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Cosserat Rods with Projective Dynamics
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Figure 1: Snapshots of a simulated rod with self-collisions. The rod tangles with itself after applying torsional deformation on the endpoints,
leading to the formation of plectonemes. Interactive displacement of the endpoints enables the formation of knots.

Abstract
We present a novel method to simulate Cosserat rods with Projective Dynamics (PD). The proposed method is both numerically
robust and accurate with respect to the underlying physics, making it suitable for a variety of applications in computer graphics
and related disciplines. Cosserat theory assigns an orientation frame to each point and is thus able to realistically simulate
stretching and shearing effects, in addition to bending and twisting. Within the PD framework, it is possible to obtain accurate
simulations given the implicit integration over time and its decoupling of the local-global solve. In the proposed method, we
start from the continuous formulation of the Cosserat theory and derive the constraints for the PD solver. We extend the standard
definition of PD and add body orientations as system variables. Thus, we include the preservation of angular momentum, so that
twisting and bending can be accurately simulated. Our formulation allows the simulation of different bending behaviors with
respect to a user-defined Young’s modulus, the radius of the rod’s cross-section, and material density. We show how different
material specifications in our simulations converge within a few iterations to a reference solution, generated with a high-
precision finite element method. Furthermore, we demonstrate mesh independence of our formulation: Refining the simulation
mesh still results in the same characteristic motion, which is in contrast to previous position based methods.

CCS Concepts
•Computing methodologies → Physical simulation; Real-time simulation; Simulation by animation; Computer graphics;

1. Introduction

Simulating the physics of rods is a challenging problem. Existing
methods convincingly simulate the intricate bending, twisting and
stretching behavior of rods, but they usually have to trade numer-
ical accuracy for numerical stability or vice versa. Both of these
attributes, numerical stability, and physical accuracy are required
for various applications: A realistic, accurate, and numerically ro-
bust rod simulation is an essential building block in virtual suturing
and simulation of other deformable tubular structures.

† soler.carlota@gmail.com
‡ tobias.martin@virtamed.com
§ sorkine@inf.ethz.ch

Simulating rods solely with positions yields a simplistic and un-
realistic behavior. Therefore, in order to reproduce physically plau-
sible rod behavior, it is essential to employ a fundamental theory
that models twists, as done by Cosserat theory. Cosserat theory
equips points of the material with an orientation. This enables to
reproduce how a rod stretches to some material and how a twist
propagates along the rod when a rotational force is applied. Rod
simulation is a complex problem because both positions and orien-
tations, or local frames, need to be tracked.

Previous methods simulate stable Cosserat rods with position
based dynamics (PBD) [KS16, DKWB18], but their results often
drift away from reality due to the method’s explicit time integra-
tion and constraint corrections. Finite element method (FEM) im-
plementations [BWR∗08,BAV∗10] require small time steps to en-
sure stability, albeit providing accurate simulations thanks to the
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internal/external force computation. The projective dynamics (PD)
framework [BML∗14] enables accurate simulations by the implicit
integration over time and the decoupling of the local-global solve
steps. In this paper, we propose combining Cosserat theory with
the ideas of PD, which results in a simulation that is both accurate
with respect to the physical behavior (Fig. 4) of the rod and numer-
ically robust (Fig. 13). These traits are important in the context of
surgical training, where the main goal is to reproduce real surgery
procedures as accurately as possible.

PD brings together the PBD constraint projection in the local
step and the FEM potential computation in the global step, leading
to an efficient system solving. Within the global step, PD provides
the optimal solution of the system by taking all the potentials into
consideration, a concept inherited from FEM. At the same time, the
potentials include the constraint projections found in the local step,
a concept inherited from PBD methods. Note that position based
methods omit the global step by iterating over the constraints and
thus lose track of the global solution, such that the rod simulation
might stop following its governing equations. In contrast, PD uses
an implicit integration scheme together with a local-global solve
step, leading to more accurate simulations.

In this paper, we make the following contributions:

- We incorporate body orientations into the standard PD solver and
thereby introduce the preservation of the angular momentum.

- We formulate Cosserat rod constraints and potentials for PD. We
discretize the continuous formulation of Cosserat potentials and
derive the respective constraints and potentials for the local and
global steps within the PD framework.

- Similarly to FEM methods, we introduce the potential weights
of the potentials in the global step with respect to material pa-
rameters or geometric properties of the rod.

- We compare our results to a FEM reference simulation and
demonstrate the realism of our simulations for different elastic-
ity values. Additionally, we show the mesh independence of our
simulation when refining the simulation mesh.

2. Related work

Rod simulation is a difficult problem since both positions and ori-
entations on the rod need to be predicted. Tracking the orienta-
tion along the rod enables to simulate twisting and torsional ef-
fects. Early theories date from around 1859, Kirchhoff [Kir59]
being one of the first to devise a three-dimensional theory that
replaced the 1D-body approach. His early theory and further re-
search [Dil92] led to an explicit representation of the rod’s center-
line. The orientation of the rod is represented by several material
frames, which enable to keep track of twisting and bending. A con-
temporary example of Kirchhoff rod simulation is discrete elastic
rods [BWR∗08, BAV∗10], where the material frame is treated as
quasi-static by assuming an inextensible rod. Later theories involv-
ing the Cosserat brothers (1909) led to the formulation of Cosserat
rods [Rub13]. This theory models the rod as a space curve with
two additional directions, which model material fibers in the cross-
section of the rod. These fibers can stretch in length and shear rela-
tive to the normal of the cross-section and the tangent of the space
curve, which allows to simulate extensible rods and hence provide
a broader model compared to Kirchhoff rods.

