
Interference-Aware Geometric Modeling

David Harmon1 Daniele Panozzo1,2 Olga Sorkine1,3 Denis Zorin1

1New York University 2University of Genova 3ETH Zurich

Figure 1: Interference-aware modeling greatly simplifies many complicated modeling tasks. We interactively fit the ogre with a shirt made
for a human. We use our ability to fix existing intersections in a mesh and then “shrink-wrap” the shirt on the ogre, ensuring a perfect fit.

Abstract

While often a requirement for geometric models, there has been lit-
tle research in resolving the interaction of deforming surfaces dur-
ing real-time modeling sessions. To address this important topic,
we introduce an interference algorithm specifically designed for
the domain of geometric modeling. This algorithm is general, eas-
ily working within existing modeling paradigms to maintain their
important properties. Our algorithm is fast, and is able to main-
tain interactive rates on complex deforming meshes of over 75K
faces, while robustly removing intersections. Lastly, our method
is controllable, allowing fine-tuning to meet the specific needs of
the user. This includes support for minimum separation between
surfaces and control over the relative rigidity of interacting objects.

Links: DL PDF

1 Introduction

Many applications of geometric modeling require constructed
shapes to be physically realizable. Shapes created using computer-
aided design systems need to be manufactured; if the model is used
in a physical simulation—either for special effects, animation, or
engineering analysis—its geometric properties should be consistent
with those of a real object. One significant impediment to this con-
sistency is intersections within or between modeled objects. These

(self-)intersections appear as glaring artifacts, and eliminate the
ability to use the final model further down many software pipelines.

Despite its importance, there has been little research on the model-
ing of surface interference for geometric design. While a number of
recent algorithms for collision detection are sufficiently fast for in-
teractive applications, collision response in the context of geomet-
ric modeling has not received much attention. Once interference
has been found through detection, the response algorithm modifies
positions and trajectories to remove it.

Most existing contact response algorithms are developed for physi-
cally based simulations and try to follow the logic of physical laws.
As a result, these methods are either too slow (due to strict physi-
cal requirements) or cannot be extended for application to general
modeling scenarios. Meanwhile, free-form shape design is primar-
ily concerned with surface quality, interactive control, and aesthet-
ics, and typically is not governed by physical equations. The few
works on interactive surface deformation that do handle collisions
do so as a side effect of their particular modeling paradigm, and
are thus limited to those specific tools to model intersection-free
surfaces.

In this paper, we present a response algorithm for preventing in-
terference between and within meshed surfaces, formulated in a
purely geometric setting. Objects do not have any physical at-
tributes, and their deformation is not necessarily driven by forces.
We formulate non-interference constraints on space-time interfer-
ence volumes (STIVs), defined as volumes in space-time traced out
by parts of the surface after interpenetration occurs. The advantages
of this formulation are two-fold: first, a trajectory-based method
can robustly handle problems with thin features, boundaries, and
rapid large deformations, without restrictions on the type of geom-
etry. Second, by formulating the non-interference constraint to be
zero for each STIV, rather than at the geometric primitive level, the
dimension of the numerical problem to be solved is vastly reduced,
improving response speed and robustness. Our proposed method
has the following features:

• Independent of deformation model. Our algorithm is not
tied to a specific modeling paradigm; it can resolve intersec-

http://doi.acm.org/10.1145/2024156.2024171
http://portal.acm.org/ft_gateway.cfm?id=2024171&type=pdf


tions while keeping the surface in the same subspace (e.g.,
a subdivision surface remains a subdivision surface with the
same controls, or a mesh modified using Laplacian editing
still minimizes the same energy). The only input the algo-
rithm requires for a specific deformation technique is the gra-
dient of the function mapping control handles to surface point
positions.

• Handles general geometric data. Our algorithm is able to
robustly handle large deformations, complex intersections,
sharp features, as well as self-collisions within a surface. It
is capable of processing intersections between surfaces with
boundary and large numbers of disconnected components.

• Controllable. Different modes of response to collisions suit-
able for modeling applications fit into our framework. For
example, we allow the user to specify whether objects move
rigidly and maintain their shape or deform due to interference.

• Fast. Interference detection typically dominates runtime
costs. We treat detection as a black-box, so our interference
algorithm can freely leverage state-of-the-art research in colli-
sion detection methods, which currently allow for interactive
editing of large models.

We demonstrate the applicability of our method on a variety of
scenarios using a range of modeling techniques, including subdi-
vision surfaces, free-form deformation, and Laplacian surface edit-
ing. We demonstrate that in many cases, STIVs can also resolve
self-intersection in existing meshes, making it easier to use our
technique with existing geometry. We are able to achieve inter-
active rates for a number of realistic geometric modeling scenarios
(Section 6 discusses performance in greater detail).

2 Related work

Collision detection. Collision detection is usually treated sep-
arately from collision response. This paper focuses on the re-
sponse algorithm, so we refer the reader to a recent survey
[Teschner et al. 2004] and book [Ericson 2004] which take a com-
prehensive look at collision detection techniques. We note that the
literature has long recognized the need for so-called continuous
time formulations in detecting interference, which we complement
by presenting an appropriately paired response algorithm that op-
erates in the same space-time domain. Provot [1997] presented a
general method for deformable surfaces, where the roots of cubic
polynomials (in time) are found to detect collisions. However, these
works focused on the 4-dimensional detection problem, without of-
fering a matched response model.

Physical simulation. Most of the work on response to collisions
and intersections is done in the context of physical simulation, and
we build on some of the techniques from this domain. However,
our problem is different: on the one hand, we do not have stringent
requirements on physical accuracy, especially in the context of dy-
namic effects (we only need natural and intuitive behavior suitable
for geometric modeling applications). On the other hand, phys-
ically based response (e.g., penalty forces) does not fit well into
a pure geometric framework, and the requirements for robustness,
generality and efficiency are more restrictive, compared to a typ-
ical physical simulation. We can broadly divide physically based
response methods into three categories: penalty forces, impulses,
and constraints.

