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Distortion-minimizing surface parameterization is an essential step for com-
puting 2D pieces necessary to fabricate a target 3D shape from flat material.
Garment design and textile fabrication are a prominent application example.
Common distortion measures quantify length, angle or area preservation
in an isotropic manner, so that when applied to woven textile fabrication,
they implicitly assume fabric behaves like paper, which is inextensible in
all directions and does not permit shearing. However, woven fabric differs
significantly from paper: it exhibits anisotropy along the yarn directions
and allows for some degree of shearing. We propose a novel distortion en-
ergy based on Chebyshev nets that anisotropically penalizes shearing and
stretching. Our energy formulation can be used as an optimization objective
for surface parameterization and is simple to minimize via a local-global
algorithm. We demonstrate its advantages in modeling nets or woven fabric
behavior over the commonly used isotropic distortion energies.
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1 INTRODUCTION
Distortion-minimizing surface parameterization is a core problem
in computer graphics. Computing a flattening, i.e., a mapping be-
tween a disk-topology surface patch and the 𝑢𝑣-plane, is essential
for texture mapping, and it is also commonly used for remeshing
and shape approximation by parametric patches and other means
that require a planar reference domain. The quality of the flattening
crucially affects the downstream applications that rely on the param-
eterization, so designing suitable distortion measures and effective
optimization methods is key [Hormann et al. 2007].
An important application of piecewise surface flattening is the

physical fabrication of a target shape from flat pieces of sheet ma-
terial, such as paper, fabric, plush, rubber or sheet metal. In this
scenario, the flattening needs to mimic the behavior of the sheet
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Fig. 1. Food and toy meshes with Chebyshev net protection computed by
our method. The meshes are cut into disk topology (seams marked in blue).

material in order for the fabricated object to approximate the target
geometry well. Hence the distortion measure optimized by the flat-
tening should model the properties of the sheet material. Distortion
energies are also crucial for segmenting the target shape into pieces
that are likely to be accurately realizable by forming the intended
material, either in a preprocess (e.g., [Decaudin et al. 2006; Julius
et al. 2005]) or interleaved with the flattening itself (e.g., [Li et al.
2018; Poranne et al. 2017].

Widely used distortion metrics measure deviation from isometry
or conformality. Optimization of isometry strives to preserve both
lengths and angles on the surface, uniformly in all directions. In
the context of sheet materials, this is useful for papercraft or sheet
metal bending–materials that prohibit any stretching and require
nearly perfect isometry–or when using elastic materials like rubber
or elastane-based knitted textiles, which can stretch equally in any
direction. Conformal methods strive to preserve angles and typically
allow for uniform scaling, which corresponds to auxetic behavior
and is instrumental in metamaterial design [Konaković et al. 2016].

While different distortion energies proposed over the years offer
various combinations of penalties on length, angle and area distor-
tion, they do so isotropically for the most part. Woven fabric is a
ubiquitous sheet material that is anisotropic: the yarns forming a
grid are largely inextensible, but the textile can stretch by a limited
amount diagonally to the yarn directions (see Fig. 2). Many works
employ distortion energy based mesh segmentation and parameter-
ization to design sewing patterns for textile fabrication [Decaudin
et al. 2006; Julius et al. 2005], but they essentially cast the problem as
developability optimization, treating fabric similarly to paper [Rose
et al. 2007] and not accounting for its anisotropic stretch capacity.
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(a) silk (b) flannel (c) wool (d) gingham

(a) (c)

(b) (d)

Fig. 2. Four fabrics with different materials in rest state (top): (a) 100% silk,
(b) flannel (twill weave, 100% cotton), (c) 80% wool with 20% polyester, and
(d) gingham (plain weave, 100% cotton). All these yarns are almost non-
stretchable, thus when the fabric is deformed by external forces, shearing
occurs, as illustrated in the middle and bottom rows. Note that the camera
view is parallel to the fabric plane.

Modeling such anisotropy and formulating a suitable parameteriza-
tion distortion energy is a challenging inverse problem, because the
yarn directions are unknown a priori. As a result, digital garment
design and other textile fabrication applications are largely based
on flat sewing patterns and developable formulations, and the fabric
material properties are typically considered during the simulation
phase, rather than the modeling phase, necessitating trial-and-error
loops of sewing pattern editing and 3D draping simulation [CLO
Virtual Fashion 2022].

Chebyshev [1878] initially introduced a “cable-net” structure to
parameterize a piece of fabric that assumes no stretch along the
𝑢𝑣-lines (the warp and weft directions) while allowing them to shear,
i.e., the angles between the 𝑢𝑣 lines do not necessarily have to be
90◦. This unique net structure gained interest in the geometry com-
munity, particularly as a tool for modeling architectural structures
or wired nets [Garg et al. 2014; Liu et al. 2020; Masson and Monasse
2017; Montagne et al. 2020; Sageman-Furnas et al. 2019]. However,
despite its original intention, adopting Chebyshev nets for surface
parameterization in textile fabrication scenarios is not common
due to the mentioned challenges. Pietroni et al. [2022] consider the
anisotropic behavior of fabric when computing 2D sewing patterns
for input 3D garments, in an attempt to model fabric as a Chebyshev
net, but their method lacks a proper continuous energy discretiza-
tion and suffers from stability issues, as we discuss in Sec. 5.
Our main contribution is the characterization of a Chebyshev

parameterization through its Jacobian. We analyze the Jacobian via
its singular value decomposition and reveal its particular structure,
enabling us to formulate a Chebyshev distortion energy that mea-
sures the deviation of a given parameterization from a Chebyshev
net. We develop an efficient algorithm, which is partially based on

drape

flatten

(a) (b)

(c) (d)

( isometric, via ARAP ) ( Chebyshev net, ours )

Fig. 3. A piece of fabric (a) is draped onto a sphere using Blender [2024],
resulting in the shape (b). Next, we flatten the 3D draped cloth byminimizing
either the isometric energy [Liu et al. 2008] (c) or our Chebyshev net energy
(d). We can see that the Chebyshev net more effectively models woven fabric
and can more accurately recover its original state during flattening.

the Procrustes problem, to minimize our proposed Chebyshev distor-
tion measure and demonstrate that it produces flattening mappings
that accurately reflect the qualitative behavior of woven textiles,
wire meshes and other similar sheet materials (Fig. 1). Our results
indicate that the proposed Chebyshev energy is better suited than
the standard conformal or isometric energies in such scenarios. We
also show that the same Chebyshev Jacobian characterization can
be used as a component in a shape deformation energy for freeform
interactive editing of shapes that are intended to be realized with
fabric, in a similar spirit to how developability measures are used
for freeform design of folded paper shapes [Rabinovich et al. 2018].

2 RELATED WORK
We review prior research related to mesh parameterization and
Chebyshev nets, as well as modeling woven fabric.

Chebyshev nets. Chebyshev [1878] introduced a net structure to
represent a piece of fabric based on the inextensibility property
of yarns placed along the warp and weft directions that comprise
woven fabric. This model, known today as Chebyshev net, is widely
explored in applications such as wiredmeshmodeling for fabrication
and architectural design [Garg et al. 2014; Liu et al. 2020; Montagne
et al. 2020; Sageman-Furnas et al. 2019], as well as woven fabric
fitting in the textile industry [Aono et al. 2001, 1994, 1996; Ramgulam
2001; Trochu et al. 1996; van West et al. 1990; Wang et al. 2005]. The
woven cloth fitting problem [Mack and Taylor 1956] explores how
a piece of fabric can tightly wrap a given 3D shape, and it involves
computing the placement of warp and weft yarns on the surface,
or their crossing points, i.e., the nodes of the woven net, assuming
each point on the cloth is in contact with the surface.
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Fig. 4. We can easily extract a Chebyshev net (e) from the computed Chebyshev parametrization (b) to approximate the input 3D surface (a). Here we show
two examples similar to those shown in [Garg et al. 2014, Fig.10]. We also visualize the per-face Chebyshev error (c) and the shearing angle (d).

