viewpoint o. ExpressingM andM0 in the same parametriza-
tion, i.e. if both of them are represented as a set of some λi, Eq. (2)
can be discretized as:

d(M,M0,o) =
∑
i∈V

Ai‖(ni − n0
i )‖2, (5)

where Ai is the Voronoi area associated with the ith vertex.

Linearization. We can write the surface normals as a function of
the vertex positions using the discrete Laplace-Beltrami operator:

d(M,M0,o) =
∑
i∈V

Ai

∥∥∥∥∥ (LDλV̂)i
Hi

− (L0 Dλ0V̂)i
H0
i

∥∥∥∥∥
2

, (6)

where L,L0 are discrete Laplace-Beltrami operators of M,M0

and Hi, H0
i are the discrete mean curvatures at vertex i ofM,M0,

respectively; V̂ is the n-by-3 matrix stacking all v̂is and Dλ is a
diagonal matrix with entries λi on the diagonal (and similarly for
Dλ0 ). The notation (∗)i means that we extract the ith row of ∗. For
more details about the definition of the discrete Laplace-Beltrami
operator and the mean curvature we refer the reader to [Botsch et al.
2010].

Similarly to previous deformation algorithms [Botsch and Sorkine
2008], we linearize this expression by replacing the area weighting
and the Laplacian of the deformed meshM with the corresponding
quantities and operators of the original meshM0.

d(M,M0,o) =
∑
i∈V

A0
i

∥∥∥∥∥ (L0DλV̂)i
H0
i

− (L0 Dλ0V̂)i
H0
i

· λi
λ0
i

∥∥∥∥∥
2

.

(7)

The scaling factor λi/λ0
i compensates for the change in scale of the

Laplacian vector due to the linearization (see Figure 5). Introducing
this factor makes d invariant to uniform scaling of M, similarly
to the scale-invariant Laplacian deformation energy proposed in
[Sorkine et al. 2004]. The main difference is that in our parametriza-
tion, the local scaling is given in closed form, as opposed to the local
least-squares fitting of [Sorkine et al. 2004]. In our case, scaling λi
induces a uniform scaling in the neighborhood of λi (see Eq. (4)).
The scale invariance introduces rank deficiency in the optimization,
but can be fixed by constraining the λi of a single vertex i. This can
be modeled as an equality constraint:

CE λ = b. (8)

Linear approximation effect. The linearization error introduced
in Eq. (7) is higher in areas with low curvature, as shown in Figure
6, where the depth of the Box model is constrained to a small range.
To compare, we iteratively computed the more accurate solution
of the nonlinear problem, updating the cotangent Laplacian of the
deformed surface in every iteration. Unfortunately, this approach
works only for very small and regular meshes and does not converge
for any other result shown in the paper. The reason is that the
cotangent approximation of the Laplacian becomes increasingly
inexact for triangles with angles exceeding 90◦. Therefore, we
opt for using the less accurate but much more stable and efficient
linearization in Eq. (7).
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invariant
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Figure 5: Using a scale-dependent Laplacian (i.e., omitting the
term λi/λ

0
i in Eq. (7)) introduces artifacts (left) that disappear

when using our formulation (right). The colored insets visualize
the angular difference of the normals between the deformed and the
initial surface.
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initial box model iterative solution linearized solution

front view

side view

Figure 6: The depth of the Box model (1538 vertices) is constrained
to a small range. The angular difference of the normals (color
insets) introduced by the linearization in Eq. (7) (right) is higher for
low-curvature regions than in the more accurate solution computed
by iteratively updating the cotangent Laplacian (middle).

Bias for high frequency details. Eq. (7) is challenging to mini-
mize numerically, due to the extreme variation in the range of the
term H0

i . The curvature is close to zero in all flat or very smooth
parts of the mesh, introducing an extreme scaling, which leads to
numerical problems. We remove this instability by adding a weight-
ing that biases the error measure towards preserving high-curvature
details. We weigh the norm of vertex i with (H0

i )
2, hence giving

less importance to the unstable flat regions and canceling out H0
i :

d(M,M0,o) =
∑
i∈V

A0
i

∥∥∥∥(L0 DλV̂)i − (L0Dλ0V̂)i
λi
λ0
i

∥∥∥∥2 (9)

The effect of introducing the bias is minor, as shown in Figure 7, but
makes the optimization numerically stable.

without curvature termwith curvature term
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Figure 7: Ignoring the mean curvature term has a minimal effect on
the results and makes the optimization numerically stable. The insets
show the angular difference of the normals between the deformed
and the initial surface.