Penalty forces are additional forces acting to separate the surfaces,
or maintain contact. These forces are well-understood in the con-
tact mechanics community [Wriggers and Laursen 2007] and were
introduced to computer graphics by the early work of Terzopoulos

et. al. [1987]. While penalty forces are easy to implement, difficul-
ties often arise in adjusting the stiffness of these forces—too weak,
and objects simply pass through one another, too strong, and the
system becomes poorly conditioned. Harmon et. al. [2009] address
this problem through asynchronous timestepping, albeit at a signif-
icant computational cost. For our application, we cannot afford the
high runtimes necessary to ensure robustness.

An alternative is to view collision response as an instantaneous
reaction (an impulse) representing an abrupt change in momen-
tum. While using sequentially applied impulses for response
is possible [Moore and Wilhelms 1988; Mirtich and Canny 1995],
impulses quickly becomes computationally challenging even with
a small number of collisions. Furthermore, impulses are known
to not always converge, and we need a method that reliably re-
solves intersections. Many circumvent these problems either by
using time integration schemes that handle such discontinuities
[Stewart and Trinkle 1996], or accepting the error in treating all
collisions during a single timestep as though they were simultane-
ous, such as in Bridson et. al. [2002]. The latter approach is called
a velocity filter, as it passes over velocities, correcting motion in
offending directions. It has proven popular, not just for its original
purpose of self-collisions in cloth simulation, but also in a variety of
collision scenarios, e.g., hair simulation [Selle et al. 2008]. Despite
the fact that their three-pass algorithm robustly resolves intersec-
tions, we could not use it while keeping the shape in the modeling
subspace, which is necessary to preserve the features that drew the
user to choose a specific modeling algorithm in the first place (see
Fig. 7).

Lastly, contacts can be viewed as hard, inviolable constraints within
the system. This alleviates many problems of sequential im-
pulses, in particular the “bouncing” back and forth between ac-
tive collisions. Initial research formulated these constraints at
the acceleration level, and focused on rigid bodies [Lötstedt 1984;
Baraff 1989]. Baraff [1994] noted that these constraints do not
always have a solution, and thus proposed constraining motion
at the velocity level. These constraint-maintaining impulses have
enjoyed popularity, with progress in custom-designed numerical
methods [Stewart and Trinkle 1996] as well as a growing interest in
friction [Kaufman et al. 2005], a particularly challenging problem.
Unfortunately, they only apply to rigid and quasi-rigid objects, and
do not scale well to general highly deformable surfaces. Our ap-
proach is most similar in spirit to the constraint-based approach of
Allard et. al. [2010]; we compare to this work in greater detail in
§3.

Haptics are concerned with fast interference detection and response,
due to the demands of interactive object manipulation. Barbič and
James [2008], inspired by McNeely et. al. [1999], use a hierarchy
of point-shells to approximate objects and obtain extremely sta-
ble collision response. However, their method requires significant
pre-processing, and the reduced-order deformation model limits the
range of edits that can be applied.

Geometric modeling. Research in interference response for ge-
ometric modeling has been quite limited. The work of von Funck
et. al. [2006] offers a modeling tool that deforms surfaces via
integration of a smooth vector field. As a by-product of this
smoothness property, the mesh is free of local self-intersections.
A similar result is obtained from the method of Swirling Sweep-
ers [Angelidis et al. 2006]. In the context of preventing local self-
intersections, this behavior is a result of the deformation method
under consideration, limiting its applicability to other models.

Spatial deformations affect all geometry it overlaps, preventing in-
terference as long as it defines a bijective map. Gain and Dodg-
son [2001] specifically discuss intersections within free-form de-



formation (FFD), and the mathematical requirement to construct a
FFD scheme that does not introduce self-intersections. In partic-
ular, they prove that injectivity of the FFD mapping is sufficient
to guarantee no self-intersections, and offer a modified FFD that
performs such injective deformations. This work does not easily
extend to other modeling techniques.

Snyder [1995] presents a method for placing objects in a scene
while avoiding intersections. It only supports rigid bodies and
works by applying pseudo-forces and various backtracking meth-
ods to find a realistic configuration. In contrast, we desire for a
more general modeling environment not restricted to only those
configurations that are realistically physical.

Aldrich et. al. [2011] deforms volumes through the use of colli-
sions. The basic response model pushes vertices outside of the in-
terfering object. The method we present could be substituted for
this step, offering far more robust collision handling in the context
of their volume-preserving model.

3 Space-time interference volumes

Let S denote a collection of meshed surfaces in space, described
by a vertex position vector q ∈ R

3N ; qi is the i-th 3-dimensional
vertex of the mesh. For the purposes of our algorithm, we do not
distinguish between different objects—they are all regarded as a
single surface (possibly with disconnected components). An arbi-
trary point r ∈ S can be written as a weighted sum of vertices,
r =

∑

i
wiqi, where wi 6= 0 for the primitive vertices which en-

close r.

During editing, the user modifies a low-dimensional control mesh
with configuration p ∈ R

3M , where M ≤ N . From the
change in the low dimensional configuration p, we update our
high-dimensional configuration q = f(p), where f may be a
linear or non-linear function given explicitly or as a solution of
an optimization problem. Many methods for surface represen-
tation and deformation can be easily cast in this form, includ-
ing subdivision surfaces [Catmull and Clark 1978], free-form de-
formation [Sederberg and Parry 1986], various linear surface edit-
ing schemes [Botsch and Sorkine 2007], PriMo surface model-
ing [Botsch et al. 2006], and as-rigid-as-possible surface model-
ing [Sorkine and Alexa 2007]. The function f is a concatenation of
possibly distinct deformation functions defined on different subsets
of geometry.

We organize the deformation of q into a sequence of edits,

q(0),q(1), ...,q(n), where q(0) is the initial mesh configuration. In-
terpolating the edits linearly, we define a continuous deformation of
the shape parametrized by t:

q
(n)(t) = q

(n−1) + t∆q
(n), for 0 ≤ t ≤ 1,

where ∆q(n) = q(n) − q(n−1), This also defines a piecewise-

linear trajectory for every point on the surface r(n)(t) ∈ S(n)(t)

with corresponding trajectory vector field ∆r(n) = r(n) − r(n−1).
We use this trajectory to detect and respond to mesh interference.