Mack and Taylor [1956] established the fundamental assumptions
for the woven fabric fitting problem, which can be viewed as ensur-
ing that the yarns form a Chebyshev net. They explored analytical
solutions for fitting fabric to surfaces of revolution. Robertson et al.
[1981, 1984] proposed the first computational method to find the
3D positions of the yarn crossing points when wrapping cloth on
spherical and cone surfaces. Van West et al. [1990] were the first
to consider fitting woven fabric to arbitrary surfaces while accom-
modating constrained yarn paths, where two perpendicular yarn
curves aligned with the warp and weft directions are specified. Aono
et al. [1994] simplified the process of specifying initial conditions
for constrained yarns by taking just one arbitrary curve as user
input. This line of research aims to determine the 3D position of
each yarn crossing point after draping by finding the intersection
between the input surface and two spheres, each representing a
warp and a weft segment, which is computationally expensive and
sensitive to the initial guess. Wang et al. [2005] model woven fab-
ric using a mass-spring system, where the diagonal springs have a
lower spring constant compared to the warp and weft springs. As
a result, the deformation of the diagonal springs drives the overall
deformation, mimicking shear. The woven fabric fitting problem is
thereby reduced to the minimization of the strain energy defined
on the mass-spring system, resulting in a more efficient and robust
algorithm. However, the spring constants are chosen empirically,
lacking a more precise mathematical formulation for the shearing
deformation of woven fabric.
Another related topic is Chebyshev net deformation. Li et al.

[2022] allows users to deform a given Chebyshev net (represented
by a quad mesh) by dragging along handles while preserving edge
lengths. In this work, we propose a unified framework for modeling
and deforming Chebyshev nets. Other topics related to Chebyshev
nets, including reconstruction from a single view [Koenderink and
van Doom 1998] and their existence for arbitrary surfaces [Masson
and Monasse 2017], are outside the scope of our research.

Surface parameterization. We refer the interested readers to the
thorough surveys [Floater and Hormann 2005; Hormann et al. 2007;
Sheffer et al. 2007] for more detailed discussions. Here we mainly
focus on surface parameterization methods used in applications

involving cloth modeling. For most shape approximation tasks us-
ing fabric, such as designing plush toys [Mori and Igarashi 2007],
covers [Igarashi et al. 2009], formwork [Zhang et al. 2019], or gar-
ments [Decaudin et al. 2006; McCartney et al. 1999; Pietroni et al.
2022], the target 3D surface is usually (piecewise) flattened to create
a 2D sewing pattern by using a distortion-minimizing parameteri-
zation method. The necessary decomposition of the 3D shape into
patches with disk topology that can be flattened with low distor-
tion is guided either by the same distortion measure as the subse-
quent parameterization [Sorkine et al. 2002] or by a developability
measure [Julius et al. 2005]. These distortion measures typically
isotropically penalize deviation from isometry (e.g., [Liu et al. 2008;
Sander et al. 2001; Sorkine et al. 2002], effectively modeling cloth
as rubber material that equally resists stretching in every direction;
zero distortion energy is attainable only on developable surfaces.
Choosing such distortion energy disregards the anisotropic nature
of woven fabric, which is nearly inextensible along the yarn direc-
tions and less resistant to stretch in other directions. Conformal or
angle-preserving mappings [Lévy et al. 2002; Sawhney and Crane
2017; Sheffer et al. 2005], which preserve angles at the cost of area
distortion, are suitable for modeling deployable structures with
isotropic expansion ratios, such as auxetics [Konaković-Luković
et al. 2018], but they are likewise less suitable for addressing the
anisotropic behavior of woven fabric.
In this work, we aim to mathematically formulate and automat-

ically compute Chebyshev parameterizations to express the fabric
anisotropy. McCartney et al. [2005, 2000] adopt affine transforma-
tions to describe the anisotropic distortion of woven fabric during
flattening. Affine transformations describe the parallel alignment
of the weft/warp yarns, with shearing considered, but affine shears
do not preserve lengths. McCartney et al.’s methods involve costly
non-linear energy minimization and permit stretch along the yarn
directions. In contrast, we introduce a different type of distortion en-
ergy that is designed to preserve lengths along yarn directions and
can be optimized efficiently. Wang [2007] attempts to flatten woven
fabric while preserving the lengths of specified feature curves along
the yarn directions, but they need to be known a priori. Pietroni et al.
[2022] compute a Chebyshev-like parameterization by discretely
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sampling three yarn points per mesh triangle and representing yarn
directions by finite differences based on the sampled points. While
this approach can yield a good approximation, it does not provide
a proper discretization formulation to compute Chebyshev nets
reliably, leading to numerical instabilities and diverging results.
Global parameterization techniques have been explored to com-

pute Chebyshev nets [Liu et al. 2020; Sageman-Furnas et al. 2019]
by optimizing a unit polyvector field over the target surface that
can be integrated into a Chebyshev net. However, these symmetric
field based methods are costly and introduce singularities in the
net, which do not occur in standard woven fabric. In this work we
provide an efficient method to compute regular Chebyshev nets on
disk topology surfaces.

Cloth simulation. Fabric modeling and simulation are closely re-
lated; modeling a target shape using a Chebyshev net can be viewed
as draping a piece of woven fabric over the target surface [Breen
2000]. In simulation, cloth is often modeled as an elastic mate-
rial [Baraff and Witkin 1998; Choi and Ko 2002; Liu et al. 2013;
Narain et al. 2012] that allows isotropic stretch. Some simulators
account for the anisotropic behavior of woven fabric, e.g. particle
based models [Breen et al. 1994], mass-spring systems with inexten-
sibility constraints [Goldenthal et al. 2007], piecewise linear elastic
models [Wang et al. 2011], hyper-elastic constitutive models [Peng
et al. 2013] and yarn-level approaches [Cirio et al. 2014; Kaldor et al.
2010], which exhibit exceptional accuracy at a great computational
cost. Cloth simulation methods require a flat rest state and known
warp and weft directions. In other words, they solve the problem
of deforming a flat piece of cloth onto a 3D surface, whereas we
are after the inverse problem of computing a mapping from the 3D
surface onto the flat fabric domain, without a priori knowledge of
the fabric grain directions.

3 CHEBYSHEV PARAMETERIZATION

3.1 Chebyshev net & its Jacobian
The Chebyshev net is a parametric surface representation, where
there is no stretch along the parameter lines [Chebyshev 1878].
Specifically, letM denote an oriented 2-manifold in 3D with disk
topology that is parameterized by 𝑓 : R2 → M, i.e., each point
(𝑥,𝑦, 𝑧) onM is expressed as 𝑓 (𝑢, 𝑣). We call 𝑓 a Chebyshev param-
eterization if  𝜕𝑓𝜕𝑢  = 1,

 𝜕𝑓𝜕𝑣  = 1. (1)

Let 𝑛 denote the outward surface normal according toM’s orien-
tation. Select an arbitrary orthonormal basis of the tangent plane,
{𝑡1, 𝑡2}, such that (𝑡1, 𝑡2, 𝑛) form a right-hand system.We express the
tangent vectors in this basis: f𝑢 = [𝜕𝑓 /𝜕𝑢] (𝑡1,𝑡2 ) , f𝑣 = [𝜕𝑓 /𝜕𝑣] (𝑡1,𝑡2 ) .
The Jacobian of 𝑓 is a linear map from the parametric 𝑢𝑣-domain to
the tangent plane at 𝑓 (𝑢, 𝑣) that maps the 𝑢, 𝑣 axes to the tangent
vectors f𝑢 , f𝑣 . The Jacobian of a Chebyshev net can be expressed as
a 2× 2 matrix 𝐽 = (f𝑢 f𝑣) that has a simple form based on the above
inextensibility constraints Eq. (1): 𝐽 consists of two column vectors
of unit length. We denote the space of all such 2 × 2 matrices as C̄:

C̄ =

{ (
𝑐11 𝑐12
𝑐21 𝑐22

) ���� 𝑐2
11 + 𝑐

2
21 = 1, 𝑐2

12 + 𝑐
2
22 = 1

}
. (2)

u

v

𝑉 T Σ 𝑈

𝐽 u = f𝑢

𝐽 v = f𝑣

𝛾 = 𝜋/4 𝛼

1

1

𝜎1

𝜎2

𝑢

𝑣

𝑢

𝑣
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𝑡2

𝑡1

𝑡2

Fig. 5. Illustration of the singular value decomposition 𝐽 = 𝑈 Σ𝑉 T, where 𝐽

is the Jacobian of a Chebyshev net on M. We denote the yarn angle on M,
i.e., the angle between the two yarn directions 𝐽 u and 𝐽 v, as 𝛼 .

