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Figure 1: Left to right: an image with color scribbles is fit with a mesh and lifted intoR3 according to intensity values. Bounded Biharmonic
Weights computed for each scribble (shown for body) are used to colorize the image. Compare to colorization by [Levin et al. 2004].

Abstract

By embedding images as surfaces in a high dimensional coordinate
space defined by each pixel’s Cartesian coordinates and color values,
we directly define and employ cotangent-based, discrete differential-
geometry operators. These operators define discrete energies useful
for image segmentation and colorization.
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Many image processing techniques rely on differential operators
defined in terms of some metric adapted to image content. For exam-
ple, discrete Laplacians with stencils weighted by a function of pixel
locations and color values define energies whose minima intuitively
propagate tone map adjustments [Lischinski et al. 2006] or sparse
color values [Levin et al. 2004]. Other techniques have overlain
triangle meshes atop images to reduce computation complexity (e.g.
for image warping [Karni et al. 2009]), while simultaneously mani-
festing the ability to employ discrete differential-geometry operators
common in computer graphics [Meyer et al. 2003].

The mesh-based Laplacians enjoy well-studied properties: conver-
gence w.r.t. mesh resolution, positive semi-definiteness when defin-
ing Dirichlet energies, and symmetric, locally-supported stencil
weights [Wardetzky et al. 2007]. Though the content-adaptive sten-
cils used by [Levin et al. 2004; Lischinski et al. 2006] imply discrete
Laplacians, they are rarely labeled as such. As a result they ap-
pear to be less studied in this regard and most likely only enjoy
a subset of these properties. However, they depend on the image
color values, and are thus tantamount to defining a Laplacian in
terms of some content-adaptive metric. As of yet, the planar triangle
meshes previously used in image processing incorporate only the
Cartesian coordinates of mesh vertices and are thus defined solely
by the Euclidean image-plane metric, ignorant of image content.

We define an image surface by first overlaying a triangle mesh
atop the image. We place vertices at pixel centers and Delaunay-
triangulate them. The mesh is then lifted into higher dimensional
space by appending each pixel’s color values as coordinates to the
corresponding mesh vertex. Thus the pixel i at location (xi, yi) is
lifted to (xi, yi, Ii), (xi, yi, Ri, Gi, Bi), or (xi, yi, Li, Ai, Bi) in
a grayscale, RGB, or LAB color model respectively.

Now our triangle mesh lives as a disk-topology surface embedded
in a higher dimension. If only a single color channel is used then
the surface lives in R3, and typical discrete differential operators
common in 3D mesh processing may be immediately applied. If

we use more channels then our surface lives in R5 or possibly
higher. At first glance it may seem difficult to define the usual
operators in higher dimensions. However, the building blocks of
standard operators, e.g. the discrete Laplace-Beltrami operator,
are the triangle areas and cotangents of each triangle corner angle
[Meyer et al. 2003], and these may be defined intrinsically based
solely on triangle edge lengths (rather than using cross products as
one might inR3).
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Consider a triangle with vertices
vi,vj ,vk ∈ Rd. The triangle area Aijk

is defined intrinisically by [Heron 60]:

Aijk =
√
r(r − lij)(r − ljk)(r − lki)

where lij is the length of the edge be-
tween vi and vj , and r is the semi-
perimeter 1

2
(lij + ljk + lki).

We may similarly define the cotangent of
the angle opposite each edge. First we can derive the cosine and
sine. Recall the law of cosines:

l2ij = l2jk + l2ki − 2ljklki cosαij → cosαij =
−l2ij + l2jk + l2ki

2ljklki
.

For sine, we employ the familiar area formula treating the vjvk as
base:

Aijk =
1

2
ljklki sinαij → sinαij =

2Aijk

ljklki
.

Finally putting these together we have:

cotαij =
cosαij

sinαij
=
−l2ij + l2jk + l2ki

2ljklki

ljklki
2Aijk

=
−l2ij + l2jk + l2ki

4Aijk
.

Note that a similar intrinsic derivation is given in Equations 7 and
13 of [Meyer et al. 2003].

With cotangents in hand, we may employ operators like the discrete
Laplacian to minimize the Dirichlet energy over an image surface.
Consider the colorization problem. We wish to propogate the colors
of sparse user scribbles to the rest of the image in a localized and
smooth manner that takes into account the image content. [Levin
et al. 2004] pose this as a discrete energy minimization problem.
Despite their published formulas, discussion with one of the authors
and their published code agree that their energy is a Dirichlet energy
resulting in a second-order PDE with a discrete Laplacian as the
system matrix, similar to that of [Lischinski et al. 2006].
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Figure 2: The original input image with colored user scribbles (left inset) defines an image surface inR3 using intensity values (top row), or
inR5 using RGB values (bottom row). Varying the scale factors (columns) on the appended coordinates affects the discrete Laplace equation
used to produce these soft-segmentations.

The resulting system of the colorization problem is linear: the fi-
nal colors are just a weighted linear combination of each scribble’s
color. In this light, we may acknowledge the connection between the
colorization problem and the handle-based linear shape deformation
problem, where correspondence weights are computed for each han-
dle and each point on the surface. If we replace the Laplacian used
by [Levin et al. 2004] with the cotangent Laplacian of the image
surface, the resulting system would then be analagous to the Har-
monic Coordinates of [Joshi et al. 2007]. The Bounded Biharmonic
Weights of [Jacobson et al. 2011] show numerous advantages over
Harmonic Coordinates in the realm of deformation weights. Because
Bounded Biharmonic Weights also optimize an energy involving the
cotangent surface Laplacian, we may similarly compute them on
image surfaces and use them for colorization (see Figure 1).

One missing element is the choice of scale relationship between the
Cartesian coordinates of a pixel and its appended color coordinates.
For a pixel i at location xi, yi ∈ [0,max(w, h)] where w and h
are the width and height measured in pixels, let its color values
be Ii, Ri, Gi, Bi, . . . ∈ [0, 1]. Then we parameterize the amount
of content-adaptiveness desired in our operators by scaling each
color coordinate by a constant factor when we lift the image surface.
For a pixel i in a grayscale image, the embedded coordinates are
(xi, yi, fIIi) and for an RGB image (xi, yi, fRRi, fGGi, fBBi).
The effect of tweaking these parameters is shown in Figure 2. For
this example we consider Harmonic Coordinates defined on the
image surface as a soft segmentation for three user scribbles. The
top row shows the segmentation in pseudo-color for various scale
factors, considering only the intensity channel. The bottom row
considers the RGB channels (with fR = fG = fB).

In future work, we would like to explore different color models
and the ideal weighting of each color coordinate. It would also be
interesting whether a similar embedding can be defined for cyclical
color spaces like HSV.
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