
Animato: 2D Shape Deformation and Animation on Mobile Devices

Stefan Messmer1,2 Signe Fleischmann1 Olga Sorkine-Hornung2
1kindergarten.io 2ETH Zurich

Figure 1: Novice users animate their own drawings using our app. Left: input drawing and two of our testers working collaboratively with
the app on a short animation movie. Right: two frames showing the input character being interactively deformed.

Abstract
We present Animato, an interactive app for the animation of 2D
shapes using an intuitive multi-touch interface and a novel col-
laborative multi-user mode. We describe our implementation of
a state-of-the-art nonlinear shape deformation method on iOS de-
vices, overcoming their hardware limitations. Informal testing with
users shows that even novices have an easily accessible entry point
to computer animation and are quickly able to record animation
performances using our app thanks to the direct and intuitive multi-
touch interface and the fast shape deformation algorithm.

Keywords: computer animation, shape deformation, skinning,
mobile devices, multi-touch, collaborative interfaces

Concepts: •Computing methodologies→ Animation;

1 Introduction

Computer animation is a popular form of art and entertainment,
with expressive characters fascinating audiences of all ages world-
wide. Yet, creating own animations is challenging and largely in-
accessible: while sketching and drawing is relatively easy for lay
users, bringing drawings to life with computer animation typically
requires using complicated software with a steep learning curve, at-
tainable only by trained artists. Recent research efforts on shape de-
formation [Jacobson et al. 2016a] have produced algorithms that en-
able interactive deformation and posing of articulated shapes via a
click-and-drag mouse interface: arbitrary points (or “handles”) can
be attached to a given shape and dragged around using the mouse,
yielding intuitive and visually pleasing deformations of the shape
that can further serve as animation keyframes. However, since these
methods involve sophisticated numerical optimization, they were

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). © 2016 Copyright held by the owner/author(s).
SA ’16 Symp on Mobile Graphics and Interactive Applications, December
05-08, 2016, Macao
ISBN: 978-1-4503-4551-4/16/12
DOI: http://dx.doi.org/10.1145/2999508.2999528

originally implemented on desktop computers with ample memory,
CPU and GPU capacities. Additionally, manipulating a shape ren-
dered on the screen using a mouse is indirect and imposes a cogni-
tive load, plus only one control handle can be manipulated at a time,
such that “live puppeteering” of a character is nearly impossible.
These factors make the barrier for the widespread use of desktop
animation techniques relatively high.

In this work, we implement a state-of-the-art shape deformation
method on the mobile iOS platform and take advantage of the multi-
touch display capabilities for a direct shape manipulation interface.
Additionally, we propose a new, collaborative interface that enables
multiple users to animate a shape together by simultaneously ma-
nipulating it on several mobile devices. We discuss our solutions
to overcoming the hardware limitations of the mobile devices while
preserving the realtime frame rate of the deformation algorithm.
We test the features of our app with novice users, including school
children, confirming that our system provides an easy, intuitive and
playful introduction to animation. Novice users are able to create
their own animations quickly and naturally, which places our ap-
proach at an advantage over current desktop systems.

2 App workflow and user interface

Advantages of direct shape manipulation with multi-touch inter-
faces have already been demonstrated on large collaborative dis-
plays [Igarashi et al. 2005]. Our app, called Animato, brings these
advantages to small touch screens of mobile devices, thereby signif-
icantly increasing accessibility and potential impact. The pipeline
of Animato has four main steps, and users can go back and forth
between them (see Fig. 2):
1) Input image segmentation. The user selects an image of the
desired shape from the photo library, or directly shoots it from
the app, and scribbles some strokes inside and outside the shape
to be animated. The app automatically segments the foreground
shape and shows the result by superimposing a semi-transparent
colored mask. The user can refine and rectify the segmentation
by adding more strokes. Once the segmentation is satisfactory, the
user presses the “next” button to continue to the second step. At this
stage, the foreground is extracted and the background is inpainted
to create a coherent background canvas. It is also possible to load a
different background altogether.
2) Rigging. The textured shape is displayed, and the user may tap
on it to place control handles in form of point handles and skeletal

http://dx.doi.org/10.1145/2999508.2999528

input image 1) segmentation
user draws inside/outside scribbles

app segments foreground & inpaints

2) rigging
user places control points and/or bones

app precomputes FAST matrices

3) deformation and animation
user taps on handles and drags around
app continuously animates the shape