In addition to the inextensibility property, we assume that 𝑓 agrees
with the given orientation onM. Therefore, we focus on a subset of
Chebyshev nets that preserve orientation,C =

{
𝐽 ∈ C̄

�� det(𝐽 ) > 0
}
.

3.2 Singular value decomposition of 𝐽
Denote the SVD of the Jacobian of an orientation-preserving Cheby-
shev net as 𝐽 = 𝑈 Σ𝑉 T. We analyze its structure and make the fol-
lowing observations:
• The 𝑉 matrix can always be chosen to be a rotation matrix repre-
senting a clockwise rotation by 𝜋/4, which we denote as 𝑅𝜋/4.

• Since in our setting det 𝐽 > 0 and the singular values are always
non-negative, the𝑈 matrix is a rotation with det𝑈 > 0 .

• The two singular values of Σ always lie on a circle with radius√
2, i.e., 𝜎2

1 + 𝜎2
2 = 2.

• The determinant of the Jacobian is equal to the sine of the yarn
angle 𝛼 (defined in Fig. 5), i.e., det (𝐽 ) = sin𝛼 .

Therefore, we can rewrite the search space for Jacobians of a Cheby-
shev parameterization as:

C =

{
𝑈

(
𝜎1 0
0 𝜎2

)
𝑅
T
𝜋/4

���� 𝜎2
1 + 𝜎2

2 = 2, 𝜎1, 𝜎2 > 0, 𝑈 ∈ 𝑆𝑂 (2)
}
. (3)

Refer to Appendix A for detailed proofs and further mathematical
observations. Here we provide an intuitive explanation, illustrated
in Fig. 5. The Jacobian of a Chebyshev parameterization is a linear
transformation that preserves lengths along the 𝑢 and 𝑣 directions
while allowing the angles to shear, which can be regarded as trans-
forming a square into a diamond shape (an equilateral parallelogram)
by moving the vertices along the square’s diagonals. The singular
value decomposition of 𝐽 can be interpreted as follows (see Fig. 5):
First, rotate the square counterclockwise by 𝜋/4, such that its diago-
nals are aligned with the coordinate axes. Then, the rotated square
is stretched along the diagonals, with the scaling factors being the
singular values. The singular values should satisfy the constraint
𝜎2

1 + 𝜎2
2 = 2 to make sure that the edge length of the diamond shape

is the same as in the initial square. Lastly, another rotation 𝑈 is
applied to transform the diamond such that its edge vectors cor-
rectly align with the yarn directions, i.e., with the derivatives of
the parameterization. We can easily see that the determinant of the
Jacobian is the area of the diamond shape, which corresponds to the
sine of the yarn angle 𝛼 .

4 METHOD
For a given oriented triangle mesh M = (V,T) of disk topology
with verticesV ⊂ R3 and triangle faces T , a common strategy to
obtain its parameterization is to flatten the input 3D surface onto
the 2D domain by finding a function 𝑔 : M → R2; its inverse 𝑔−1
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is the parameterization function. We call 𝑔 a Chebyshev flattening
if 𝑔−1 is a Chebyshev parameterization. We consider piecewise lin-
ear functions 𝑔, described by their values on the mesh verticesV ,
with the values in the triangle interiors linearly interpolated using
barycentric coordinates. Picking an arbitrary local orthonormal ba-
sis on triangle 𝑡 ∈ T , we denote the corresponding 2× 2 Jacobian of
𝑔 on 𝑡 as 𝐵𝑡 . Since 𝑔−1 is a Chebyshev parameterization, as discussed
earlier, its Jacobian 𝐽𝑡 ∈ C can be written as 𝐽𝑡 = 𝑈 Σ𝑅T

𝜋/4, where𝑈
is a rotation matrix, and the sum of squared diagonal entries in Σ
is 2. We then know that for the Jacobian 𝐵𝑡 of the flattening 𝑔:

𝐵𝑡 = 𝐽𝑡
−1
=

(
𝑈 Σ𝑅T

𝜋/4

)
−1
= 𝑅𝜋/4Σ

−1
𝑈

T
. (4)

Therefore, if we apply singular value decomposition to𝐵𝑡 , thematrix
of the left singular vectors should be a rotation by 𝜋/4, and the
two singular values of 𝐵𝑡 , denoted by 𝜆1 and 𝜆2, should satisfy
1/𝜆2

1 + 1/𝜆2
2 = 2, while the matrix of the right singular vectors is some

rotation matrix. We can therefore define the search space for the
Jacobians of a Chebyshev flattening as

B =

{
𝑅𝜋/4

(
𝜆1 0
0 𝜆2

)
𝑉

T

���� 1
𝜆2

1
+ 1

𝜆2
2
= 2, 𝜆1, 𝜆2 > 0, 𝑉 ∈ 𝑆𝑂 (2)

}
. (5)

Now we define the following energy that measures how close 𝑔
is to a Chebyshev flattening:

𝐸 (𝑔) =
∑︁
𝑡 ∈T

𝐴𝑡 D(𝐵𝑡 ,B)2, (6)

where 𝐴𝑡 is the area of face 𝑡 ∈ T , and D(𝐵𝑡 ,B) is the distance
between the Jacobian 𝐵𝑡 and the set B (defined in Eq. (5)):

D(𝐵𝑡 ,B) = min
𝑌 ∈B

∥𝐵𝑡 − 𝑌 ∥𝐹 , (7)

where ∥ · ∥𝐹 is the Frobenius matrix norm. Note that D(𝐵𝑡 ,B) is
invariant to the choice of the local orthonormal frame on 𝑡 . We call

𝑌𝑡 = argmin
𝑌 ∈B

∥𝐵𝑡 − 𝑌 ∥𝐹 (8)

the closest Chebyshev-Jacobian to 𝐵𝑡 . To find a Chebyshev flattening
𝑔 of a given mesh, we need to minimize the non-linear, non-convex
energy in Eq. (6), where the variables are the (𝑢, 𝑣)-coordinate as-
signments for each mesh vertex. To do so, we adopt a local-global
strategy similar to ARAP [Liu et al. 2008; Sorkine and Alexa 2007]:
(1) Initialization: 𝑔 is initialized by a least-squares conformal flat-

tening [Lévy et al. 2002], and we compute its Jacobians 𝐵𝑡 for
each face 𝑡 ∈ T .

(2) Local step: compute Eq. (8) with fixed 𝐵𝑡 . For each face 𝑡 ∈ T ,
we compute 𝑌𝑡 , the closest Chebyshev-Jacobian to 𝐵𝑡 .

(3) Global step: solve Eq. (6) while fixing the known closest Chebyshev-
Jacobian, i.e., solve min𝑔

∑
𝑡 ∈T 𝐴𝑡 ∥𝐵𝑡 − 𝑌𝑡 ∥2

𝐹
.