Cosserat rods. Pai et al. [Pai02] was the first to introduce the
Cosserat model to the computer graphics community with an im-
plicit representation of the rods, aimed at simulating threads and
catheters in virtual surgery procedures like laparoscopy. In this
method, the centerline is expressed implicitly by an approximation
of smooth curves, which makes collision detection difficult.

Explicit discretization of Cosserat rods is a more convenient ap-
proach, as the geometry of the rod can be easily reconstructed. The
CORDE method [ST07] uses a deformation model for simulating
dynamic elastic rods based on the Cosserat theory with continuous
energies. After discretizing the rod, the energy is computed per el-
ement with finite element methods, and thus the dynamic evolution
of the rod is obtained by numerical integration of the resulting La-
grange equations of motion. Although the results are shown to be
physically plausible, the explicit time integration of this approach
requires very small time steps and strong damping to remain stable,
which is the main performance bottleneck of the simulation.

Lang et al. [LLA11] introduces a geometric model for discretiz-
ing the rod similar to the one in CORDE [ST07] and derives the
equations of motion in the continuous domain by applying La-
grangian field theory. These equations are solved using the finite
difference method together with standard solvers for stiff differen-
tial equations. Casati et al. [CBD13] presents an integration scheme
based on power expansions, which reaches higher precision faster
compared to classical numerical integrators. Their method is based
on a semi-implicit time stepping scheme, which is by definition
less stable than an implicit integrator, and hence the motivation to
simulate rods with an implicit scheme such as PD.

Position based methods. Opposed to nodal finite element meth-
ods, Position based dynamics (PBD) [MHHR07] uses impulse
based dynamics, which consists in directly manipulating positions
with constraints and hence offers more control over the body, lead-
ing to an easy collision and penetration handling. Although being a
stable and fast method suitable for interactive applications, the way
the positional updates are formulated can lead to physically implau-
sible results. One of PBD’s limitations is that the material stiffness
is dependent on the time step and iteration count, and hence it is
difficult to simulate stiff materials within a few iterations.

These limitations are overcome with XPBD [MMC16] by in-
troducing a simple extension that allows simulating stiff materials
within a few iterations. However, XPBD approximates an implicit
integrator, resulting in a less accurate result when comparing it to
a true implicit integration scheme such as PD. As an example, Fig.
2 shows the result of a study comparing rods with XPBD (using
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Figure 2: Deformation under gravity for different elasticities E
(i.e., Young’s Modulus). PD simulations converge to an Abaqus ref-
erence FEM simulation (dashed), as opposed to XPBD.
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the available implementation [Nak]) and PD for both soft and stiff
materials defining edge-length preservation constraints and 20 iter-
ations. Only materials simulated with PD converge to a FEM refer-
ence solution, generated with the software Abaqus [HS02].

There are several examples [USS14, KS16, DKWB18] of
Cosserat rods simulated within the PBD framework. The main chal-
lenge they address is how to include the rod orientations in an
impulse dynamics formulation, which is meant to update solely
positions. Both methods dispense with the three-component ma-
terial frame defined in previous works [ST07, BWR∗08], so that
orientations can be updated and stored similarly to positions. To re-
place the frame, Umetani et al. [USS14] define ghost points rotating
around the rod’s cross-section, which appears to introduce artifacts
in rest pose. Kugelstadt et al. [KS16] define a single quaternion per
segment as a particle, which rotates a given orthonormal basis de-
fined at the origin, and is thus convenient for the update and storage
within the PBD framework.

The method presented by Kugelstadt et al. [KS16] inherits the
main drawback of PBD and hence the material stiffness depends on
the iteration count. These inherited problems are overcome by in-
troducing the XPBD extension [DKWB18], however, although be-
ing a significant improvement over the method presented by Kugel-
stadt et al. [KS16], it only allows simulating relatively stiff rods,
which is due to its XPBD nature.

Projective dynamics. Projective dynamics [BML∗14] is a new
method for implicit time integration of physical systems. The ap-
proach builds a bridge between nodal finite element methods and
PBD, leading to a simple, robust, and accurate solver that supports
many types of constraints.

In this paper, we formulate the Cosserat constraints using an im-
plicit Euler integrator within the projective dynamics framework.
Hence, our formulation allows the simulation of all types of rod
material. As PD does not include orientations, we extend the stan-
dard formulation of the solver [BML∗14] and include the preser-
vation of the angular momentum. PD combines the local step for
the constraint projection and the global step for the potential opti-
mization, leading to a more accurate (Fig. 4, 11), mesh independent
(Fig. 6), and robust (Fig. 13) simulation method.

3. Cosserat theory

Cosserat rods are described by an arc-length parametrization r(s) :
[0,L]→ R3. Every point of r(s) is associated with a frame of or-
thonormal vectors {d1(s), d2(s), d3(s)}, also called directors. The
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Figure 3: A Cosserat rod is defined by an arc length parametrized
curve, where each point is augmented by an orientation.

cross-section of the rod is spanned by the directors {d1(s), d2(s)}.
Their cross product d3(s) = d2(s)× d1(s) defines the normal of
the cross-section. Each orthonormal frame, also called material
frame, can be represented by a single quaternion u(s). Given a
fixed coordinate basis {e1,e2,e3}, each director is described as
dk = R(u)ek = uek ū, which is the quaternion rotation (denoted by
R(u)) of the basis vector ek by quaternion u (Fig. 3). Note that we
omit the parameter s for clearer notation whenever possible.