3.1 Defining interference

Consider the case where a pair of deforming points, r and r′ co-
incide, r(tI) = r′(tI). 0 < tI ≤ 1 is the moment of intersec-
tion along the trajectory. We call the triplet (r, r′, tI) an interfer-
ence event. For a given point r in an interference event, we define
r′ = I(r) as the complementary point and tI(r) as the “time” pa-
rameter; the moment along the trajectory where the two points co-
incide. Note that by requiring tI > 0 we require the surface at the
start of an edit, S(0), to be intersection-free.

x

y

x

y

x

y t

x

y

x

y

x

y t

x

y

x

y

x

y t

Figure 2: The variety of interference captured by STIVs. Left: start
configuration. Middle: configuration after edit. Right: interpolated
configurations, resulting in a space-time surface. Top row shows a
typical intersection between two surfaces. STIVs are always well-
defined, even for boundaries (middle), and never miss interference,
even when completely passing through a thin surface in a single
edit (bottom).

The set of all interfering points forms a subset of the surface which
we call the interference surface, SI ⊂ S. For a response algorithm
to be considered robust, it must reliably reduce SI to the empty set
by appropriately modifying trajectories.

After an interference event, the trajectory r(t), along with a small
area dS of the surface around r, sweeps out a tube in space. We can
use the volume of this tube to measure the severity of interference.
Informally, a space-time interference volume (STIV) can be thought
of as the sum of the volumes of these tubes for all points that passed
through another surface at some instance in time.

Observe that the tubes for different areas can overlap, so STIVs
do not correspond to volume swept out by the surface in space.
Rather, it is a volume of a 3-dimensional subset in space-time R3×
R, consisting of points (r(t), t) for an interval of values of t (see
Figure 2).

More formally, for the geometry deformation from configuration

q(n−1) to q(n) we define a STIV as

V =

∫

r∈SI

[

(1− tI(r))∆r
(n) · n̂(I(r))

]

dS, (1)

where n̂ is the normalized surface normal of the other point r′ =
I(r) at the time of intersection, oriented so that each integrand is
negative.

We have only modeled the surface interference. Before describing
the process by which we eliminate this interference, we emphasize
the following important features of this definition:

• The continuous integral over an arbitrary surface has no con-
cern for the underlying object model, shape, or movement of
the surface. It is completely general and can describe interfer-
ence between thin objects, surfaces with sharp features, and
surfaces with boundary.

• Considering continuous trajectories ensures that no intersec-
tion goes undetected, compared to sampling the geometry at



fixed-interval configurations, such as in Faure et. al. [2008],
which can miss intersections between relatively fast-moving
objects or geometry with thin features.

• The dot product with n̂ takes into account the angle between
the linear trajectory of a point, and the normal of the surface
it hits at the time of intersection: for near-sliding motions of
r, the volume is smaller, while for nearly orthogonal motion
it is larger. This ensures only the motion which contributes to
interference is penalized and allows surfaces to slide smoothly
across one another.

• Our measure of interference is captured by a single volume
rather than a separate measure for each interfering point, dras-
tically decreasing the problem dimension. We explore the ef-
fect of partitioning measures in §3.3.

This formulation has all the desired properties we set out in §1.
Nevertheless, their assurance depends on the exact manner we ap-
proximate the integral and resolve interference numerically.

3.2 Resolving interference

As discussed in §2, many choices exist for interference response in
the context of physically based simulation. However, as addressed
there, none of these apply to geometric modeling without sacrific-
ing speed, generality, controllability, or robustness.

With our STIV construction, we have two general methods for re-
ducing the magnitude to zero. The first is penalty forces formu-
lated through an energy term (generally of the form 1

2
kV 2) that

penalizes STIVs, and thus interference, until resolved. Unfortu-
nately, such a force / energy pair has no place in our purely geo-
metric setup where forces have no meaning. Furthermore, penalty
forces are well-known to be insufficient for robustly resolving col-
lisions due to the difficulty in tuning the parameter k [Baraff 1989;
Harmon et al. 2009].

Our alternative is constraint-based methods. Instead of relying on a
force with arbitrary stiffness k to resolve the interference over time,
we can constrain V to be exactly 0 and allow the numerical method
to find the exact stiffness necessary. Constraints are well-studied in
optimization theory [Boyd and Vandenberghe 2004], thus making it
simple to develop a purely geometric formulation. STIV constraints
can be resolved by a straight-forward application of methods from
numerical optimization. For completeness, we present the relevant
material.

Constrained optimization. The general form of the constrained
optimization problem we are solving is

minimize E(p(n)) (2)

subject to V(p(n)) ≥ 0,

where E is an energy measuring proximity to the desired trajectory.
Many methods from geometric modeling use an energy to define the
deformation. However, as the number of active constraints during
any given edit varies, the Lagrange multiplier system for the prob-
lem will need to be reconstructed, making it difficult to use any pre-
computation or pre-factoring for interactivity. Instead, we consider
interference response as a post-process, where we directly apply
constraints on the configuration of the mesh. The user performs an
edit, followed by computation of an unconstrained candidate con-

figuration q̃(n) = q(n) = f(p(n)). We then perform interference

detection on the candidate trajectory ∆q(n), and apply response to

p(n) to obtain the intersection-free, final configuration q(n). Fig-
ure 3 shows the entire editing workflow. Thus, we define our energy

to be E(p(n)) = 1
2
‖f(p(n))− q̃(n)‖2.

Our interference resolution algorithm is summarized in the pseu-
docode of Algorithm 1, which gives the solution to Equation 2
subject to a single constraint. The procedure computeSTIV is dis-

Algorithm 1 Resolving interference through STIV constraints

1: ∆q(n) = f(p(n))− q(n−1)

2: while V = computeSTIV(q(n−1),∆q(n)) 6= 0 do

3: λ = −V/∇V∇VT

4: p(n) = p(n) +∇VTλ
5: ∆q(n) = f(p(n))− q(n−1)

6: end while
7: q(n) = q(n−1) +∆q(n)

cussed in §4. Note that the function f in Line 1 is a black box
operation representing the transformation from a geometric sub-

space p(n) to the high-dimensional space q(n). Response is also

performed on this modeling subspace p(n), ensuring that generated
surfaces retain the desired formulation (§5.1). The STIV gradients
can be found in the appendices.