(4) Go to step (2) until convergence.
Computing the closest Chebyshev-Jacobian in the local step is

challenging, since the search space defined in Eq. (5) is quite com-
plicated. We decompose the local step into two minimization tasks:
first, solve for the best-fit singular values for a given matrix of right
singular vectors𝑉 , and second, solve for the best-fit rotation matrix
𝑉 ∈ 𝑆𝑂 (2) for the given singular values.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
0.6

0.7

0.8

0.9

1.0

1.1

Fig. 6. We draw the curve ℓ : 1/𝜆2
1 + 1/𝜆2

2 = 2 in blue and show the estimated
singular values from different starting points (𝑛11, 𝑛22 ) in different colors.
Points in dot shape are the starting points (𝑛11, 𝑛22 ) . Points in triangle
shape are the initial guess (1/𝑥, 1/𝑦) , and the points in cross shape are the
final estimation, which is close enough to the expected curve.

4.1 Solving the local step: finding the best Σ𝑡
With fixed Jacobian 𝐵𝑡 and right singular vectors 𝑉𝑡 , we aim to
solve for the closest singular values, namely 𝜆1, 𝜆2 that satisfy 1/𝜆2

1 +
1/𝜆2

2 = 2:

Σ𝑡 = argmin
1
𝜆2

1
+ 1
𝜆2

2
=2

𝐵𝑡 − 𝑅𝜋/4Σ𝑉𝑡
T
2
𝐹
= argmin

1
𝜆2

1
+ 1
𝜆2

2
=2

𝑅T
𝜋/4𝐵𝑡𝑉𝑡 − Σ

2
𝐹
. (9)

Denote 𝑁 = 𝑅
T
𝜋/4𝐵𝑡𝑉𝑡 with diagonal values 𝑛11 and 𝑛22. The optimal

singular values can be interpreted as the 2D point (𝜆1, 𝜆2) lying on
the 2D curve ℓ , defined as 1/𝜆2

1 + 1/𝜆2
2 = 2, that is closest to the

given position (𝑛11, 𝑛22). In Fig. 6, we draw the expected curve ℓ in
blue, and illustrate the diagonal values as 2D points (𝑛11, 𝑛22) in dot
shape. Solving this algebraically yields a polynomial of high degree
that does not have a simple closed-form solution. We propose the
following algorithm to find good approximations. We first solve a
related but simpler problem: finding the 2D point (𝑥,𝑦) lying on the
2D circle 𝑥2 +𝑦2 = 2 that is closest to the given position (1/𝑛11, 1/𝑛22),
which is the intersection point between the 2D circle and a line
passing through (0, 0) and (1/𝑛11, 1/𝑛22). Once we get the intersection
point (𝑥,𝑦), we obtain an initial guess for the singular values, i.e.,
𝜆1 = 1/𝑥, 𝜆2 = 1/𝑦. We draw the points (1/𝑥, 1/𝑦) in triangle shape in
Fig. 6. Though this estimation lies on the expected curve ℓ : 1/𝜆2

1 +
1/𝜆2

2 = 2, it is not necessarily the closest projection w.r.t. (𝑛11, 𝑛22).
To improve it, we derive the first-order Taylor approximation of
the curve ℓ at the estimated position (1/𝑥, 1/𝑦), leading to a 2D line
ℓ′. We then project (1/𝑛11, 1/𝑛22) onto ℓ′, which gives us the final
estimated singular values, i.e., the points in cross shape in Fig. 6.

4.2 Solving the local step: finding the best 𝑉𝑡
Having computed the singular values Σ𝑡 , we can now update the
matrix of right singular vectors, i.e., the rotation 𝑉 accordingly:

𝑉𝑡 = argmin
𝑉 ∈𝑆𝑂 (2)

𝐵𝑡 − 𝑅𝜋/4Σ𝑡𝑉
T
2
𝐹
. (10)

This problem is equivalent to the orthogonal Procrustes problem,
which has a simple solution via singular value decomposition: de-
note 𝑆 = Σ𝑡𝑅

T
𝜋/4𝐵𝑡 and apply SVD to 𝑆 = 𝐻𝐷𝐾

T, then the optimal
𝑉𝑡 is given by 𝑉𝑡 = 𝐾𝐻

T. In case det(𝐾𝐻 T) < 0, we multiply the
column of 𝐾 corresponding to the smallest singular value by −1.
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Fig. 7. Left : A sheared square mesh after parameterizing it with constraints
via a least-square conformal map [Lévy et al. 2002]. Middle: Closeup of
the used constraints, three vertices on a single triangle are used to define
the two yarn directions, with one fixed point (orange), one point being
constrained to be on the same yarn as it in warp (green) and weft (purple)
direction, respectively. Right : Chebyshev parameterization with the same
constraints.

4.3 Solving the global step
In the discrete setting, the piecewise linear flattening function 𝑔 is
represented by a vector of 2𝑛 unknowns, (u, v), where 𝑛 = |V|, i.e.,
by the per-vertex 𝑢𝑣-coordinates. The computed local step provides
us with good approximations of the closest Chebyshev-Jacobians,
i.e., 𝑌𝑡 = 𝑅𝜋/4Σ𝑡𝑉𝑡

T for each mesh triangle 𝑡 ∈ T , and we want to
solve for the (u, v) by minimizing:

min
(u,v)

∑︁
𝑡 ∈T

𝐴𝑡 ∥𝐵𝑡 (u, v) − 𝑌𝑡 ∥2
𝐹 , (11)

where 𝐵𝑡 (u, v) is the (constant) Jacobian of 𝑔 on triangle 𝑡 . This
is exactly the setting described in [Liu et al. 2008, Sec. 4.4.2], and
the 𝑢𝑣-coordinates are obtained by solving a sparse linear system
coming from the derivative of the energy in Eq. (6) The system
matrix is essentially the cotangent Laplacian of the input mesh,
and it is fixed in our problem, such that its sparse factorization
can be pre-computed and reused in each iteration, since only the
right-hand-side vector in the linear system changes.
We can also easily add positional constraints to this linear sys-

tem. This can help to incorporate known yarn directions or con-
strain parametric boundaries to be straight. For example, in garment
sewing patterns, certain patch boundaries and cuts often need to
be straight and aligned with the grain direction. To integrate this
knowledge into the global step, one can e.g. constrain some (or all)
vertices along a given curve on the mesh to have the same 𝑢 coordi-
nate in the parameter space, while the 𝑣 coordinate is still free to be
optimized over. An example where this approach is used is shown
in Fig. 7, where a sheared square is parameterized, and by adding
constraints to a single triangle, the shearing can be recovered when
using our method, while the same constraints have very little effect
on the result of the conformal map.

4.4 Chebyshev error
Having optimized the Chebyshev flattening function 𝑔 : M → R2

with its Jacobians 𝐵𝑡 , 𝑡 ∈ T , we quantify the Chebyshev error of 𝑔
as follows:

𝑒cheby (𝑔) =
∑︁
𝑡 ∈T

𝐴𝑡 D(𝐵𝑡−1
, C)2, (12)

hemisphere wrapped with wool fabric
pringle shape wrapped with silk fabric

isometric fabrication Chebyshev (ours)

front
view

side
view

𝑢𝑣

domain

front
view

uv
domain

Fig. 8. To find the ground-truth Chebyshev parameterization for a hemi-
sphere (top) and pringle shape (bottom), we tightly wrap the 3D-printed
shapes with a piece of wool and silk, respectively (middle column) and mark
the boundary using chalk. The same (digital) shape is flattened via ARAP
[Liu et al. 2008] (left) and our Chebyshev formulation (right). Our flattening
result shows a much closer correspondence to the fabricated result than the
isometric approach, both visible on the 3D model and the marked outline
in the 𝑢𝑣 domain.

since this formulation provides a more direct evaluation on the de-
viation of 𝑔−1 from a Chebyshev net and does not require computing
the SVD decomposition during evaluation: the closest element to
𝐵𝑡

−1 in C is given by simply normalizing its columns according to
Eq. (2), and their distance measures the stretch along the warp and
weft directions (denoting the two columns of 𝐵𝑡−1 as 𝐽1, 𝐽2):

D(𝐵𝑡−1
, C)2 =

𝐽1 − 𝐽1
∥ 𝐽1∥

2
+
𝐽2 − 𝐽2

∥ 𝐽2∥

2
= (∥ 𝐽1∥−1)2+(∥ 𝐽2∥−1)2 .