Cosserat continuous stretch and shear potential is defined by
the following integral [LLA11]:

νSE =
1
2

∫ L

0
Γ̃ΓΓ

T
CΓ

Γ̃ΓΓds, (1)

where the strain measure Γ̃ΓΓ ∈ R3 is defined in material frame coor-
dinates as

Γ̃ΓΓ = R(u)T
∂sr− e3 and ΓΓΓ = ∂sr−d3 (2)

is an equivalent expression to measure stretch and shear deforma-
tions. The tangent ∂sr is the spatial derivative of the centerline at a
given point s and d3 is the cross-section normal as defined above.
The rod is subject to shear deformation if the direction of the tan-
gent differs from the cross-section normal, ∂sr 6= d3. The rod is
subject to stretch if the tangent is not unit length: ‖∂sr‖ 6= 1, i.e.,
its length changes compared to the initial state.

Cosserat continuous bend and twist potential is defined as

νBT =
1
2

∫ L

0
ΩΩΩ

TCΩ
ΩΩΩds, (3)

where ΩΩΩ denotes the material curvature vector for a given point s,
which measures the rate of change in curvature [LLA11], i.e.,

ΩΩΩ = R(u)T
∂sR(u) or ΩΩΩ = 2ū◦∂su. (4)

The material curvature vector can also be formulated with the
quaternion product (denoted by ◦) in Eq. (4), measuring the rel-
ative rotation between the material frame orientation and its spatial
derivative.

The matrices

CΓ =

GA1
GA2

EA3

and CΩ =

E J1
E J2

GJ3


(5)

encode the weight constants of the potential energies in terms of
the cross-section area components A1,A2 and the cross-section ge-
ometrical moments of inertia J1,J2,J3 [Sim85]. In the following
we assume a circular cross-section, i.e., A1 = A2 = A3 = πr2 and
J1 = J2. Expressing J1 =

∫∫
A x2 d(x,y) in polar coordinates and sub-

stituting d(x,y) = r̃ d(θ, r̃) leads to the expression:

J1 = J2 =
∫ r

0

∫ 2π

0
(r̃ cosθ)2r̃ dθdr̃ =

πr4

4
. (6)

Finally, J3 corresponds to the polar moment:

J3 = J1 + J2 =
πr4

2
. (7)

The constants E,G > 0 denote the Young and shear moduli of the
material, respectively. G = E

2(1+ν)
, where ν is the Poisson’s ratio.
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Figure 4: Comparison of our simulations to a real elastic rod using the same geometric and material parameters (defined in Table 1).

4. Rod discretization

To discretize the Cosserat theory, we uniformly sample the rod
and obtain a piecewise linear curve with N points. Each element
of the rod is defined by two points {xn, xn+1} and one quater-
nion un, which represents the orientation of the material frame (Fig.
5). Hence, the sampled rod consists of N− 1 elements and N− 1
quaternions.

4.1. Discrete stretch and shear potential

The discretization of Eq. (1) is defined as

νSE =
l
2

N−1

∑
n=1

Γ̃ΓΓ
T
nCΓ

Γ̃ΓΓn, (8)

where l corresponds to the initial length of an element, assuming
the polyline is uniformly sampled. The strain measure ΓΓΓn is dis-
cretized as in Lang et al. [LLA11]:

ΓΓΓn(xn,xn+1,un) =
1
l
(xn+1−xn)− Im(un e3 ūn), (9)

where the tangent vector is discretized as ∂srs ≈ 1
l (xn+1 − xn)

and only the imaginary part of the quaternion product is consid-
ered [KS16].

4.2. Discrete bend and twist potential

The discretization of Eq. (3) leads to:

νBT =
l
2

N−2

∑
n=1

ΩΩΩ
T
nCΩ

ΩΩΩn, (10)

where ΩΩΩn is discretized with the finite quotient expression [LLA11]
using the quaternion product, denoted by ◦:

ΩΩΩn(un,un+1) =
2
l

Im(ūn ◦un+1). (11)

xn

xn+1

un

un+1
un−1

Figure 5: Rod discretization with points, elements and orientations
representing the material frames.

5. Projective dynamics with angular momentum

Projective dynamics (PD) [BML∗14] is a different way to express
the implicit discretized equations for a nodal system by splitting
the internal and external forces in the system into a local/global op-
timization problem. Simulating Cosserat rods with PD’s standard
formulation is not possible, as it solely preserves the linear mo-
mentum by updating the system’s variables with linear velocities
and forces. Given that Cosserat rods require keeping track of body
orientations (Sec. 3), we overcome this limitation by generalizing
the standard PD formulation by including the angular momentum
term. With the proposed extension, the preservation of the angular
momentum is a trade-off between all the constraints in the system.
Note that we refer to this trade-off as the preservation of the angu-
lar momentum for simplicity. The new optimization procedure is
summarized in Algorithm 1. In particular, we incorporate the rod’s
orientations as system variables

q =
[
xT

1, . . . , xT
N , u1, . . . , uN−1

]T
, (12)

where q holds both, the positions x ∈ R3 and the element ori-
entations u ∈ R4 (quaternions). Including orientations as system
variables enables us to simulate rotational external forces such as
torques (τττ) using the body’s inertia matrices (J) and angular veloc-
ities (ωωω) (see lines 3–4 in Algorithm 1).