This algorithm is iterative, continuing until all intersections are re-
solved. Due to the linearization of a non-linear 4D volume, the
STIV may not be completely removed in a single iteration. How-
ever, it is guaranteed to continuously decrease in magnitude. Addi-
tionally, by altering the trajectory, new intersections may be intro-
duced that must be detected and resolved (imagine a car applying
brakes to prevent a frontal collision and being rear-ended). By re-
quiring that S(0) be free from intersections, a solution (albeit ex-
treme) is guaranteed by eliminating all deformation, in which case

q(n) = q(n−1).

Comparison to related techniques. Allard et. al. [2010] for-
mulated a similar constraint on intersection volumes in three di-
mensions, rather than in space-time, in the context of elastic ob-
ject simulation. In this case, they also perform interference detec-
tion on static configurations, using their GPU-based technique of
Layered Depth Images (LDI) [Heidelberger et al. 2004]. They con-
strain disjoint intersection volumes, computed by summing inter-
secting pixel areas in the LDI, to be 0. Unfortunately, LDIs only
work for watertight volumes; boundaries violate the algorithm’s as-
sumptions. Furthermore, since intersection tests are static, i.e., per-
formed at fixed moments in time, the motion of objects is limited to
small deformations. For closed surfaces and small motions, STIVs
closely approximate intersection volumes.

3.3 Multiple STIVs

In Equation 1 the contribution of
each interference point is nega-
tive, resulting in a negative inte-
gral. However, we resolve inter-
ference by following gradient direc-
tions, which may move an individ-
ual point into a state where its dif-
ferential volume is positive. This
is why the algorithm is iterative; a
“solution” may involve some sepa-
rated elements (positive integrand) and some intersecting elements
(negative integrand), which average out to zero: a numerical solu-
tion that still contains interference (see inset figure).



User edits
Geometric

modeling

Interference

modeling

Interference

resolution
Interference?Interff nce?nferen

YES

NO

Figure 3: Our workflow reacts to user edits, checking for interference and responding when necessary.

Nevertheless, this is not a problem since in the next iteration we
include only active interference points, reducing the set over which
we integrate. In physical simulation we would form a single con-
straint per intersection and resolve as a Linear Complementarity
Problem (LCP) or a linear projection [Harmon et al. 2008]. Line 3
in Algorithm 1 would be replaced by a call to an LCP solver or a
linear solver, respectively. The LCP conditions [Cottle et al. 1993]
are

0 ≤ λ ⊥ V(p(n)) +∇V∇V
Tλ ≥ 0.

The motivation behind partitioning into multiple constraints is
physical. In particular, intersection response involving friction of-
ten requires handling such local constraints for physically accurate
solutions. We have no such requirements. In fact, the extent to
which we need a “physical” solution is only as much as required
for intuitive editing of surfaces. As such, we obtain our solution by
resolving only a single constraint, with no adverse effects in how
the algorithm feels to a user, e.g., no artificial sticking or random
“bumps.”

One practical concern is that by integrating over a single (poten-
tially large) region we slow down the overall algorithm by requiring
additional iterations, each carrying expensive collision detection.
For comparison, in §6 we include results with a single STIV as well
as multiple STIVs, one per disjoint interference region of the mesh.
Further refinement of STIVs into additional constraints would im-
prove physical accuracy of the solution, but in our experience offers
no practical advantage for geometric modeling. Between a single
constraint and one constraint per region, we find that the difference
is negligible, both in feel and in the total number of iterations; this
data is presented in Table 1. Intuitively, this can be explained since
while the total integral may penalize some intersecting subsets, it
may help others by encouraging separation where otherwise exact
contact would be enforced.

4 Computing interference volumes

Equation 1 defines a STIV for a continuous surface; our algorithm
works on a mesh approximating the surface, which we assume con-
sists of triangular faces. We do not make assumptions about the
number of connected components, or manifold property, but we
do require that the initial meshes have no self-intersections. At
the same time, our technique, in combination with a skeletoniza-
tion process, can be used to eliminate pre-existing self-intersections
(§5.2), although without a guarantee of success.

We follow a natural discretization of Equation 1 where the summa-
tion is performed over vertices. Our discrete approximation has the
following form:

V ≈
∑

i∈S
(n)
I

[

(1− ti)∆r
(n)
i · n̂i(ti)

] 1

3

∑

k∈N(i)

|Aik|. (3)

Aik, is the area of the k-th triangle connected to vertex i. Each entry
in the summation can be thought of not as a tube, but a prism sur-
rounding each vertex, whose base is the barycentric region around
that vertex.

Interference prisms. S
(n)
I is the discrete surface subset com-

posed of points qi involved in surface interference. We include in

S
(n)
I all vertices whose barycentric region Ai contains some point

r involved in interference during a deformation. Furthermore, we
use the time, trajectory, and normal corresponding to the earliest
interference event in the region of qi to correspond to ti, ri, and
n̂i. Concretely, define the barycentric region corresponding to area
Ai as the set of points

Ri = {rj =
∑

wkqk, s.t. wi ≥ wk, ∀ 1 ≤ k ≤ N}.

Note that Ai =
∫

Ri

dr. With this notation in hand, we use the pair

(ri, ti), s.t. ti = min(tj(rj)), ∀ rj ∈ Ri,

for the trajectory and time to represent the i-th region.

4.1 Detecting interference

We have yet to compute each intersecting point r and its time of
intersection. Triangle meshes can come into contact in one of two
ways: either a vertex strikes a face, or two edges meet. A vertex
intersecting a vertex or an edge is considered a special case of the
former. We must find all such events to construct the sets Ri.