5 RESULTS
In this section, we demonstrate that our Chebyshev parameteriza-
tion (1) offers a more accurate and faithful model for 3D shapes
realized with woven fabric (Sec. 5.1), (2) supports practical applica-
tions such as Chebyshev net construction (Sec. 5.2) and Chebyshev
deformation (Sec. 5.3) and (3) is parameter-free, straightforward to
implement and highly efficient (Sec. 5.4).
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Chebyshev Parameterization for Woven Fabric Modeling • 205:7

[Lévy et al. 2002] (ini.)

[Liu et al. 2008]

[Pietroni et al. 2022]

ours

Fig. 9. Flattening disk-topology shapes using different parameterization methods. Note that [Pietroni et al. 2022] produces reasonable parameterizations in
the first three examples but crashes in the last three; therefore we show the last iteration before it crashes. Shape complexity, Chebyshev error, and runtime
are reported in the supplemental, Table 1. Note that we cut the octopus and the vase mesh into disk topology.

5.1 Chebyshev parameterization
To demonstrate that Chebyshev parameterization is a better choice
than isometric parameterization for shapes that are realized with
woven fabric, we conduct a physical experiment: we tightly wrap a
piece of woven fabric around a 3D surface and mark its boundary
using chalk. As shown in Fig. 8, we use wool and silk to wrap a
hemisphere and a pringle shape, respectively. The chalk markings
on the flattened fabric (despite some minor inaccuracies) reveal the
ground-truth 𝑢𝑣-mapping. It is evident that the Chebyshev flatten-
ing, computed using our algorithm, is much closer to the ground-
truth than the isometric flattening computed by [Liu et al. 2008].
We conduct a similar experiment with more complicated, synthetic
data using Blender [2024] in Fig. 3.
In Fig. 9 we show different parameterization results using least-

squares conformal maps [Lévy et al. 2002], ARAP [Liu et al. 2008],
YAF (short for “yarn-aware flattening”) [Pietroni et al. 2022], and
our method. YAF attempts to compute a Chebyshev parameteri-
zation as part of their sewing pattern computation. It updates the
𝑢𝑣-coordinates of a disk-topology patch to reduce the stretch along
the yarn directions during its flattening iterations. YAF is quite effi-
cient andworks well on simple meshes. Its main limitation is the lack

−6

−4

−2

0

he
m
is
ph

er
e

Chebyshev error 𝑒cheby over iterations (in log scale)

0 200
−6

−4

−2

0

cl
ot
h

[Pietroni et al. 2022]
ours

Fig. 10. Convergence behavior of [Pietroni et al. 2022] and our algorithm
on two examples from Fig. 9. Chebyshev error is evaluated using Eq. (12).

of a principled mathematical discretization of a well-defined, contin-
uous energy – YAF is more of an engineering approach to limit the
stretch along the 𝑢𝑣-axes in each iteration. As a consequence, there
is no guarantee of convergence, as seen in its fluctuating behavior
in Fig. 10. This also leads to heavy dependence on meshing quality
and can cause YAF to be numerically unstable: For example, it fails
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initialization [Pietroni et al. 2022] ours

Fig. 11. The algorithm in [Pietroni et al. 2022] is numerically unstable: errors
appearing in the early iterations accumulate and eventually lead to a crash.

noisy input [Pietroni et al. 2022] ours

LSCM
(ini)

Fig. 12. Top: noisy hemisphere, its parameterization by [Pietroni et al. 2022]
and our method. Bottom: the computed 𝑢𝑣-domain, initialized by LSCM.
While [Pietroni et al. 2022] can produce good results for a noise-free hemi-
sphere (Fig. 9), it fails on a noisy one. Our method is more robust to noise
and converges to a result similar to the noise-free setting shown in Fig. 8.

to produce any results for the two examples shown in Fig. 4; some
faces collapse to a line during the flattening process, leading to a
degenerated linear system. The example shown in Fig. 11 is another
failure case of YAF, where we show its result one iteration before it
crashes. We observe significant shearing and length distortion oc-
curring in the ear region in early iterations, and YAF fails to recover
from this scenario. Another limitation of YAF is its dependence on
the isometric regularizer; the algorithm does not work without it.
The associated weights in the objective function require fine-tuning
for different examples.

In comparison, our method is based on a continuous energy that
measures the deviation of the parameterization from a Chebyshev
net, and we discretize it using the tried-and-true piecewise-linear
approach on triangle meshes. Each iteration of our algorithm is
designed to minimize the discrete energy and is guaranteed to not
increase it, leading to robust convergence. Note that for arbitrary
surfaces with large total absolute Gauss curvature (e.g. the last
three examples shown in Fig. 9), a global Chebyshev net may not
exist and some stretching distortion is to be expected. In these
complex scenarios, our method successfully converges to results
with significantly lower Chebyshev errors compared to YAF (see
Table 1). Importantly, our Chebyshev flattening operates effectively
without the need for regularizers or parameter tuning. Furthermore,
it demonstrates robustness with respect to noisy inputs (see Fig. 12)
and mesh discretization (see Fig. 13). Additionally, our formulation

Fig. 13. Chebyshev parameterization computed using our algorithm on
the same dress with different mesh discretizations. Our algorithm is more
robust w.r.t. discretization and mesh resolution, compared to [Pietroni et al.
2022], which unfortunately failed on all these meshes.

0

𝜋
4

Fig. 14. Visualization of shearing angles overlaid with the net structure
extracted from Chebyshev parameterization, comparing the results with
(right) and without (left) shearing angle limitation (the limit is set to 𝜋/4).

allows precomputing the factorization of the system matrix in the
global step and reusing it in every iteration, while YAF has to refactor
its changing system matrix in each iteration.

5.2 Chebyshev net construction
Having a Chebyshev parameterization, we can easily construct a
Chebyshev net to approximate the input 3D surface by extracting the
𝑢𝑣-isolines. See Fig. 4 for some examples. Note that large shearing
angles in the Chebyshev parameterization, defined as | 𝜋2 −𝛼 |, where
𝛼 is the yarn angle, can pose difficulties during physical fabrication
processes [Liu et al. 2020].

To address this fabrication constraint, we propose enforcing the
yarn angle 𝛼 to lie within the range of [𝛼0, 𝜋 −𝛼0], which limits the
amount of shearing in both diagonal directions to a user-specified
threshold 𝛼0 ∈ [0, 𝜋2 ]. This adjustment results in a refined search
space for the Chebyshev parameterization, B′ ⊂ B, which includes
only Chebyshev-Jacobians stemming from a yarn angle in the al-
lowed range [𝛼0, 𝜋 − 𝛼0]. This can be formally expressed as:

B′ =
{
𝑌 ∈ B | det𝑌 ≤ 1

sin𝛼0

}
, (13)

With our SVD-based formulation, we can easily ensure that the yarn
angle lies within the allowed range [𝛼0, 𝜋 −𝛼0], or equally speaking,
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Fig. 15. Top: different deformations modeled by Chebyshev net deformation, constraints marked via white circles. Bottom: photographs of a piece of square
silk fabric undergoing similar deformations.