As the first steps in Algorithm 1, both the linear and angular
momenta (sx

(t) and su
(t), respectively) are computed with an ex-

plicit integration scheme (lines 2–4), where t is the index of the
current time step. For the angular momentum, we first compute the
angular velocity s(t)ωωω as a vector and then use it as the imaginary
part of a normalized quaternion sω

(t), whose scalar coefficient is
0 [SM06]; h is the time step size. After the local/global iterative
section (lines 7–10), both velocities are updated (lines 11–12) with

the new system variables q(t+1) = [x(t+1)T
, u(t+1)]T. The angular

velocity ωωω
(t+1) is derived using the temporal derivative for quater-

nions [Wit97, SM06] (line 12).

5.1. Local/global step

The optimization problem can be divided into a local step and a
global step. In the local step (Algorithm 1, line 9), the optimization
problem is solved w.r.t. a collection of constraints Ci and is defined
as in Bouaziz et al. [BML∗14]. This local step is inherited from po-
sition based methods [MHHR07], where the positions are corrected
according to certain desired constraints.
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Algorithm 1 Extended projective implicit Euler solver

1: function SOLVER(q(t),v(t),ωωω(t))
2: sx

(t) = x(t)+hv(t)+h2M−1fext

3: s(t)ωωω =ωωω
(t)+hJ−1[τττ−ωωω

(t)× (Jωωω
(t))]

4: su
(t) = u(t)+ 1

2 h(u(t) ◦ sω
(t))

5: s(t) = [sx
(t), su

(t)]T

6: q(t+1) = s(t)

7: loop solverIteration times
8: for all constraints i do
9: pi = ProjectOnConstraintSet(Ci,q(t+1))

10: q(t+1) = SolveLinearSystem(s(t),p1,p2,p3, . . .)

11: v(t+1) = 1
h (x

(t+1)−x(t))
12: ωωω

(t+1) = 2
h (ū

(t) ◦u(t+1))

13: return q(t+1),v(t+1),ωωω(t+1)

In the global step (Algorithm 1, line 10), q(t+1) is the least
squares solution of the linear system(

M∗

h2 +∑
i

wiST
i AT

i AiSi

)
q(t+1) =

M∗

h2 s(t)+∑
i

wiST
i AT

i Bipi.

(13)
This linear system consists of a sum of potentials: those preserving
the linear and angular momenta, represented by s(t) = [sx

(t), su
(t)]T,

and those defined per constraint with index i. The potentials defined
per constraint are later derived from the Cosserat constraints (Sec.
6). The projection variables pi embed the potential defined per con-
straint computed in the local step. Ai,Bi are constant matrices de-
fined per constraint and Si is the selection matrix, which identifies
the variables in q involved in the constraint. wi is the weight as-
signed per constraint, which we derive in Sec. 6.3. We define

M∗ =
(

M
J

)
as the concatenation of M ∈ R3N×3N , the lumped mass matrix of
the points in the polyline, and J ∈R4(N−1)×4(N−1), the inertia ma-
trix of the orientations in the polyline. J is the concatenation of

Jn = lρ diag(0,J1,J2,J3),

defined per orientation with index n. l is the distance between ori-
entations, i.e., the length of the segment, ρ is the mass density, and
J1,J2,J3 are the moments of inertia (Eq. (6) and Eq. (7)). Note, the
concatenation M∗ enables the preservation of linear and angular
momenta, which is detailed in the following.

Potentials preserving linear and angular momenta are derived
with the explicit integration scheme (Algorithm 1, lines 2–4), de-
fined both for positions and orientations. We derive the angular
momentum potential similar to that of the linear momentum poten-
tial [BML∗14], but using orientations and angular velocities instead
of only positions and linear velocities.

A potential for preserving the angular momentum is therefore
defined as follows (see also the supplement document):

min
u(t+1)

1
2h2 ‖J

1
2 (u(t+1)− su

(t))‖2
F , (14)

where su
(t) = u(t)+ h

2 (u
(t)◦ω

(t))+ h2

2 u(t)◦ [J−1[τττ−ωωω
(t)×(Jωωω

(t))]]
(Algorithm 1, lines 4, 3). Note that when J is multiplied by a vector
(e.g., ωωω) instead of a quaternion (e.g., u), we take the 3× 3 matrix
J
′
n = lρ diag(J1,J2,J3).

6. Projective dynamics potentials

As stated in Sec. 5, the system variables q(t) are updated within the
global step according to the momentum potentials and the poten-
tials defined per constraint. Cosserat theory defines two potentials
governing the behavior of the rod: the stretch and shear potential on
the one hand and the bend and twist potential, on the other hand,
discretized in Eq. (8) and Eq. (10), respectively. We now formulate
the PD constraints and potentials for both these measures and de-
scribe how they are incorporated into the local and global step. In
this section, we drop the time step superscript (t) for simplicity.

6.1. Stretch and shear potential

The stretch and shear constraint CSE minimizes Cosserat theory
stretch and shear deformations measured with the stretch strain
ΓΓΓn(xn,xn+1,un), defined per rod element with index n (Eq. (9)).
The corresponding stretch and shear potential is defined per i-th
constraint and minimizes the constraint CSE by

WSE i(q,pi) =
wSE i

2
‖AiSiq−Bipi‖2

F +χ
CSE (pi), (15)

where Siq = [xn+1, xn, un]
T are the variables involved in the con-

straint i, selected from q with the matrix Si. Ai,Bi are constant
matrices and pi are the projection variables. The indicator function
χ

CSE (pi) formalizes the requirement that pi should lie in the con-
straint manifold CSE and wSE i is the potential weight (Sec. 6.3).