Depth constraints. Eq. (9) is quadratic in λ and can be efficiently
minimized by solving a linear system. The thickness of the resulting
surface is completely controlled by λ, which can be easily bounded
on each vertex using inequality constraints of the form:

λmin
i ≤ λi ≤ λmax

i . (10)

This transforms the minimization of Eq. (9) into a quadratic problem,
which can still be optimally solved.

Disconnected pieces. Depending on the application, it might be
useful to define depth range constraints that are discontinuous. This
would enable us to optimize for appearance-mimicking surfaces
that are themselves discontinuous, like the pillar surfaces in Figure
15. This could be achieved by splitting the mesh into multiple
disconnected sets of vertices and solving independent optimizations.
However, this approach requires remeshing and splitting the shared
boundary between every group of vertices, potentially generating
low-quality triangles that make any further optimization unstable.
Moreover, additional constraints to match the normals for shared
vertices are then needed.

We therefore propose a different approach to directly use our al-
gorithm, without the need to split the mesh. Instead of providing
absolute lower and upper bounds λmin

i and λmax
i for each vertex,

we define a dynamic range for each group of independent vertices,
which can be freely moved during the optimization. This provides
maximal freedom to optimize the energy, and only after the opti-
mization the surface is cut into pieces and displaced according to
the original, discontinuous geometry. We model this idea by adding
a variable µg for each group g of independent vertices, transforming
the constraints into:

µgλ
min
i ≤ λi ≤ µgλ

max
i . (11)

We sketch an example in Figure 8, where the depth bounds are
independently provided for each disconnected pillar (left). Our op-
timization finds the optimal appearance-mimicking surface (AMS)
that satisfies the depth bounds up to a scaling, which is controlled
by the µ s. After the optimization, the λs are scaled back by mul-
tiplying by the inverse of the µ s to warp each piece of the AMS
back to its associated pillar (right). The point p (in blue) is fixed
to make the solution unique, as discussed previously. The result,
after scaling back, is independent of the choice of p. Note that the
same formulation with only one λ is used for the case of one simple
continuous depth range constraint.

Figure 8: Depth constraints can be specified independently for every
disconnected component of the target surface (left). The bounds are
moved during the optimization to enlarge the solution space and
increase the AMS quality (middle). The optimized surface is then
projected to every component, guaranteeing to exactly satisfy the
original depth bounds.

Self-intersection avoidance. The deformed surface might
contain self-intersections, as visible in the boundary be-
tween the head and the ear of the Bunny relief (see inset).

without z-ordering with z-ordering

Since each
vertex is con-
strained to move
on a ray, this
can only happen
when two parts
of the surface
change their
depth ordering,
with respect to
the viewpoint o. To prevent self-intersections, we force vertices to
preserve their depth relationships: for every vertex v0

i we cast a ray
from o in direction v̂0

i . For every pair of consecutive hits, we add a
linear inequality constraint that enforces depth ordering preservation.
Note that the rays will generally hit the interior of a triangle, and the
hit position can then be represented using barycentric coordinates.
All inequalities can be stacked in matrix form as:

CIλ ≤ d. (12)

While this procedure does not guarantee the elimination of edge-
to-edge intersections, we found that this is not a problem in our
experiments, and it does not affect the 3D-printed results since the
resolution of the printer is typically lower than the mesh resolution.

Height fields. Our formulation can be specialized to create
appearance-mimicking surfaces that are height fields w.r.t. the view-
point o, thereby increasing the optimization efficiency and quality
of the results, especially for very thin bas-reliefs and carvings.

Assume we wish to create a height field AMS from a general surface
S. Many parts will not be visible from o due to self occlusion:
Constraining such vertices would unnecessarily restrict the degrees
of freedom in the optimization, since the occluded vertices will not
be visible. Therefore, we only set hard constraints on the visible ver-
tices, which considerably speeds up the optimization (for the Bunny
model used in Figure 10 the computation time is reduced by a factor
of 3.6). If large regions of a surface are occluded, the quality can be
further increased by dampening the influence of the corresponding
vertices in the energy, giving more freedom to the visible parts. To
model this optional feature, we introduce an additional weighting
wi that scales the difference in the vertex normals:

d(M,M0,o) =
∑
i∈V

w2
iA

0
i

∥∥∥∥(L0DλV̂)i − (L0Dλ0V̂)i
λi

λ0
i

∥∥∥∥
2

.