0

𝜋
4

Fig. 16. Starting with a cylinder mesh, we deform it by fixing its boundary vertices in different locations. We present four examples, each showcasing two
types of visualizations: the texture mapping and an overlay of the shearing angle visualization with the extracted net structure. See Sec. 5.3 for details.

the solved Chebyshev-Jacobian 𝑌 lies in the refined search space
B′. Specifically, as discussed in Sec. 4, we know that ∀𝑌 ∈ B, the
two eigenvalues of 𝑌 are 𝜆1 = (

√
1 + cos𝛼)−1, 𝜆2 = (

√
1 − cos𝛼)−1.

In the local step of projecting Σ𝑡 , we check whether the computed
yarn angle is greater than 𝛼0; if not, we set the singular values
to the closest allowed values, namely 𝜆1 = (

√
1 + cos𝛼0)−1, 𝜆2 =

(
√

1 − cos𝛼0)−1. Then, we have det𝑌 = 𝜆1𝜆2 = 1/sin𝛼0 ∈ B′, i.e., the
resulting 𝑌 is guaranteed to have a yarn angle within the allowed
range. We can then proceed with the global step as usual.
Fig. 14 shows an example where we add shearing limit with

𝛼0 = 𝜋/4. Note that during the local step, we can ensure that the
closest inverse Chebyshev Jacobians are drawn from B′. However,
there is no guarantee that the updated Jacobians after the global
step still lie in B′. This is why shearing angles greater than 𝜋/4 do
not completely vanish in Fig. 14.

5.3 Chebyshev fabric manipulation
Existing cloth simulators that account for the anisotropic behavior
of fabric often require the yarn directions to be provided as input.
Our Chebyshev flattening can not only estimate the yarn directions
for downstream cloth simulators, but also offers a straightforward
solution for direct geometric manipulation of woven fabric. Given a
3D surface M = (V,T), our goal is to determine its new deformed
configuration M′ = (V′,T) under external forces or by satisfying

specified constraints, while minimizing the fabric stretch along
the parametric (yarn) lines. We first run our Chebyshev flattening
algorithm to obtain 𝑔 : M → R2. The image U = 𝑔(V) then gives
the 𝑢𝑣-domain of the surface and defines yarn directions (along the
two parametric axes). The objective is to compute a deformation
𝑓 : U → M′, such that the Jacobian of 𝑓 preserves the length along
the parametric axes:

𝐸 (𝑓 ) =
∑︁
𝑡 ∈T

𝐴𝑡D(𝐽𝑡 , C)2 =
∑︁
𝑡 ∈T

𝐴𝑡 min
𝐶∈C

∥ 𝐽𝑡 −𝐶 ∥𝐹 . (14)

Recall that C, defined in Eq. (3), is the space of Jacobians of Cheby-
shev nets. We can optimize the above energy using a local-global
scheme. Note that in this case, the local step updating 𝐶 simply
projects 𝐽 onto C by normalizing its two columns (using Eq. (2)).

Positional constraints. We can place positional constraints on a
set of vertices of the input 3D mesh to guide its deformation while
preserving its Chebyshev net structure as accurately as possible.
Specifically, in the global step of minimizing Eq. (14), we can con-
strain certain vertices to specified positions from user input while
solving for the updated vertex positions.

In Fig. 15, we deform a physical square piece of silk by fixing two
or three points and compare the physical results with our defor-
mation system. All the deformations exhibit noticeable shearing,
which is unlikely to be accurately modeled by isometric methods

ACM Trans. Graph., Vol. 43, No. 6, Article 205. Publication date: December 2024.



205:10 • Annika Oehri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung

Fig. 17. We create a digital replica of the room divider made of a net, de-
signed by Poli [2017], using our Chebyshev deformation tool.

0 𝜋
4

Fig. 18. We show an example of a hanging net, where we fix three vertices
and add gravity, without (left) and with (right) shearing penalty.

that equally penalize stretch in all directions. We can see that our
computed Chebyshev net-based deformation (Fig. 15, bottom) is
faithful to the real-life deformations (Fig. 15, top). In Fig. 16 we show
four examples of deforming a 3D topological cylinder mesh with
different positional constraints, leading to interesting Chebyshev
net configurations. The accompanying video shows real-time de-
formations. Note that the per-face Jacobians of the deformations
are computed on the flattened, cut-open cylinder, while the 3D posi-
tion updates are directly applied to vertices on the original cylinder,
maintaining its topology. Fig. 17 shows an example of deforming a
rectangle mesh.

Gravity and dynamics. We can incorporate gravity and dynamics
into the deformation process, following ARAP-based dynamics [Ja-
cobson et al. 2018]. Specifically, we introduce an additional step
in the local-global optimization scheme for Eq. (14): updating the
position of a vertex based on its current velocity, which is derived
from the external forces, such as gravity, acting on each face. In
the third column of Fig. 15, our result is obtained by adding gravity
force to a square mesh with two points fixed. Fig. 18 presents an
example where a square mesh is hung with three vertices fixed,
allowing the fabric to deform under gravity. On the right we show
the results with shearing penalty, where we add an extra regularizer
to Eq. (14) that encourages the Jacobian to be closer to a rotation, i.e.,∑
𝑡 ∈T 𝐴𝑡 min𝑅∈𝑆𝑂 (2) ∥ 𝐽𝑡 − 𝑅∥𝐹 . This provides a soft shearing treat-

ment compared to the hard shearing limit imposed by projection,
as discussed in Sec. 5.2. Since the shearing regularization works
purely on a face-level, essentially concerning intrinsic properties
alone, it does not directly control the dihedral angles, or bending.We
thus add a standard bi-Laplacian term to resolve the uncontrolled

Fig. 19. Interactive draping. Starting with a flat rectangular mesh repre-
senting a piece of woven fabric, our algorithm enables users to interactively
drape it over a mannequin. The user’s manipulations are highlighted in red.

bending. The weights of the shearing and bending regularizations
depend on the material to be modeled and are chosen empirically.

Interactive draping. One interesting application for Chebyshev
deformation modeling is interactive digital draping, see Fig. 19 and
the accompanying video. In this scenario, users can wrap a piece
of “digital fabric” around, or pin part of the fabric onto a digital
mannequin, much like designers do in real life. We prototype rudi-
mentary collision avoidance, where a fabric vertex is pushed out
with a certain strength once it is detected to be within the collider
mesh. Fig. 19 shows an example where we wrap a rectangular fabric
mesh around a mannequin to design a dress.

5.4 Implementation
We implemented our algorithm in C++. All experiments are con-
ducted on a machine with an AMD Ryzen Threadripper 1950X
16-Core CPU. The full implementation can be found here: https:
//github.com/oehria/woven-fabric-chebyshev. Our Chebyshev flat-
tening is parameter-free and efficient with robust convergence.

Initialization & stopping criterion. Since our algorithm works on
topological disks, we introduce cuts to the input meshes when
needed. All methods, including ARAP [Liu et al. 2008], YAF [Pietroni
et al. 2022] and our method, are initialized by least-squares confor-
mal parameterization (LSCM) [Lévy et al. 2002], where two vertices
are selected and fixed in the 𝑢𝑣 domain with a distance equal to
their geodesic distance on the input surface. Our Chebyshev flatten-
ing algorithm is parameter-free. We terminate the iterations when
the normalized change of the 𝑢𝑣-coordinates is smaller than 10−4.
For the comparisons to YAF, we use the released code from the
authors1. When crashes happen in their code (some faces collapse
to a line during the flattening process), we save the result from the
last iteration before the crash.