The minimization of Eq. (15) w.r.t. the projection variables leads
to the following optimization problem in the local step:

min
pi

WSE i(q,pi) = min
x∗f , u∗n

‖ΓΓΓn‖2
F , (16)

which can be reformulated through the free variables {x∗f , u∗n}. The
free variable x∗f =

1
l (x
∗
n+1−x∗n ) represents the element’s differen-

tial positions. ΓΓΓn = x∗f −d∗3 denotes the Cosserat stretch and shear
strain measure. The free variable d∗3 = R(u∗n )e3 represents the nor-
mal of the rod’s cross-section (Sec. 3).

Note that the rotation with u∗n introduces a non-linear relation
between the free variables in Eq. (16). Thus, formulating the mini-
mization problem in Eq. (16) through the matrices Ai and Bi in Eq.
(15) is not straightforward. Given that positions and orientations are
independent variables, we decouple Eq. (16) into one optimization
problem for the positions, i.e.,

min
x∗n+1, x∗n

‖1
l
(
x∗n+1−x∗n

)
−d3‖2

F , (17)

and a second optimization problem for the orientations, i.e.,

min
u∗n
‖x f −R(u∗n )e3‖2

F . (18)

The solution to the minimization problem in Eq. (17) is reached
when x f

∗ = d3: the vector x∗f is aligned with d3 and has unit length,
i.e., the element’s length is the same as in the initial configuration.
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Figure 6: Comparison of twisted and compressed rods of different mesh resolutions. Rod elements are visualized by alternating colors. From
10 iterations onwards, our method converges to the same result no matter which resolution is used, which is in contrast to PBD rods [KS16].

Therefore, this optimization problem minimizes the stretch defor-
mation, i.e., the length preservation of the element. The solution to
Eq. (18) is attained when d∗3 is aligned with x f . Hence, the optimal
solution of the free variable is u∗n = un ◦∂un, where the orientation
un is rotated by ∂un, ∂un being the differential rotation between
the vectors d3 and x f . This optimization problem minimizes the
shear deformation, i.e., the rotational difference between the cross-
section normal d3, and the tangent of the element, x f (Eq. (9)).

In PD, the projection variables are introduced in the local and
global step through the matrices Ai,Bi, as formulated in Eq. (15)
and Eq. (13). For this potential, these matrices are defined as

Ai =

[ 1
l I3 − 1

l I3 O3,4
O4,3 O4,3 I4

]
, Bi =

[
I3 O3,4

O4,3 I4

]
, pi =

[
d3
un
∗

]
.

These matrices have two rows, one per each of the minimization
problems formulated in Eq. (17) and Eq. (18); pi embeds the pro-
jection variables derived in the local solve; Ik denotes a k× k iden-
tity matrix, and Ok,m denotes a k×m zero matrix.

6.2. Bend and twist potential

The bend and twist constraint CBT minimizes Cosserat the-
ory bend and twist deformations measured with the twist strain
ΩΩΩn(un,un+1), defined per rod element with index n (Eq. (11)). The
corresponding bend and twist potential is defined per i-th constraint
and minimizes the constraint CBT by

WBT i(q,pi) =
wBT i

2
‖AiSiq−Bipi‖2

F +χ
CBT(pi), (19)

where Siq= [un, un+1]
T are the variables involved in the constraint,

the adjacent quaternions, which are selected from q with the selec-
tion matrix Si and pi are the projection variables.

The minimization of Eq. (19) w.r.t. the projection variables leads
to the following optimization problem in the local step:

min
pi

WBT i = min
u∗n ,u
∗
n+1

‖ΩΩΩn‖2
F , (20)

which can be reformulated through the free variables {u∗n , u∗n+1}.
ΩΩΩn denotes the curvature vector, i.e., the relative curvature between
adjacent quaternions. The solution to the minimization problem is
reached when the relative curvature ΩΩΩn between the adjacent ori-

entations is 0. The optimal solution to Eq. (20) is derived as:

u∗n = un ◦
ΩΩΩn

2
and u∗n+1 = un+1 ◦

Ω̄ΩΩn

2
, (21)

where ◦ denotes a quaternion product. The current orientations un
and un+1 are rotated with halfway of the curvature vector and its
conjugate, respectively. With this solution, the resulting orienta-
tions u∗n and u∗n+1 have the same direction, minimizing the relative
curvature ΩΩΩn = 0 between them.

In this formulation, the curvature vector is defined as ΩΩΩn =
Im(ūn ◦ un+1). This expression is not scaled by 2

l , as opposed to
Eq. (11), given that scaling a minimization problem by a scalar
leads to the same result. Instead, the potential in Eq. (19) is scaled
by wBT i , further discussed in Sec. 6.3.

In PD, the projection variables are introduced in the local and
global step through the matrices Ai,Bi, as formulated in Eq. (19)
and Eq. (13). For this potential, these matrices are defined as
Ai = Bi = I8, where Ik is a k× k identity matrix.

6.3. Potential weight formulation

The potential formulations in the discretized Cosserat theory
(νSE ,νBT ) in Eq. (8) and Eq. (10) are defined by the product of
the strain measures (ΓΓΓn,ΩΩΩn) with certain weight matrices (CΓ,CΩ).
The weight matrices depend on some material parameters such as
the Young’s modulus E or the radius r of the rod. Additionally, the
discrete strain measures are scaled by the length of the segment l.