Computing the discrete volumes, then, relies on our ability to
quickly detect the points along trajectories, ti, where intersection
occurs. These tests are performed on the high-dimensional surface
whose shape is defined by qi. Fortunately, this sort of collision
detection is standard, and we can use off-the-shelf algorithms with
minimal modifications for our purposes. We have tested our system
with the Self-CCD library [UNC 2010] as well as the hash grid ap-
proach of Teschner et. al. [2003], with complete interchangeability.
For low-level tests between vertex-triangle and edge-edge pairs we
solve the cubic polynomials presented in Provot [1997]. The roots
of these polynomials provide our times of intersection ti. Along
with the point trajectories ri, we can compute the STIV of Eqn. 3.
Where multiple, disjoint STIVs are used, we partition the interfer-
ence surface based on the 1-ring connectivity of interference points.

The system attempts to exactly resolve each STIV, V (p(n)) = 0.
However, due to numerical imprecision, primitives may be left
touching or slightly intersecting. To remedy this, we return a value
of ti sooner than the actual value, to account for error in the root
finding and response computation. In our examples we return the
maximum of 0 and (ti −

1
100

).

5 Editing

User interfaces implementing interference-aware geometric mod-
eling require little modification from standard modeling software.
We describe simple editing primitives and modes that we use in our
examples. Most of them are standard, but with their power signifi-
cantly enhanced by interference awareness.

Primitives. In our examples we use standard translation, rotation
and scaling of control points or groups of vertices acting as handles.
However, in our system, a simple rigid transform on the controls



Figure 4: The modeling task is to pack these bodily organs tightly
together. Doing so without consideration for interference is likely
to result in intersecting meshes, possibly disqualifying it for use in
a medical simulation, for example.

may result in a complex deformation due to interaction with other
objects.

Less standard tools we found essential both for object positioning
and removal of self-intersections are contraction towards its skele-
ton (§5.2), and expansion back to its original configuration.

Modes. Editing modes define the effect primitive operations have
on geometry, and are specific to interference-aware modeling. We
have three basic modes: we can enable / disable interference pro-
cessing, enforce rigid response or allow the mesh to deform, and
allow all surfaces to respond or only the selected subset.

We utilize these primitives and modes extensively in our examples,
and refer to them in describing our results in §6.

5.1 Modeling subspace

Meshes representing complex shapes have many degrees of free-
dom and editing vertices directly is often impractical. Most mod-
eling techniques reduces this space in various ways: the geome-
try is defined by a smaller number of degrees of freedom in a re-
duced subspace (subdivision surface control points or handles for
variational surface editing). Restricting possible configurations of
meshes often guarantees many useful properties (e.g., smoothness
or detail preservation). We do not wish our treatment of interference
to disturb these properties, and thus we perform response in the

modeling subspace by modifying the control vertices p(n) rather

than the fine degrees-of-freedom q(n). Expressions for the neces-
sary gradients are given in the appendices.

5.2 Controlling the behavior of response

Due to the variety of needs in different modeling systems, it is im-
possible to present a single solution that is “one size fits all.” How-
ever, we present a variety of options and “add-ons” that increase the
utility of interference-aware geometric modeling. Some are purely
geometric, other are motivated by physical intuition, but are always
formulated in purely geometric terms.

Weighted handles. The gradients ∇V describe how to modify

the DOFs in p(n) to avoid intersection. By appropriately weighing
∇V , we can capture various inertial effects.

Figure 5: With a simple extension, our algorithm is able to untan-
gle complicated intersections within meshes.

Egg:

Plane:

Rigid

Static

Deformable

Static

Rigid

Deformable

Deformable

Deformable

Figure 6: We weigh the response per handle vertex to achieve many
different effects, each useful under different circumstances.

Let W be the 3M × 3M identity matrix, and substitute W∇V T

for ∇V T in Line 3. By modifying the (i, i)-th entry of W, we
can control the relative effect of response on the i-th DOF. This
is most useful by inserting a 0, which removes the DOF from the
system, ensuring that the corresponding vertex remains stationary.
This allows us to restrict deformation due to response to only those
vertices selected, only those not selected, or allow all to deform.

Minimum separation. In Equation 3, ti is
the parametric value at which an intersec-
tion occurs. We can modify the computa-
tion of ti to return the time when two sur-
faces enter within some proximity, rather than
exactly touching. This is useful for simula-
tion pipelines, where a minimum distance be-
tween all surfaces is needed.

We can express this with the following degree
six polynomial:

(x3(t)− x0(t)) · [(x1(t)− x0(t))× (x2(t)− x0(t))]
2 −

h2‖ [(x1(t)− x0(t))× (x2(t)− x0(t))] ‖
2.

Finding the roots of this polynomial gives the points along the tra-
jectory where the vertex x3 is exactly a distance h apart from the
plane spanned by the triangle (x0,x1,x2). By projecting onto the
plane, we can confirm that it lies within the region of the triangle.
A similar polynomial is constructed from the cubic polynomial for
edge-edge intersections [Provot 1997].

We employ a series of optimizations, not unlike those in the cubic
case, that vastly reduce the number of polynomials that must actu-
ally be solved. Nevertheless, the increased proximity increases the
amount of primitives that make it to low-level intersection tests.



Figure 7: One response candidate from physical simulation, Brid-
son et. al. [2002] (top), has no consideration for the underlying
geometric model, so while it robustly resolves the interference, in
the process it ruins the continuity of this subdivision face colliding
with a wavy surface. In contrast, our response (bottom) modifies the
control mesh, preserving the smoothness of the subdivided surface.

Self-intersecting meshes. Utilizing Algorithm 1, we are able to
resolve self-intersections that already exist in many meshes. Our

formulation requires q(n−1) for detection, and is thus history de-
pendent. In particular, our algorithm requires a previous configura-
tion that is intersection-free. This is fine for modeling from scratch
or simple initial shapes, but poses a challenge for meshes with pre-
existing intersections.

Our algorithm for removing existing intersections is based on the
observation that if we have any non-self intersecting shape q0, as
long as there is one-to-one correspondence to the final shape, we

can run our algorithm between q(0) and a desired configuration

q̃(1), with intersections repaired automatically.