Robustness w.r.t. initializations. Our method is robust to noisy
input meshes, see examples in Figures 12 and 13. For different ini-
tialization strategies, we first experiment with three different types
of initialization for our algorithm, namely harmonic mapping with
the boundary vertices fixed to a circle, LSCM, and ARAP. Fig. 20
1https://github.com/nicopietroni/parafashion
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𝑒cheby = 0.5680

𝑒cheby = 0.0038

𝑒cheby = 0.0492

𝑒cheby = 0.0002

𝑒cheby = 0.0064

𝑒cheby = 0.0002

ini.

ours

harmonic (fixed boundary) LSCM (angle-preserving) ARAP (isometric)

Fig. 20. We run our Chebyshev flattening method starting from three different initializations, shown in the top row, with the corresponding results shown on
the bottom row: harmonic parameterization with the boundary vertices fixed to a circle (left), LSCM [Lévy et al. 2002] (middle), and ARAP [Liu et al. 2008]
(right), initialized by LSCM. For each result, we show the computed flattening, the texture mapping, and the Chebyshev error normalized by the surface area.

LSCM ARAP ours

𝛽 = 0

𝛽 = 𝜋
4

𝑒cheby = 161.256

𝑒cheby = 161.256

𝑒cheby = 0.414

𝑒cheby = 0.404

𝑒cheby = 0.101

𝑒cheby = 0.097

Fig. 21. We initialize the parameterization algorithms with LSCM [Lévy et al. 2002] (top row) and its rotation by 45◦(bottom row) and show the resulting
converged ARAP parameterization [Liu et al. 2008] and our Chebyshev parameterization. For each result, we show the textured 3D mesh and its corresponding
𝑢𝑣 space and report the average Chebyshev error.

initialization ours

𝑒cheby = 0.0710

𝑒cheby = 0.2958

𝑒cheby = 0.0001

𝑒cheby = 0.0001

Fig. 22. We run our algorithm with the normal LSCM [Lévy et al. 2002]
initialization (top) and a distorted version (bottom). Both runs converge to
the same optimal solution for the hemisphere.

shows that our method converges to the same parameterization with
LSCM and ARAP initialization. When starting from the harmonic
mapping, our method converges to a slightly worse local minimum.
We generally observe that for many shapes, especially the more
complex ones, different initializations yield slightly different results,
but with similarly low energies. This is due to the very non-convex
nature of the energy. One such example is shown in Fig. 21, where
a 45◦-rotated LSCM initialization yields visibly different results to
the original, but their energies are not too different.Additionally,
it can be seen that the energies are significantly lower than the
ones for the LSCM initializations and the converged ARAP results.
For simpler examples such as the hemisphere, Fig. 22 shows that
distorting the initialization does not affect the end result, since there
is a much more distinct optimal solution.
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Table 1. For shapes in Fig. 9: we define convergence for all approaches when the norm of the relative change in 𝑢𝑣 s is below 1𝑒 − 4, with maximum number of
iterations set to 1000. For YAF [Pietroni et al. 2022] we chose stretching penalty weight of 30 and rigid regularization weight of 1. In the convergence column, *
marks the two examples whose convergence behaviour was more closely shown in Fig. 10, and †𝑗 denotes that the example fully diverged, producing NaN
values after 𝑗 iterations, in which case we make our measurements on the last iteration before the NaN values occurred. The runtime corresponding to a run
without convergence is marked with italics. LSCM [Lévy et al. 2002] is a linear method, so convergence issues do not apply.

shape method
complexity Chebyshev error D(𝐵𝑡

−1
, C)2 (see Eq. (12)) runtime

(sec.)
converged?

#faces #vtx min. max. avg.

hemisphere

conformal [Lévy et al. 2002]

16368 8313

1.42e-07 3.49e-01 7.28e-02 0.243 N/A
isometric [Liu et al. 2008] 4.31e-05 7.52e-02 2.69e-02 0.129 yes
Chebyshev [Pietroni et al. 2022] 1.66e-11 1.75e-04 2.43e-06 1.550 yes*
Chebyshev (ours) 3.50e-08 1.03e-03 2.64e-04 0.346 yes*

pringle

conformal [Lévy et al. 2002]

3072 1601

1.41e-05 3.37e-01 4.92e-02 0.023 N/A
isometric [Liu et al. 2008] 1.32e-05 5.76e-02 6.50e-03 0.016 yes
Chebyshev [Pietroni et al. 2022] 6.75e-13 4.14e-04 3.86e-05 0.081 yes
Chebyshev (ours) 3.03e-09 1.23e-03 5.91e-05 0.113 yes

cloth

conformal [Lévy et al. 2002]

3872 2025

2.03e-05 4.72e-01 3.39e-01 0.035 N/A
isometric [Liu et al. 2008] 2.28e-07 2.08e-01 1.95e-02 0.022 yes
Chebyshev [Pietroni et al. 2022] 1.54e-10 3.88e-05 1.98e-06 14.90 no*
Chebyshev (ours) 4.09e-10 1.03e-03 5.10e-05 0.085 yes*

octopus

conformal [Lévy et al. 2002]

15141 26968

4.92e-08 2.83e+12 1.46e+08 0.229 N/A
isometric [Liu et al. 2008] 3.93e-08 4.95e+03 1.64e-01 0.320 yes
Chebyshev [Pietroni et al. 2022] 3.39e-08 9.89e+07 1.55e+03 0.242 no†1

Chebyshev (ours) 1.39e-10 1.05e+05 3.84e+00 3.010 yes

vase

conformal [Lévy et al. 2002]

1536 833

1.53e-02 4.51e+01 1.42e+01 0.010 N/A
isometric [Liu et al. 2008] 5.51e-05 9.70e+00 8.00e-02 0.007 yes
Chebyshev [Pietroni et al. 2022] 5.29e-04 9.47e+06 2.09e+05 0.080 no†15

Chebyshev (ours) 1.01e-06 4.34e-01 9.83e-03 0.212 yes

cat

conformal [Lévy et al. 2002]

248 131

9.51e-03 1.02e+03 1.45e+01 0.003 N/A
isometric [Liu et al. 2008] 6.59e-03 5.16e+00 7.45e-01 0.030 yes
Chebyshev [Pietroni et al. 2022] 8.89e-03 1.69e+08 6.72e+05 0.068 no †84

Chebyshev (ours) 2.21e-05 8.74e+01 8.07e-01 6.770 yes

[Lévy et al. 2002] (ini.) [Pietroni et al. 2022] ours

Fig. 23. Chebyshev parameterization on a wavy plane example. The conver-
gence is reported in Fig. 24

Runtime and convergence. Our local-global approach is quite effi-
cient: for a mesh of 20K faces, it takes about 2 seconds to converge.
Table 1 reports the mesh complexity and runtime for the shapes
in Fig. 9. Our algorithm is designed to not increase the energy in
each iteration, resulting in robust convergence. Figures 10 and 24
report the Chebyshev error over iterations for YAF and our method.
YAF yields good results on simple shapes. However, there is no
guarantee of convergence even on some simple shapes with regular
triangulation, such as the hemisphere example shown in Fig. 9.
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ours

0 200
−4

−2

0

pr
in
gl
e

Fig. 24. Convergence behavior of [Pietroni et al. 2022] and our algorithm
on two examples. The Chebyshev error is evaluated using Eq. (12).