In the following, we formulate PD’s potential weights such that
the potentials are equivalent to the ones formulated in Cosserat the-
ory. This enables us to compare our simulations to a reference so-
lution generated with finite differences, which is parametrized with
variables such as E, r or the mass density (Sec. 7.2.3).

For the stretch and shear potential, the weight wSE i in Eq. (15)
is formulated as:

wSE i = EA3l, (22)

where A3 = πr2 is the area of the cross-section. In this formulation,
we assume that the three components on the weight matrix CΓ are
scaled by the constant E, i.e., Young’s modulus, as opposed to the
formulation in Eq. (5), where some of the components of the matrix
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(a) Cosserat rods with PD using ten iterations.
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(b) Cosserat rods with PBD [KS16].

Figure 7: Motion simulations of a hanging rod, under the gravitational force and for different mesh resolutions. There are three simulation
snapshots for each simulation, where the right endpoint is fixed, and the left endpoint is moved in parallel to the x-axis. The number of
iterations in the PBD method are adjusted such that it has the same computation time as the PD simulation. Although PBD presents similar
motion for the different resolutions, PD converges faster to a mesh independent solution.

are instead scaled by the shear modulus G. With this assumption,
we neglect the Poisson ratio ν in this weight.

The reason for assuming a uniform scaling is that in PD, po-
tentials are defined as the Frobenius norm of a certain deformation
(Eq. (15)). In our potentials, the deformations are vectors. Its Frobe-
nius norm is a scalar, and hence the weight wSE i in Eq. (15) needs
to be a scalar as well.

Our formulation of the weight is additionally scaled by the con-
stant l, given that the expression of the discretized potential is also
proportional to this constant (Eq. (8)).

For the bend and twist potential, the weight wBT i in Eq. (19)
is formulated as:

wBT i =
4GJ3

l
, (23)

where J3 =
πr4

2 is the expression of the polar moment of inertia (Eq.
(6)). In this formulation we again assume a constant scaling, by the
shear modulus G = E

2(1+ν)
, being ν the Poisson ratio.

The strain measure ΩΩΩn is scaled by 2
l (Eq. (11)). The potential

νννBT i in Eq. (10) is defined by the product lΩΩΩn
TCΩ

ΩΩΩn, which leads
to the formulated weight wBT i = l 2

l (GJ3)
2
l , and therefore the sim-

plified expression in Eq. (23).

Note that the formulation of wBT i is divided by l, as opposed to
the formulation of wSE i. In later sections, we demonstrate that the
formulation of these potential weights ensures mesh independence
in our simulations within a few iterations (Sec. 7). Experiments
show that modifying the weights affects the convergence rate of
the solver (see supplement document). Given that with already 2
to 10 iterations the system gives similar results to finite element
methods (Sec. 7), we consider that it is worth using these weights.

7. Mesh independence and convergence study

In this section, we compare some of our simulations to previ-
ous work in rod simulation. We implemented Cosserat Rods in

PBD [KS16] following the available implementation [Ben] and ap-
ply constraint weights as defined in [KS16]. The concurrent publi-
cation by Deul et al. [DKWB18] combines a previous publication
on Cosserat rods with PBD [KS16] together with XPBD [MMC16].
Once the official implementation is released, it would be interesting
to compare the behavior of their stiff rods with our method. Further
previous methods [CBD13,BWR∗08,BAV∗10] are compared with
implementations provided by the authors. Table 1 summarizes the
simulation parameters of our simulations.

7.1. Mesh independence in motion

Fig. 8 and Fig. 7 show time snapshots of rods simulated at different
resolutions. Both scenarios initialize the rod along the x-axis, with
two endpoints attached (Fig. 7) and only one attachment (Fig. 8).
Both scenarios have a gravitational force and the left endpoint in the
former scenario shown in Fig. 7 is displaced gradually. PD simula-
tions (Fig. 7a and Fig. 8a) indicate the same characteristic motion
for different mesh resolutions by only applying ten iterations.

The same setup is implemented for the PBD method [KS16]. The
number of iterations used in PBD is chosen such that both simula-
tions are executed in the same computation time. Note, Fig. 7b and
Fig. 8b indicate the number of iterations used for PBD. Note, in
PBD, the number of iterations affects the material properties, i.e.,
the higher the number of iterations, the stiffer the material gets.
Thus, when using PBD, we use a constant number of iterations
when comparing different resolutions. Although Fig. 7b shows rods
with similar behavior, the rod dynamics in Fig. 8b are not equiva-
lent. Within this test, we demonstrate how PD converges faster, in
terms of computation time, to a mesh independent solution. Please
refer to the accompanying video for further details.

7.2. Static analysis and convergence to FEM

In this section, we compare PD simulations to a reference solution
in the rest state. As common in the math literature (e.g., [LLA11]),
we realize this reference solution by performing a high-resolution
FEM simulation using the software Abaqus [HS02], where the rod
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(a) Cosserat rods with PD using ten iterations.
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(b) Cosserat rods with PBD [KS16].