While the task of constructing such shape in full generality is
formidable, a natural candidate in many cases is a shape closer
to the skeleton of the mesh. Intermediate steps of the method of
Au et. al. [2008], based on constrained Laplacian smoothing, yield
exactly such meshes. Using this method, we contract the self-
intersecting mesh until it is free of intersections. When none are

detected, we have found our intersection-free configuration q(0).

We then run an unmodified Algorithm 1 to obtain q(1), the mesh
closest to the original but free of intersections. Clearly, this method
is not guaranteed to succeed, but for many models we have tried
(e.g., Figure 5), it resolves self-intersections successfully.

6 Results

We tested our algorithm on a variety of scenarios that stress dif-
ferent parts of the system. The results demonstrate the robustness,
speed, generality, and controllability of our method, as seen here
and in the accompanying video. All modeling sessions were per-
formed single-threaded on a 3.6GHz Intel Core i5.

The following examples range from a few thousand triangles to over
75K, with vertex counts ranging from a few hundred to 38K. Table 1
contains full example data, including various measures for evaluat-
ing performance, both for the case of a single STIV constraint and
one per disjoint region of the interference surface. The quantitative
measures typically used to evaluate performance of contact algo-
rithms for physically based simulation are not entirely appropriate
for our task (interactive modeling). For this task, the frame rate
profiles (see Figure 12) capture a more practically relevant perfor-
mance measure. During all operations, we maintain an interactive

T
ra
n
sl
a
ti
o
n

S
ca
li
n
g

Figure 8: STIVs do not introduce any artificial friction, so these
plant shoots freely slide into the vase, without intersecting it.

Figure 9: We enlarge the bunny trapped in the teapot until it is
tightly pressed against the sides. Such large regions of consistent
intersection are challenging for collision detection.

frame rate on average, with occasional momentary dips only during
the most stressful of operations.

Plant in vase. In this example we wish to place a tight bunch of
grass-like shoots into a vase (Figure 8). The vase is immovable,
while the shoots are allowed to deform through a simple tri-cubic
FFD lattice. We translate the entire plant down into the vase. As
it first intersects, the bottom of the lattice pinches inward, allow-
ing the shoots to slide freely into the vase. Once we have reached
the end of the vase, we scale the lattice to increase its size, allow-
ing the bunch to freely expand outwards, while the bottom remains
constricted inside the vase.

Bunny in teapot. This stress-test was designed to push our sys-
tem to its limits. The teapot is fixed, while the high-resolution
bunny is enclosed in a tri-cubic FFD lattice. We select the en-
tire bunny and scale up, continuing even after intersections occur.
Eventually the bunny is tightly pressed against the teapot interior
(Figure 9). The entire meshes, both bunny and teapot, are in con-
tact throughout. This stresses timings because there are fewer false
positive intersections, and thus fewer options for culling candidate
intersections; all low-levels tests must be done. Despite these set-
backs, we maintain steady frame-rates and the user receives consis-
tent feedback, even when the frame-rate eventually drops to below
5 frames per second.

Tree in corner. Similar to the bunny, this example grows a tree
mesh in a contained region. It also uses a tri-cubic FFD lattice,



Model Vertices Triangles Collisions Regions Iterations Time per iteration Total time
(ms) (ms)

Plant 13759 26782 36.21 4.07 1.56 / 2.20 48.55 / 40.64 75.52 / 89.31
Bunny 38045 75943 46.33 1.42 1.08 / 1.75 630.3 / 524.0 678.7 / 917.0
Tree 32937 18745 16.16 2.49 2.21 / 2.64 56.59 / 56.81 125.0 / 150.2
Knot 5808 11616 23.25 1.83 2.30 / 2.16 65.43 / 57.39 150.0 / 124.0
Ogre 13318 26060 50.14 2.60 8.59 / 11.8 36.84 / 27.52 316.4 / 326.0

Table 1: For five examples we give, from left to right, the number of mesh vertices, the number of mesh triangles, the average number of
collisions between primitives, the average number of disjoint regions, the average number of iterations with multiple constraints (one per
region) / one constraint, the average time per iteration (ms) with multiple constraints / one constraint, and the average runtime per edit with
multiple constraints / one constraint. Contributions to the average are only taken when the number of collisions is non-zero.

Figure 10: This tree “grows” in the corner, firmly pressed against
the walls without penetration.

however the mesh almost entirely consists of “triangle soup”. As
the tree grows, it pushes against the wall, eventually creeping over
the edges.

Knot. This tangled knot is deformed using Laplacian surface edit-
ing, with the bottom region fixed, and the top arch manipulated as
a handle. It requires little movement to instigate intersections and
tighten the knot configuration. By allowing the non-handle mesh to
move, the knot becomes further entangled.

Ogre. This examples combines many operations and editing
modes into a single, practical example (Figure 1). The task is to
dress the ogre using off-the-shelf models. The shirt, for example,
is a woman’s shirt that clearly will not fit easily, and intersects the
ogre in many places. All meshes are Loop subdivision surfaces.

We begin by eliminating intersections with the shirt, by contracting
the ogre until intersection-free, then expanding her with interfer-
ence enabled. This gives an intersection-free shirt, but it clearly was
not made for this model. We finish the shirt by scaling the entire
mesh down until it intersects the ogre, this “shrink-wrapping” re-
moves the feminine cut of the cloth and gives a more ogre-ish shape.
We move the glasses rigidly against the ogre’s head until they are
properly positioned. We then enter deformable mode and press the
glasses on its head, allowing it to freely expand to the proper size.
We repeat these operations with the hat to conclude the dressing of
the ogre. This is a non-trivial editing task that is made painless,
even for non-experts, by interference-aware geometric modeling.

Timings. We give the frames per second values over time for the
ogre shirt-fitting and the plant in vase examples. We experience
dips in frame-rate during intersection, with more severe intersec-
tions causing more significant dips. The important thing to note
is these dips are momentary, and quickly recover to a steady state.
Overall time is spent in a few operations. An average of 15% (0.1

Figure 11: This tangled knot has no hope of becoming untangled
with interference-aware geometric modeling preventing intersec-
tions, even for large deformations.