6 CONCLUSION, LIMITATIONS & FUTURE WORK
In this work, we highlight the advantages of anisotropic mesh pa-
rameterization based on Chebyshev nets when the parameterized
surface is meant to represent draped woven fabric or net material. In

ACM Trans. Graph., Vol. 43, No. 6, Article 205. Publication date: December 2024.
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such case, our proposed Chebyshev deformation energy is a more ac-
curate objective than isotropic, isometry-based distortion measures.
We propose a novel efficient algorithm for computing Chebyshev
parameterizations based on the singular value decomposition of
the Jacobian matrices. Additionally, we showcase the effectiveness
of our algorithm in fitting woven fabric to 3D surfaces, extracting
Chebyshev nets for surface approximation, and facilitating interac-
tive digital fabric manipulation.
Our method also has some limitations. Currently, we use a Tay-

lor expansion to approximate the singular values in the local step,
which could be suboptimal. An interesting direction for future work
is to develop a better strategy for the local step with theoretical
guarantees. Our Chebyshev parameterization algorithm currently
only supports disk-topology meshes, as it is specifically designed for
modeling woven fabric, which naturally has disk topology without
singularities. In the future, it would be interesting to generalize our
SVD-based formulation to field-based parameterization and handle
singularities, which can be beneficial for other applications, such
as wire net design. Our interactive woven fabric manipulation algo-
rithm is purely geometric and does not handle self-collisions, nor
does it properly model specific material properties. It would be in-
teresting to integrate it with more advanced simulators to improve
efficiency and realism.
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A PROOF FOR SVD OF CHEBYSHEV NET’S JACOBIAN
Let 𝐽 be the 2×2 Jacobian of an orientation preserving Chebyshev

net, as defined in Sec. 3 of the paper, and (u, v) the two orthonormal
frame vectors in the𝑢𝑣-domain, u = (1, 0), v = (0, 1). Since a Cheby-
shev net by definition preserves the lengths along the frame axes,
while at the same time allowing the change of angles by shearing,
we have

∥ 𝐽u∥2
2 = ∥ 𝐽v∥2

2 = 1. (15)

We investigate what the above constraints imply about the singular
value decomposition 𝐽 = 𝑈 Σ𝑉 T, where 𝑈 and 𝑉 are 2D rotation
matrices and Σ is a diagonal matrix with singular values 𝜎1, 𝜎2 (𝑈
and 𝑉 can be chosen to be rotations since det 𝐽 > 0). Since 𝑈 is
orthogonal, we know ∥𝑈 x∥2 = ∥x∥2 ,∀x. Therefore, we have

1 = ∥ 𝐽u∥2
2 =

𝑈 Σ𝑉 Tu
2

2 =
Σ𝑉 Tu

2
2 , (16a)

1 = ∥ 𝐽v∥2
2 =

𝑈 Σ𝑉 Tv
2

2 =
Σ𝑉 Tv

2
2 . (16b)

𝛼

Fig. 25. An example of a wooden hanger using a Chebyshev net with opening
(yarn) angle 𝛼 , in expanded (left) and collapsed (right) state.

The singular value matrix Σ can be denoted as:

Σ =

(
𝜎1 0
0 𝜎2

)
, (17)

where 𝜎1 ≥ 𝜎2 > 0. We assume both singular values in Σ to be
positive since we assume the parameterization is regular. We fur-
ther denote 𝑉 as a 2D rotation matrix that rotates the 2D plane
counterclockwise by angle 𝛾 , i.e., :

𝑉 =

(
cos𝛾 − sin𝛾
sin𝛾 cos𝛾

)
. (18)

Plugging Σ and 𝑉 into Eq. (16a) we can obtain:

1 =

(𝜎1 0
0 𝜎2

) (
cos𝛾 sin𝛾
− sin𝛾 cos𝛾

) (
1
0

)2

2
=

( 𝜎1 cos𝛾
−𝜎2 sin𝛾

)2

2

= 𝜎2
1 cos2 𝛾 + 𝜎2

2 sin2 𝛾

=

(
𝜎2

1 − 𝜎2
2

)
cos2 𝛾 + 𝜎2

2

(
cos2 𝛾 + sin2 𝛾

)
=

(
𝜎2

1 − 𝜎2
2

)
cos2 𝛾 + 𝜎2

2 .

(19)

Similarly, plugging Σ and 𝑉 into Eq. (16b) and following a similar
derivation, we can obtain:(

𝜎2
1 − 𝜎2

2

)
sin2 𝛾 + 𝜎2

2 = 1. (20)

Subtracting Eq. (19) from Eq. (20) leads to:(
𝜎2

1 − 𝜎2
2

) (
sin2 𝛾 − cos2 𝛾

)
= 0. (21)

• In case of 𝜎1 ≠ 𝜎2, we have sin2 𝛾 = cos2 𝛾 ⇒ 𝛾 = ±𝜋
4 ,±

3𝜋
4 .

• In case of 𝜎1 = 𝜎2, according to Eq. (16a), we have:

1 = ∥ 𝐽u∥2 =
𝑈 Σ𝑉 Tu


2 = 𝜎1

𝑈𝑉 Tu


2 = 𝜎1 ∥u∥2 = 𝜎1, (22)

i.e., 𝜎1 = 𝜎2 = 1, i.e., 𝐽 = 𝑈𝑉 T is a rotation by some angle 𝜃 . The
SVD is not unique, and we can always choose 𝑉 to be a rotation
by ±𝜋

4 or ± 3𝜋
4 , and choose 𝑈 to be a rotation by 𝜃 ∓ 𝜋

4 , resp.
𝜃 ∓ 3𝜋

4 .
Therefore, from Eq. (21) we can conclude that 𝑉 is a rotation by
angle ±𝜋

4 or ± 3𝜋
4 . Without loss of generality, we can simply assume

𝑉 is a rotation by angle 𝜋
4 , as the other solutions are equivalent

SVD with permuted 𝑢, 𝑣 axes and with flipped signs.
Summing Equations (19) and (20) together leads to:

𝜎2
1 + 𝜎2

2 = 2. (23)
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We can also compute the yarn angle 𝛼 , i.e., the angle between the
vectors 𝐽u and 𝐽v:

⟨𝐽u, 𝐽v⟩ = ∥ 𝐽u∥ ∥ 𝐽v∥ cos𝛼 = cos𝛼

=
(
𝑈 Σ𝑉 Tu

) T
𝑈 Σ𝑉 Tv = uT

𝑉 Σ𝑈 T
𝑈 Σ𝑉 Tv = uT

𝑉 Σ2𝑉 Tv

=
(
1 0

) (cos𝛾 − sin𝛾
sin𝛾 cos𝛾

) (
𝜎2

1 0
0 𝜎2

2

) (
cos𝛾 sin𝛾
− sin𝛾 cos𝛾

) (
0
1

)
=

(
𝜎2

1 − 𝜎2
2

)
sin𝛾 cos𝛾

⇒ cos𝛼 =
1
2

(
𝜎2

1 − 𝜎2
2

)
. (24)

Subtracting and summing Equations (23) and (24), we have:

𝜎2
1 = 1 + cos𝛼, 𝜎2

2 = 1 − cos𝛼. (25)

Since 𝜎1 ≥ 𝜎2 > 0, we have 𝜎1 =
√

1 + cos𝛼, 𝜎2 =
√

1 − cos𝛼 . We
can compute the determinant of the Jacobian:

det (𝐽 ) = det
(
𝑈 Σ𝑉 T)

= det (𝑈 ) det (Σ) det (𝑉 ) = 𝜎1𝜎2

=
√︁
(1 + cos𝛼) (1 − cos𝛼) = sin𝛼.

(26)

To summarize, applying SVD to the Jacobian of a Chebyshev net
provides us with the following information:
• The 𝑉 matrix can always be chosen to be a rotation by 𝜋

4 .
• The two singular values always lie on a circle with radius

√
2, i.e.,

𝜎2
1 + 𝜎2

2 = 2.
• The yarn angle 𝛼 can be directly derived from the singular values,
i.e., cos𝛼 = 1

2
(
𝜎2

1 − 𝜎2
2
)
.

• The singular values can also be directly derived from the yarn
angle, i.e., 𝜎1 =

√
1 + cos𝛼, 𝜎2 =

√
1 − cos𝛼 .

• The determinant of the Jacobian is equal to the sine of the yarn
angle, i.e., det (𝐽 ) = sin𝛼 .
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