(13)

In Figure 9, we assign a weight of 1 to the visible vertices and 0.1

without weighting with weighting
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Figure 9: By dampening the influence of the hidden vertices with
the weights wi, we leave more freedom to the optimization, which
better preserves the surface details in the visible regions.



to the others, obtaining a better approximation of the geometric
details. We enabled this additional weighting only for the surface
in Figures 9 and 11. The weighting could be exposed to the users,
enabling to easily control the deformation by specifying which parts
are important to preserve.

Optimization. The energy and the constraints can be written in
matrix form:

minimize
λ,µ

‖DADw(L̃
0DV̂ −DLθ )Sλ‖2 + α‖µ‖2

subject to CI [λ µ]ᵀ ≤ d,

CE [λ µ]ᵀ = b

(14)

Where DA and Dw are 3n-by-3n diagonal matrices containing the
square roots of the areas A0

i and the weights wi, respectively. L̃0 is
a 3n-by-3n matrix and equal to L0 ⊗ I3, where ⊗ is the Kronecker
product, DV̂ is a 3n-by-3n diagonal matrix of the row-wise stacked
elements of V̂, S is a 3n-by-n selector matrix, coupling all λs
with the x, y, z coordinates in the system and can be written as
In ⊗ [1, 1, 1]T , In being an n-by-n identity matrix. Lθ is a 3n-
vector defined as follows:

Lθ = D−1
(Sλ0) L̃

0 DV̂ Sλ0. (15)

The regularization term on µ is necessary to make the energy gra-
dient matrix full-rank. We set α = 10−7 in all our experiments.
This regularization has an intuitive meaning: it makes the minimizer
unique by selecting the smallest µs which correspond to moving
the surface as close as possible to the upper end of the depth range
constraint. Note that this is indeed the desired behavior, since it
minimizes the thickness of the AMS on each disconnected part.
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unconstrained optimization

The influence of the reg-
ularization can be ne-
glected and the solution
of an unconstrained op-
timization is identical
to the initial model up
to numerical errors, as
shown in the inset.

We experimentally dis-
covered that converting
our QP formulation to the equivalent conic program greatly improves
performance, on average by a factor of 5. We use the multi-threaded
conic solver in MOSEK for all our experiments [Andersen and An-
dersen 2000]. See Appendix for the implementation details.

Interactive Final

Model #V #F Time #V #F Time

Dragon 41k 83k 51s 300k 600k 1297s
Owl 20k 41k 32s 218k 437k 760s
Dragon Head 20k 39k 28s 304k 609k 825s
Armadillo 10k 20k 28s 180k 361k 2961s
Fish 10k 19k 11s 279k 559k 920s
Bunny 10k 19k 10s 40k 79k 85s
Face 10k 19k 9s 40k 80k 42s
Cow Herd 24k 51k 9s 417k 834k 330s
Pillar Forest 22k 43k 55s 221k 444k 435s

Table 1: Statistic of all the used model meshes and the times needed
for the conic optimization.

linear
scaling

3D Prints
ours

Comparison

ours

15mm 10mm 5mm 1mm

Figure 10: A sequence of height restricted bas-reliefs from left
to right using the Bunny model. Top: 3D prints generated by
our method. Bottom: comparison between linear scaling and our
method.

4 Results

We used a quad-core Intel i7 processor clocked at 3.4 GHz to com-
pute all our results. Our prototype is written in C++/MATLAB and
uses the MOSEK solver for the conic optimization [Andersen and
Andersen 2000]. Statistics on the meshes and on the computation
times are summarized in Table 1. To support interactive design of
our examples, we used a low-resolution version of each model (left
part). We used a ZCorp 650 to 3D print our results, employing a
clear binder color and default printing options.

Variable depth. We compare our method with a simple linear
compression in a sequence of bas-reliefs ordered according to de-
creasing depth. As can be seen in Figure 10, our approach better
preserves the geometric details even for extremely thin surfaces.

Comparison with [Weyrich et al. 2007]. We compare our results
with [Weyrich et al. 2007] in Figure 11, using the same model and
viewpoint. We reimplemented the method of [Weyrich et al. 2007]
without the optional post-processing sharpening step and used the
same triangle based discretization for both methods. The two results
share many similarities, with a slight edge for our method that
better preserves the fine details. One important difference is that
our algorithm allows to exactly control the depth of the bas-relief

Weyrich et al. 2007 ours

Figure 11: Comparison of a Dragon bas-relief with [Weyrich et al.
2007].