Figure 2: The workflow of our app Animato. In single-user mode, all steps are performed on the same device. In multi-user collaborative
mode, the “master” user performs steps 1 and 2, while step 3 (animation) is performed simultaneously by all users, each manipulating a
different set of control handles and watching the combined animation on their device. See Sec. 2 for more details.

bones. Point handles are useful for controlling extremities and soft
parts of the shape, while skeletal controls represent rigid parts, such
as legs. The user can toggle between point handle mode and skele-
ton mode in the UI at the bottom of the screen. When in skeleton
mode, tapping on the shape creates a new bone segment that con-
nects between the currently tapped point and the previously selected
point. To add a new bone that connects to a different joint, the user
just needs to tap on that joint to select it, and then tap on a new
location to create the endpoint of the new bone. Once the user is
satisfied with the created control structure, she can press the “next”
button in the UI, and the app performs the binding of the controls
to the shape and all necessary precomputation for the subsequent
realtime deformation.

3) Deformation and animation. The user activates one or mul-
tiple control handles (point handles or skeleton nodes and bones)
by tapping on them and then drags them around with the fingers.
The shape interpolates the displaced handles and deforms to fol-
low the user interaction in a smooth, plausible and intuitive way.
The user can switch to recording mode in the UI, in which case
the transformations of the handles are continuously saved to record
the realtime animation performance. The user can also record par-
tial animation performances with the available fingers and combine
recordings: whenever the recording mode is entered, the previously
saved animation is continuously played back and the currently ac-
tive interaction handles are newly recorded and combined with the
existing animation.

4) Exporting the result. The user can export the recorded ani-
mation to a movie, or just save the current deformation result as a
single image to the photo library of the device.

The app also offers gesture UI for zooming and translation, such
that the user can explore various parts of the shape in better detail
and also translate its global positioning. The gestures are the fa-
miliar iOS two-finger pinching/spreading for zoom and dragging a
finger outside the shape for translation (cf. Fig. 3).

Collaborative mode. In this mode, one mobile device is assigned
as the master device, and its user selects the shape to animate and
performs steps 1 and 2 above (segmentation and rigging). Then,
multiple users can join the deformation and animation session with
the app in collaborative mode on their devices. They can either
just watch the animation on their device or actively manipulate the
interaction handles and the positioning of the shape. The handles
grabbed by a user are marked as “occupied”, so that other users
may choose to manipulate other handles. The resulting animation
is updated in real time on all devices. For example, one user can
animate the arms, another one the legs of a character, and a third
user can be in charge of its global translation in the scene (see Fig.

animation of the legs
by dragging the handles on the feet

animation of the position by
dragging outside the character shape

Figure 3: Gestures and collaborative mode. One user animates the
global position of the character on the background canvas (left),
while another simultaneously animates the character’s legs on a
separate device (right).

3 for an example). Each user may choose her own preferred zoom
level without affecting the display for other users.

3 Algorithms and implementation

We have chosen iOS as our platform and implemented Animato
on the iPad, with an adaptation to the iPhone currently underway.
The segmentation, rigging and realtime deformation steps of the
workflow require solving challenging optimization problems, even
more difficult on mobile platforms, which have limited memory and
computing resources. Below we present our algorithmic choices
and system design to tackle this challenge.