Figure 8: Motion simulations of a hanging rod with one endpoint attached, under the gravitational force and for different mesh resolutions.
The number of iterations in PBD is chosen, such that PBD and PD execute the simulation in the same computation time. It can be seen that
rods simulated with PD have an equivalent motion, as opposed to the ones simulated with PBD.

is discretized with B21 Timoshenko beams. A Cosserat rod can be
considered as the geometrically nonlinear generalization of a Tim-
oshenko rod, allowing to model extension and shearing apart from
bending and twist, as opposed to Kirchhoff rods. All the simula-
tions in Abaqus are implemented with the explicit procedure us-
ing 990 elements. The equations of motion are integrated using
the explicit central difference integration rule (Abaqus 6.14 Theory
Guide, Section 2.4.5). The time step is defined automatically by the
software according to the stability conditions of each simulation.

Since the equations of motion used in our model are solved dif-
ferently than the ones used in the reference solution, we can only
provide comparisons of simulations in static equilibrium, which is
reached when the rods do not undergo further motion. Comparing
exact motion is beyond the scope of this section.

Simulations with a small Young’s modulus and a small radius re-
sult in a highly elastic behavior. Such elastic materials present high
frequency vibrations in the Abaqus simulations, which we damp
with the bulk viscosity parameter (we use Linear bulk viscosity
parameter = 0.07, Quadratic bulk viscosity parameter = 1.3). Addi-
tionally, we damp the motion with the α dampening coefficient in
the material properties (we use α = 0.8). Thus, damping is an is-
sue when comparing to a reference solution. The damping models
used in both methods are different and therefore an exact position
correspondence in both simulations is difficult to achieve. For this
reason, in order to compute the convergence of our simulation in
respect to a reference solution (Fig. 10), the rod’s potential is used
as an error measure, instead of taking the positional difference.

7.2.1. Stretch and bending constraints

Fig. 9 shows the simulations at static equilibrium for different mesh
resolutions and for a different number of iterations. Increasing the
number of points on the polyline converges to the FEM simula-
tion. As observed in Fig. 9, the solution converges already for 21
points, and proves to be independent on the number of iterations.
This experiment is the final state of the simulation in Fig. 7. Af-
ter initializing the rod along the x-axis with two endpoints attached
and gravitational force, one of the endpoints is gradually displaced.

7.2.2. Twist constraint

For this simulation, the rod is initialized along the x-axis with
two attached endpoints x1 = 0 and xN = L. The endpoint orien-
tations are additionally fixed. The material frame u1 is fixed to
u1 = [1, 0, 0, 0]T, the unit quaternion. The material frame uN−1
is initialized with the unit quaternion and gradually rotated to real-
ize a twist of 360◦. Figures 10a, 10b show how the simulations at
the rest state converge towards the Abaqus solution (N = 991) with
an increase in the number of samples.

Fig. 10c shows the error to the reference simulation of the exper-
iment in Figures 10a, 10b. The error measure is the difference of the
total bending potential WBT (see Eq. (10)) computed for each res-
olution towards the one obtained in the FEM simulation. For each
constraint defined along the rod, a scalar WBT i is computed. The
total bending potential is the sum of all these values. The conver-
gence error, in log scale, has a linear trend with slope 2. The error
w.r.t. the reference solution reduces quadratically when increasing
the degrees of freedom by a factor of 10.

The remaining plots in Fig. 10c illustrate the accumulated po-
tential per constraint WBT i along the rod, starting from the endpoint
x1 = 0 until the endpoint xN = 1. All the plots include the refer-
ence value of the accumulated WBT along the rod, simulated with
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Figure 9: Rods simulated with our method converge to the solution
generated by Abaqus for different number of iterations.
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(a) Top-down view of different resolution
rods converging towards a reference solu-
tion.

(b) Side view of rods with different N. (c) Convergence of the accumulated WBT along the
rod towards a reference solution.

Figure 10: Convergence analysis to a FEM reference solution (Abaqus) of a 360◦ twist applied on the endpoint orientation uN−1.

Abaqus. Fig. 10c shows how the potential of the endpoint xN con-
verges to the reference solution when refining the simulation mesh.

7.2.3. Bending behavior comparison

Fig. 11 shows similar bending behavior between our simulations
and the ones obtained with Abaqus for different radii and Young’s
modulus E. For this simulation, the rod is initialized along the x-
axis with two attached endpoints at x1 = 0,xN = L, under the effect
of the gravitational force. The endpoint x1 is displaced until x1 = L.

7.3. Out-of-plane curl effect comparison

This simulation validates both constraints at the same time, as op-
posed to the separate analysis from previous sections. The rod is
initialized along the x-axis, with both endpoints x1 = 0 and xN = L
attached. Twists of 120◦ and -120◦ are applied gradually to the
orientation frames u1 and uN−1, respectively. After some frames,
the rod is slightly compressed by displacing both endpoints grad-
ually towards the center of the rod. This results in an out-of-plane
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Figure 11: Bending behavior comparison to a FEM reference so-
lution (Abaqus) for different geometric and material parameters.
Different colors on the rods denote different Young’s Modulus E.

curl (Fig. 6), a common feature in rod simulation [vdHT00]. The
same experiment is executed with {2,10,100} iterations and dif-
ferent mesh resolutions N = {10,20,50,100,200}. As opposed to
the results obtained with the [KS16] method, the curls obtained
with PD are mesh independent after 10 iterations (Fig. 6).