Figure 12: A non-height field Armadillo relief, where the arm and
one ear are left unconstrained, creating an interesting effect when
observed from different angles.

without resorting to a linear scaling in the post-processing. For
a physically-printed model of size 24 cm × 19 cm, the bas-reliefs
protrude by only 8 mm from the baseplate.

Non-height field bas-reliefs. In contrast to existing methods, our
AMSs do not need to be height fields. In Figure 12 we show a depth-
compressed Armadillo, where we constrain only the visual hull
vertices to exactly map to the surface of the baseplate, while letting
the arm and one ear unconstrained. The transition between the two
regions is not a height field from the chosen viewpoint, creating an
interesting effect when observing from different angles.

3D Camouflage. Our method gives us exact control over the depth
of each vertex. By exploiting this feature, we can constrain the AMSs
to lie on many different and disconnected surfaces, as discussed in
Section 3 and shown in Figure 15. We project four models from
four different viewpoints onto a “forest” of pillars. While it is
impossible to discern any pattern when observing from an arbitrary
viewpoint, the models reveal themselves if viewed from one of the
four special viewpoints. It is not trivial to manually construct such
arragments of pillars, as the projected models should not interfere
with the views from other viewpoints. Therefore, we implemented
a simple editor which allows us to specify multiple viewpoints and
pillar shapes and constantly visualizes the visible range for each of
the four viewpoints in different colors as shown in Figure 14. The
necessary depth range constraints are then automatically extracted
and they guarantee intersection free views of all models within the
complex “pillar forest”.

Inspired by street artwork painted over the steps of a staircase, we
use our algorithm to embed a 3D model of an owl into a staircase,
as shown in Figure 3. Note that the AMS is very thin, so it does not
affect the function of the staircase, while being much more resistant
than paint to erosion and aging. This idea is very general, and we
plan to investigate it further in future works, applying it to design
furniture, jewelry and architecture.

Stress tests. We stress test our method with two difficult sets
of constraints. In Figure 13, we constrain the Fish model to stay
within a 4 mm thin layer of a wavy surface mimicking the sea. The
constraints strongly restrict the deformation, but our algorithm is
still able to use the available space to generate a high-quality relief.
The result is surprisingly close to the original model from the desired

Figure 13: A fish embedded in the wavy surface of the sea, con-
strained to stay within a 4 mm thin layer.

viewpoint, but the illusion immediately dissipates when the model
is rotated.

Carving bas-reliefs. Automatically generated bas-reliefs have
mostly been created on flat or simple surfaces by previous algo-
rithms. Our method can handle very complex cases without any
modification, as we show in Figure 4. We carve a Dragon Head
inside a V-shaped volume, constraining the surface to carve up to

Figure 14: Top down visualization of the “pillar forest” model
(Figure 15) in our visualizer. Each color corresponds to the visibility
range of a viewpoint. The inset shows the constrained spaces (red
lines) for the fragmented model parts.



Figure 15: Four 3D models are obfuscated in a “pillar forest”. Refer to the accompanying video for a demonstration.

6 mm in the volume and stick outside for no more than 1 mm. Both
bounds are hard constraints that are guaranteed to be satisfied by our
optimization.

Multiple view strips. Multiple views of the same Head model
embedded in five planar surfaces are shown in Figure 16. Note
that a highly nontrivial deformation is introduced to constrain the
thickness of the different views to not exceed 2 mm.

Figure 16: Multiple views of the Head model (80k vertices), rotated
by 22.5 degrees and constrained to a thickness of 2 mm.

Multiple objects. It is possible to create an AMS from a 3D scene
composed of multiple disconnected objects. We show an example in
Figure 17, where the visual hull of every cow is constrained to lie
on the baseplate.

Natural lighting conditions. We demonstrate that our simplified
lighting model (Section 3) is sufficient for the generation of realistic
AMS in Figure 18, where we took photographs of our 3D printed
results under outdoor lighting conditions. The photograph captured

during a cloudy day (bottom) perfectly preserves the depth illusion,
while direct exposure to sunlight (top) creates harsh shadows that
reveal the extreme thinness of the Fish and the Armadillo reliefs.

Figure 17: A 3D scene containing a small cow family is converted
to a thin relief. The inset shows a rendering of the original scene
from the top view.



Figure 18: A collection of appearance-mimicking surfaces pho-
tographed in a courtyard during a sunny day (top) and a cloudy day
(bottom).