SD) of runtime is spent processing UI events, 15% (0.21 SD) in ge-
ometric modeling, 51% (0.2 SD) is spent in interference detection,
and 16% (0.14 SD) in response. Integrating STIVs and computing
gradients takes a negligible amount of time. Table 1 gives more
detailed timing, with total costs per iteration of our algorithm.

 0

 5

 10

 15

 20

 25

 30

F
ra

m
e

 P
e

r 
S

e
c
o

n
d

Time

Ogre
Plant

Figure 12: The frames per second for two examples during an edit-
ing session. Dips are momentary, and are little interruption to our
algorithm’s responsive feedback.

7 Conclusion

We presented a method for responding to interference in geometric
modeling sessions. This method is fast, enabling interactive edit-
ing sessions, it is general, not limited by geometry or surface rep-
resentation, and it is controllable, equipping the user with a wide
array of expressive ability. Interference-aware geometric modeling
can fit into practically any existing modeling system. It can easily
be enabled and disabled, allowing artists to guarantee absence of
intersections during critical editing moments, while editing freely
during other times.



Implementing specialized methods to handle every case is tedious
and increases chance of error. Our aim was to build an algorithm
that was general enough, yet had the performance capabilities to
work with any scenario encountered in the domain of geometric
modeling. Our resulting algorithm follows from physical princi-
ples, enough to guide intuitive behavior, but is relaxed enough to
edit in real-time.

Limitations. Unfortunately, our method still has strict require-
ments on the input geometry. In particular, it does not handle
degeneracies well. Zero area triangles and zero length edges dis-
rupt the interference detection. Along these same lines, our algo-
rithm also requires input meshes be free of intersection. Using our
skeleton-based approach we are able to repair self-intersections in
many meshes, but a few are impossible to repair in this way.

Future work. Currently, interference detection is a major bottle-
neck during processing. This is an active research area, and con-
tinued development in continuous detection methods will directly
improve our results. There is, in particular, opportunity for uti-
lizing parallel processing to improve interference-aware geometric
modeling.

In addition, specialized interference detection algorithms show
promise for geometric modeling. There are specialized factors that
could motivate the design of new detection algorithms. For exam-
ple, only subsets of meshes are usually edited at a time, in contrast
with simulation, where everything moves each timestep. Further-
more, algorithms could leverage specific knowledge of the model-
ing scheme for faster processing.

While debugging we observed that the response was fairly insen-
sitive to errors in the STIV computation. This motivates inquiry
in fast algorithms for approximating STIVs without performing ex-
pensive low-level interference detection.

Acknowledgements

We thank Optitex for providing the ogre shirt mesh. This work
was supported in part by the NSF (awards DMS-0602235 and IIS-
0905502) and Adobe Research. The first author is supported by a
CRA Computing Innovation Fellowship.

References

ALDRICH, G., PINSKIY, D., AND HAMANN, B. 2011. Collision-
driven volumetric deformation on the GPU. Eurographics 2011.

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F.,
DURIEZ, C., AND KRY, P. G. 2010. Volume contact con-
straints at arbitrary resolution. ACM Trans. Graph. 29 (July),
82:1–82:10.

ANGELIDIS, A., CANI, M., WYVILL, G., AND KING, S. 2006.
Swirling-sweepers: Constant-volume modeling. Graphical
Models 68, 4, 324–332.

AU, O. K.-C., TAI, C.-L., CHU, H.-K., COHEN-OR, D., AND

LEE, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM
Trans. Graph. 27 (August), 44:1–44:10.

BARAFF, D. 1989. Analytical methods for dynamic simulation of
non-penetrating rigid bodies. In Proc. SIGGRAPH, 223–232.

BARAFF, D. 1994. Fast contact force computation for nonpene-
trating rigid bodies. In Proc. SIGGRAPH, 23–34.

BARBIČ, J., AND JAMES, D. 2008. Six-dof haptic rendering
of contact between geometrically complex reduced deformable
models. IEEE Transactions on Haptics, 39–52.

BOTSCH, M., AND SORKINE, O. 2007. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics, 213–230.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
Primo: coupled prisms for intuitive surface modeling. In Pro-
ceedings of the fourth Eurographics symposium on Geometry
processing, Eurographics Association, 11–20.

BOYD, S., AND VANDENBERGHE, L. 2004. Convex Optimization.
Cambridge University Press, New York, NY, USA.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Trans. Graph. 21, 3, 594–603.

CATMULL, E., AND CLARK, J. 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes. Computer-Aided
Design 10, 6, 350–355.

COTTLE, R., PANG, J., AND STONE, R. 1993. The Linear Com-
plementarity Problem. Academic Press, New York, NY.

ERICSON, C. 2004. Real-Time Collision Detection (The Morgan
Kaufmann Series in Interactive 3D Technology). Morgan Kauf-
mann, December.

FAURE, F., BARBIER, S., ALLARD, J., AND FALIPOU, F. 2008.
Image-based collision detection and response between arbitrary
volumetric objects. In ACM Siggraph/Eurographics Symposium
on Computer Animation, SCA 2008, July, 2008.

GAIN, J., AND DODGSON, N. 2001. Preventing self-intersection
under free-form deformation. IEEE Transactions on Visualiza-
tion and Computer Graphics, 289–298.

HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E.
2008. Robust treatment of simultaneous collisions. ACM Trans.
Graph. 27, 3, 23:1–23:4.

HARMON, D., VOUGA, E., SMITH, B., TAMSTORF, R., AND

GRINSPUN, E. 2009. Asynchronous contact mechanics. ACM
Trans. Graph. 28, 87:1–87:12.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2004. De-
tection of collisions and self-collisions using image-space tech-
niques. Journal of WSCG 12, 3, 145–152.

KAUFMAN, D. M., EDMUNDS, T., AND PAI, D. K. 2005. Fast
frictional dynamics for rigid bodies. ACM Trans. Graph. 24,
946–956.