Input image segmentation. If the loaded image contains an al-
pha mask, we can use it directly to identify the foreground shape to
be animated. Otherwise, we rely on the user to draw a few scrib-
bles inside and outside the desired shape and feed these as con-
straints to GrabCut segmentation [Rother et al. 2004] implemented
in OpenCV [Itseez 2016]. To provide the user with immediate pre-
view of the segmentation, the input image is downsampled by a
power of 2 (to a resolution smaller than 512 × 512 in the current
implementation). This way, the user can refine the segmentation by
adding more scribbles and receive prompt feedback. The final seg-
mentation is then computed on the fine resolution using the result
of the coarse segmentation as the prior (this takes a few seconds),
and the largest foreground component is selected as the shape to
animate. In order to use the rest of the input image as a background
canvas for the animation, we perform inpainting inside the contour
of the foreground shape using the simple method of fast marching
cubes [Telea 2004] available in OpenCV. Although it provides very

basic results, the running time is extremely fast, unlike the more
sophisticated patch based inpainting methods, which unfortunately
take minutes on the iPad if run out of the box. Finally, we compute
a triangle meshing of the foreground component.

Rigging. The result of the previous step is a textured triangle
mesh of the shape to be animated (plus a background canvas). After
the user specifies all the control handles (points and bones), the app
performs precomputations necessary for the realtime deformation
in the next step. For efficiency, Animato uses linear blend skinning
(LBS) for deforming the shape, namely, each vertex v of the mesh
is transformed by the formula

v′ =

m∑
j=1

wj(v)Tjv, (1)

where wj(v) are scalar per-vertex weight functions associated with
each control handle j and Tj are affine transformations of the han-
dles, supplied for each frame during the animation stage. Homo-
geneous coordinates are used for the vertices to enable linear rep-
resentation of translations. The skinning weights wj are fixed per
choice of mesh and deformation handles, and so they are precom-
puted in the rigging stage. We use the bounded biharmonic weights
of [Jacobson et al. 2011], which require solving a sparse quadratic
programming problem whose size is proportional to the number of
mesh vertices, n.

LBS alone requires tedious input from the user, because in order
to create visually pleasing shape deformations, not just translations
but also rotations must be specified for each control handle, pre-
cluding the simple dragging interface we would like to use. We
therefore use the FAST method (Fast Automatic Skinning Trans-
formations) of [Jacobson et al. 2012], which automatically com-
putes the rotational parts of the Tj’s by minimizing the nonlinear
as-rigid-as-possible (ARAP) energy of the deformed mesh. Eval-
uating the energy on the mesh requires performing O(n) singular
value decompositions for local rotation optimization, which is too
expensive, but the FAST method approximates the energy by clus-
tering the local rotations, such that only several dense matrices of
size O(m) are required at the rigging stage (where m � n); these
are then used for the optimization iterations during the deformation
stage. For details please refer to [Jacobson et al. 2012].

To implement FAST in iOS, we rely on Eigen [Guennebaud et al.
2010] for linear algebra computations and libIGL [Jacobson et al.
2016b] for mesh structures and geometry processing. Although li-
bIGL contains a reference implementation of FAST, we cannot em-
ploy it directly, as it is not optimized for the specifics of mobile
devices. Instead, we reimplement the algorithm using NEON vec-
torization, the SIMD of the ARM architecture, to get good perfor-
mance on the iPad and iPhone.

Deformation and animation. During the realtime deformation
and animation stage, the vertex positions are updated by the LBS
formula in Eq. (1), and the resulting textured mesh is continuously
displayed. The LBS computation is implemented using a specific
OpenGL shader to enable the performance of 60 frames per second,
which results in smooth animations and is also the native refresh
rate of the iPad screen. The transformations Tj in Eq. (1) are com-
puted on the CPU. They partially consist of the translations directly
specified by user manipulation of the handles; their remaining de-
grees of freedom are automatically computed by the iterative FAST
optimization, where each iteration involves singular value decom-
positions of O(m) 2×2 matrices and matrix-vector multiplications
of size O(m). Since the number of handles m is typically low, these
computations are fast and memory-efficient.