5 Concluding remarks

We presented a novel approach to create appearance-mimicking
surfaces, which uses a special mesh parameterization of the deforma-
tion to robustly optimize for a surface whose normals are similar to
the input geometry from a fixed perspective. Our algorithm supports
exact and adaptive depth constraints and works directly on manifold
triangle meshes without the need for resampling. We demonstrate
the effectiveness of our approach to generate bas-reliefs and artistic
compositions. Our lighting model assumes diffuse material and
directional lighting and it does not account for self-shadowing. If
these conditions are far from being satisfied, it produces sub-optimal
results: We show a failure case in Figure 19, where a flash gun is
placed close to the model and pointed directly at it. The harsh light-
ing creates specular reflections and strong shadows which ruin the
illusion. We plan to investigate the use of a more accurate lighting
model in future work.

The illusion generated by our method degrades as the viewpoint gets
closer to the object, since the stereo disparity increases, helping the
human vision system to detect the illusion. This problem has not
been explored in the literature, and, given the quick development of
3D displays, is an interesting venue for future work.

With the advent of commodity 3D printing, we expect that bas-
reliefs will be widely used to personalize objects and wearables. Our
algorithm provides a robust and efficient way to support non-expert
users in effectively using bas-reliefs in their creations.
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Figure 19: Under harsh lighting conditions the depth illusion does
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C., AND SEIDEL, H.-P. 2004. Laplacian surface editing. In Proc.
Symposium on Geometry Processing, 175–184.

SUN, X., ROSIN, P. L., MARTIN, R. R., AND LANGBEIN, F. C.
2009. Bas-relief generation using adaptive histogram equalization.
IEEE Trans. Vis. Comput. Graph. 15, 4, 642–653.

TAN, P., QUAN, L., AND ZICKLER, T. 2011. The geometry of
reflectance symmetries. IEEE Trans. Pattern Anal. Mach. Intell.
33, 12, 2506–2520.

WEYRICH, T., DENG, J., BARNES, C., RUSINKIEWICZ, S., AND
FINKELSTEIN, A. 2007. Digital bas-relief from 3D scenes. ACM
Trans. Graph. 26, 3, 32.

ZATZARINNI, R., TAL, A., AND SHAMIR, A. 2009. Relief analysis
and extraction. ACM Trans. Graph. 28, 5.

ZHANG, Y.-W., ZHOU, Y.-Q., ZHAO, X.-F., AND YU, G. 2013.
Real-time bas-relief generation from a 3D mesh. Graphical
Models 75, 1, 2–9.

Appendix

We use MOSEK [Andersen and Andersen 2000] to efficiently
solve sparse, quadratic programming problems. Its documentation
strongly recommends converting convex quadratic energy minimiza-
tion with linear inequality constraints, like Eq. (14), into linear
energy minimization with conic constraints. We found this to be
especially advantageous for our problem, which is of the form:

minimize
x

1

2
‖Fx‖2 + fᵀx+ const

subject to CI x ≤ d, CE x = b
(16)

with
x = [λ µ]ᵀ

f = 0

F =

[
DADw(L̃

0DV̂ −DLθ )S 0
0

√
α · I

]
.

The matrix I is an identity matrix of size of the length of µ. To con-
vert this to a conic problem, we first introduce a vector of auxiliary
variables t and rewrite Eq. (16) as:

minimize
x,t

1

2
‖t‖2 + fᵀx+ const

subject to Ax ≤ d, CE x = b,

Fx− t = 0.

Using the scalar variables v and c we convert into conic form:

minimize
x,t,v,c

v + fᵀx+ const

subject to CI x < d, CE x = b,

Fx− t = 0,

cv ≥
∑
i

t2i , c = 2, v ≥ 0,

(17)

where the inequality constraint on v forces its value to be inside the
cone described by the coordinates of t. Putting all variables in a
column vector, we can write this in matrix form, as we supply it to
the solver:

minimize
[xᵀ tᵀ v c]

[
fᵀ 0ᵀ 1 0

]  x
t
v
c

+ const

subject to
[

F −I 0 0
CI 0ᵀ 0 0

] x
t
v
c

 ≥ [ 0
−∞

]

[
F −I 0 0
CI 0ᵀ 0 0

] x
t
v
c

 ≤ [ 0
d

]
 x

t
v
c

 ≤
 b
∞
∞
2

 ,
 x

t
v
c

 ≥
 b
−∞
0
2


cv ≥

∑
i

t2i .

Note that every equality constraint was replaced by two inequality
constraints. Because in our case CE is a diagonal matrix, we can
represent these equality constraints with an upper and lower bound
on λ, which can be handled more efficiently in the optimization.