LÖTSTEDT, P. 1984. Numerical simulation of time-dependent con-
tact and friction problems in rigid body mechanics. SIAM Jour-
nal on Scientific and Statistical Computing 5, 370–384.

MCNEELY, W. A., PUTERBAUGH, K. D., AND TROY, J. J. 1999.
Six degree-of-freedom haptic rendering using voxel sampling.
SIGGRAPH ’99, 401–408.

MIRTICH, B., AND CANNY, J. 1995. Impulse-based dynamic sim-
ulation. In WAFR: Proceedings of the workshop on Algorithmic
foundations of robotics, A. K. Peters, Ltd., Natick, MA, USA,
407–418.

MOORE, M., AND WILHELMS, J. 1988. Collision detection and
response for computer animation. ACM, New York, NY, USA,
SIGGRAPH ’88, 289–298.



PROVOT, X. 1997. Collision and self-collision handling in cloth
model dedicated to design garments. In Proc. Computer Anima-
tion and Simulation, Springer Verlag, 177–189.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. ACM, New York, NY, USA,
SIGGRAPH ’86, 151–160.

SELLE, A., LENTINE, M., AND FEDKIW, R. 2008. A mass spring
model for hair simulation. ACM Trans. Graph. 27, 3, 64–64.

SNYDER, J. M. 1995. An interactive tool for placing curved sur-
faces without interpenetration. ACM, New York, NY, USA, SIG-
GRAPH ’95, 209–218.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proc. Symposium on Geometry Processing,
109–116.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H. 2004. Laplacian surface editing.
In Proc. Symposium on Geometry processing, 175–184.

STEWART, D., AND TRINKLE, J. 1996. An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions and
coulomb friction. Intl. Journal for Numerical Methods in En-
gineering 39, 2673–2691.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. ACM, New York, NY,
USA, SIGGRAPH ’87, 205–214.

TESCHNER, M., HEIDELBERGER, B., MÜLLER, M., POMER-
ANETS, D., AND GROSS, M. 2003. Optimized spatial hash-
ing for collision detection of deformable objects. In Proc. VMV,
47–54.

TESCHNER, M., KIMMERLE, S., ZACHMANN, G., HEIDEL-
BERGER, B., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., AND STRASSER,
W. 2004. State-of-the-art report: Collision detection for de-
formable objects. In Proc. Eurographics, 119–139.

UNC, 2010. Self-ccd: Continuous collision detection for deform-
ing objects.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H. 2006. Vector
field based shape deformations. ACM Trans. Graph. 25, 3, 1118–
1125.

WRIGGERS, P., AND LAURSEN, T. A. 2007. Computational con-
tact mechanics, vol. 498 of CISM courses and lectures. Springer.

A STIV gradient

Response is applied by directly modifying p(n), the handle or con-
trol of the mesh. We present the gradient of the inner operation of

Equation 3 with respect to a single vertex q
(n)
j and use the chain

rule to express gradients with respect to p(n) (see Appendix B for
a few common subspace gradients).

Directly taking the derivative with respect to q
(n)
j gives

∂V

∂q
(n)
j

=

(

∂wj

∂q
(n)
j

(1− ti) + wi

−∂ti

∂q
(n)
j

)

∆r
(n)
i · n̂+

wi

(

(1− ti)δijI3n̂+ (1− ti)∆r
(n)
i

∂n̂

q
(n)
j

)

,

with ∂ti/∂q
(n)
j = wjn. Note that n is the un-normalized cross

product of the two edges comprising the triangle.

∂n̂i

∂q
(n)
j

=
∑

k=0,1,2

(

ek(ti)× n̂

‖n‖
⊗ n̂

)

(

∂ti

∂q
(n)
j

⊗∆q
(n)
j

)

,

where ek is the edge opposite vertex k, and ∂αi/∂q
(n)
j are deriva-

tives for the barycentric coordinates of a point in a triangle.

B Subspace gradients

Subdivision surfaces. With subdivision surfaces, the control
vertices p(n) are updated, followed by re-computation using the
subdivision matrix

q
(n) = Sp

(n).

In this case, the linear operator S is the function f , so ∂f/∂p(n)

is simply S. Left multiplying by the original gradients gives the
subspace gradients.

Laplacian editing. Laplacian surface editing intrinsically cap-

tures surface shape using differential coordinates, δ(0) = Lq(0).

Then, for a particular edit of the handle p(n), we solve for the new
positions using the formula

L̃q
(n) =

(

δ(0)

p(n)

)

,

where L̃ is the augmented Laplacian matrix, as described in
Sorkine et. al. [2004]. Ignoring numerical instability for a moment,
we can re-write this as

q
(n) = (L̃T

L̃)−1
L̃

T
SL

(

δ(0)

p(n)

)

. (4)

In this form, the derivative is (L̃T L̃)−1L̃TSL, where SL is a “se-
lector” matrix containing the identity matrix in the subset corre-

sponding to p(n), and zeros elsewhere.

Rigid motion. We can write the gradients in terms of the six
degrees of freedom representing the center of mass of an object
to obtain rigid motion, implementing the rigid editing mode. Let

p(n) = (xcm θcm)T , represent these six degrees of freedom.

Any point i on a rigid body has its location in body coordinates

specified by ri = q
(0)
i − x

(0)
cm . and the coordinates at any given

point are given by q
(n)
i = xcm +Rcmri, where Rcm is the 3 DOF

rigid body rotation coordinates expressed in matrix form.

The partial derivative of a vertex i with respect to the center of mass,
is then given by the 3× 6 matrix

∂q(n)

∂p(n)
= (I3 −r

∗) ,

where I3 is the 3×3 identity matrix, and −r∗ is the skew-symmetric
cross product matrix.

Free-form deformations. Free-form deformations express every

point of q(n) as a convex combinations of the points in p(n), that
is:

q
(n) = Mp

(n).

The linear operator M can be build using different basis functions,
in our case we used tri-cubic B-splines. The subspace gradients are
computed in the same way as for subdivision surfaces.