Collaborative mode. Sharing the animation experience between
several devices requires high frame rate of the deformations (60 fps)
and very low latency, such that all users are well synchronized. The

frame rate is guaranteed by our choice of deformation algorithm
and its implementation, as described above, and the low latency
must be ensured by the data exchange framework and protocol. We
employ Apple’s MultiPeer framework to connect several iOS de-
vices over WiFi and create a stream to exchange data packets. We
choose WiFi over Bluetooth, since the latter underperformed in our
tests, with fluctuating bandwidth and latency of more than 70 ms,
which is visually noticeable. When using a WiFi access point, a
network between the devices is created using Bonjour, which auto-
matically discovers all devices that use the same service. Since all
data is routed through the access point, and since in our setting one
user has to prepare the animation by segmentation and rigging, it
is natural to employ the client/server communication model, where
the server is the device that prepares the scene. The server is in
charge of sending the scene information and the precomputed data
to each client when it connects, and synchronizing all clients by
continuously sending them the full state of the current animation.
Each client sends updates about its contribution to the animation to
the server. The measured latency using WiFi is only about 30 ms,
which is not perceivable.

The complete state of the animation in each frame is defined by
the m transformation matrices Tj and the model view matrix, i.e.,
the position and size of the animated shape w.r.t. the canvas. Our
exchange protocol can be sketched as follows:

Client: (1) look for server by starting Multipeer Browser; (2) if a
server is found, ask for connection; (3) if the connection succeeds,
receive background image, mesh, texture and precomputed matri-
ces of the FAST algorithm; (4) send updates of changed transforma-
tions and their handle indices; (5) retrieve transformation updates
from the server and incorporate the changes; (6) repeat (4) and (5).
Server: (1) look for incoming connections by starting the Multi-
peer Advertiser; (2) accept connection and send the background
image, mesh, texture and precomputed matrices for FAST; (3) re-
ceive partial updates for handles and incorporates them; (4) send
out the complete set of all transformations (needed to synchronize
all connected clients) for every frame; (5) repeat (3) and (4).

Thanks to our choice of shape deformation algorithm based on di-
rect manipulation handles, the amount of data that defines the cur-
rent state is low. A back-of-the-envelope calculation shows that for
a setup with 4 handles, a bandwidth of approximately 40 KB/s is
required to obtain the target frame rate of 60 fps.

4 Evaluation and discussion

In the process of developing the app, our colleagues tested its var-
ious features, and we received very positive feedback. However,
since most our colleagues come from a computer graphics back-
ground, we decided to conduct an informal user study with true
novice users, namely, school children (see Figs. 1, 4). We visited a
class of third graders (9 years old) in primary school. The children
were asked to use their own drawings for background canvases and
characters, which they created on paper a week in advance in paint-
ing class. For the single user mode, 4 children at a time worked on
4 iPads. The task was to create a short sequence with their char-
acter walking around on a background by setting up two handles
on the legs. Next, the children were free to create any animation
by combining multiple sequences and also adding more interaction
handles. We also tested the collaborative mode, where the children
worked in groups of 2 or 3, with one user moving the character
around on the canvas, and the others articulating the extremities.

Observing the children revealed that they had an easy access to Ani-
mato, as most were already familiar with the iPad, so that the barrier
to trying a new program was very low. It was quite natural for them

Figure 4: School students in third grade performing an informal user study of Animato using their own hand drawn characters and back-
ground images. The students tested both the single-user and collaborative multi-user modes and successfully created short animation movies.

to quickly get their drawings into the app by photographing and
segmenting them using the in-app UI. The children needed some
explanation and help when setting up the handles. Overall, every-
one succeeded in creating short animation sequences with their own
characters, which would have been difficult to impossible for chil-
dren using a desktop computer – and they had fun using the app.
The collaborative mode also worked well and enabled the creation
of more complex and expressive animations. At the same time,
we learned that certain interactions are challenging when multiple
users are involved, namely, it is difficult to synchronize the timing
of the various components of the animation. For example, creating
a coherent walking sequence when one person controls the arms
and the other controls the legs is difficult without a “conductor”
mechanism. Using a metronome or music for rhythm helps a lot in
such situations, and we would like to investigate effective modes of
multi-user interaction in future research.