7.3.1. Previous work comparison

To compare to further previous work, we initialize the rod along
the x-axis and attach the left endpoint. With the effect of gravity,
we let the simulation run until there is no apparent motion. Fig.
12 shows the rest pose of the simulation for rods simulated with
Super Space Clothoids (SSC) [CBD13], (implicit) Discrete Elastic
Rods (DER) [BWR∗08, BAV∗10] and the reference FEM simula-
tion generated with Abaqus. The implicit Euler integration nature
of PD introduces some artificial damping. Although an exact cor-
respondence to these methods is difficult to achieve, our method
shows converging bending properties.

7.3.2. Self-collisions

Our formulation includes the detection and response to self-
collisions, adapted from the edge-edge distance constraint imple-
mented with PBD [Ben] and formulated for projective dynamics.
Fig. 1 shows plectoneme formation after torsional deformation. In-
teractively displacing the rod endpoints enables knot formation.

0 -0.2y (m)

x 
(m

)

Abaqus
SSC
DER
PD

gravity

Figure 12: Final state of a hanging rod under the gravitational
force solved for different methods.
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Implicit DER Our method (PD)
Deformation Final state Deformation Final state

(a) Rod deformed under an increasing external Fext

(L = 40cm, r = 7mm,h = 10ms).

(b) Potential energies {νSE ,νBT} measuring rsp. stretch and bending
distortions during the simulation under a Fext deformation.

Implicit DER Our method (PD)
Deformation Final state Deformation Final state

(c) Rod deformed adding noise on the positions
(L = 20cm, r = 7mm,h = 1ms).

(d) Potential energies {νSE ,νBT} measuring rsp. stretch and bending
distortions during the simulation after adding noise to the positions.

Figure 13: Robustness comparison for different distortions between (implicit) Discrete Elastic Rods (DER) and our method (PD).

7.3.3. Robustness

Fig. 13 compares the robustness of our method with (implicit) Dis-
crete Elastic Rods (DER) [BWR∗08, BAV∗10] for different defor-
mations. Furthermore, it evaluates how the methods recover to the
initial state, which is a rod initialized over the x-axis. Fig. 13b
shows how the stretching deformation νSE increases when the ex-
ternal force is gradually stronger. Once the external force is set to
zero, the rods simulated with PD recover to its initial state, leading
to an undeformed rod ({νSE ,νBT } = 0). In contrast, the rods sim-
ulated with (implicit) DER remain deformed (νBT 6= 0). Adding
noise to the initialized positions (Fig. 13c) proves the recovery ca-
pabilities of the method after a large deformation. Fig. 13c shows
how the rods simulated with implicit DER remain twisted at the
end of the simulation, as opposed to the PD simulation (Fig. 13d).

7.4. Limitations

The computation time for the hanging rods simulation (Fig. 8) with
PD (1ms/frame for 10 points and 5.7ms/frame for 50 points) is close
to PBD methods (0.6ms/frame for 10 points and 5ms/frame for 50
points), both with 10 iterations. However, for other simulation sce-
narios, PBD is currently faster. This is due to the way we set up
the linear system in the global step, using non-optimized multipli-
cation of sparse matrices (using the library Eigen), which is not
used in the PBD simulations. Additionally, the linear system in the
global step is currently solved using Cholesky decomposition. The
left-hand side matrix of the linear system can be prefactored when
the constraints remain constant during the simulation [BML∗14].
However, in our simulations, we refactorize the left-hand side ma-
trix every time we displace the attachment constraints, which in-
troduces a significant overhead. We implement the attachments as
Dirichlet boundary conditions. After every update, the value of the
constrained variables is subtracted from the left-hand side matrix,
followed by the matrix refactorization.

We are currently working on improving the computation time of
our method by using a different solver, which can be executed in
parallel [Wan15, FTP16]. With the next version of our solver, we
expect a similar performance to other position-based methods.

8. Conclusions and future work

In this paper, we present a projective dynamics (PD) solver, which
allows the preservation of angular momentum. This formulation en-
ables the simulation of primitives from Cosserat theory, which as-
signs an orientation to each point in a material and thus requires the
simulation of rotations. We further discretize the continuous poten-
tials from Cosserat theory applied to rods, and define correspond-
ing PD potentials for the global step, in addition to constraints for
the local step. Additionally, we formulate the potential weights in
terms of material parameters such as radius and Young’s modulus,
which are key to provide realistic and controllable simulations. We
show, that a PD rod converges, under refinement, to the character-
istic behavior of a high-precision finite element analysis. Further,
we provide examples, which verify mesh independence of our pro-
posed formulation. This property enables several avenues for future
work. For instance, a multi-grid rod representation could speed up
the rod simulation. Alternatively, local refinements could be ap-
plied to regions of interests which require a higher resolution, such
as regions where knots are being tied. By comparing our simula-
tions to a FEM reference solution, we demonstrate the capability of
our formulation to simulate different elasticity values in a realistic
manner. We additionally demonstrate correspondence with reality
by comparing to a real elastic rod (Fig. 4).

Fig. 7a, 9 8a 10 11 6 4 12

r 3 8 3 {2, 6, 8} 3 1.5 0.2
ρ 1.3 4.3 1.3 1.3 1.3 1.5 3
E 1 1 1 {1, 50} 500 100 100
L 1 0.5 1 1 0.2 0.7 0.2
h 1 1 1 1 1 10 1
gy 9.861 9.861 0 9.861 0 9.861 9.861

Table 1: Simulation parameters for our experiments. Here, r is ra-
dius (mm), ρ is mass density (g/m3), E is Young’s modulus (MPa),
L is length (m), h is time step (ms) and −gy is the gravity (m/s2).
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