The hand-sized touch screen offers the advantage of direct connec-
tion between the touched locations and the animated shape, and it
is easy to trace smooth curves by moving the fingers. This way,
realtime “acting” performance of the animation becomes possible,
which is much faster and more intuitive than keyframing. This is
in stark contrast to the standard mouse-and-keyboard, single-touch
interface, where the movement of the mouse is not directly equal to
that of the handles on screen, and the translation between the two
is cognitively taxing. On the other hand, touch sensing on the iPad
and the iPhone is less precise than working with the mouse, and
the fingers occlude parts of the animated scene, so that designing
detailed, precise deformations is more difficult on such devices.

5 Conclusions and future work

We presented our design of an iPad app that enables animating 2D
shapes using the multi-touch interface by a single user or in a col-
laborative mode. We have tested the app with school children, who
successfully created short animated movies of characters that they
had drawn themselves. The direct connection between finger move-
ments and the animated shape, as well as the multi-touch ability to
manipulate several handles at once make recording a realtime per-
formance of an animation easy and efficient. We conclude that our
app provides a playful and easy entry point for novice users into
computer animation, and the state-of-the-art shape deformation al-
gorithm we implemented could be helpful for experienced users as
well when creating rough concept sketches of animations.

In the future, we are interested in exploring the addition of dynam-
ics to the animations, potentially exploiting the sensors available in
mobile devices, such as the accelerometer and the orientation sen-
sor. Another important extension is the animation of 3D shapes.
While the deformation algorithm itself readily works in 3D, the

user interface poses significant challenges: the direct connection
between the shape geometry and the fingers manipulating it is lost
due to perspective projection, and at the same time manipulation
precision is more important in 3D. Solving these challenges on eas-
ily accessible mobile devices would help introduce the public to
creative expression in 3D, and we leave this as exciting future work.

Acknowledgements

We are grateful to Alec Jacobson, Daniele Panozzo and Alexan-
der Sorkine-Hornung for illuminating discussions and support, and
to Bettina Sigrist and her students for volunteering their time to
the user studies. This work was funded in part by the SNF grant
200021 162958 and the ERC grant iModel (StG-2012-306877).

References

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3.
http://eigen.tuxfamily.org.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3,
1134–1141.

ITSEEZ, 2016. OpenCV: Open source computer vision library.
https://github.com/itseez/opencv.

JACOBSON, A., BARAN, I., POPOVIĆ, J., AND SORKINE, O.
2011. Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph. 30, 4, 78:1–78:8.

JACOBSON, A., BARAN, I., KAVAN, L., POPOVIĆ, J., AND
SORKINE, O. 2012. Fast automatic skinning transformations.
ACM Trans. Graph. 31, 4, 77:1–77:10.

JACOBSON, A., DENG, Z., KAVAN, L., AND LEWIS, J. 2016.
Skinning: Real-time shape deformation. In International Geom-
etry Summit 2016, invited course.

JACOBSON, A., PANOZZO, D., ET AL., 2016. libigl: A simple
C++ geometry processing library. http://libigl.github.io/libigl/.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004. “Grab-
Cut”: Interactive foreground extraction using iterated graph cuts.
ACM Trans. Graph. 23, 3, 309–314.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Applied Computational
Geometry: Towards Geometric Engineering, vol. 1148 of Lec-
ture Notes in Computer Science. Springer-Verlag, 203–222.

TELEA, A. 2004. An image inpainting technique based on the fast
marching method. Journal of Graphics Tools 9, 1, 23–34.

https://github.com/itseez/opencv

