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Fig. 1. Curved folded surfaces modeled with our method, along with their crease paerns. Our deformation algorithm is able to simultaneously bend and
fold complicated crease paerns using only positional constraints, while automatically finding a valid mountain/valley assignment along the creases. Our
framework is suitable for freeform editing and exploration of new curved folded surfaces.

We present a computational framework for interactive design and explo-

ration of curved folded surfaces. In current practice, such surfaces are typi-

cally created manually using physical paper, and hence our objective is to lay

the foundations for the digitalization of curved folded surface design. Our

main contribution is a discrete binary characterization for folds between dis-

crete developable surfaces, accompanied by an algorithm to simultaneously

fold creases and smoothly bend planar sheets. We complement our algorithm

with essential building blocks for curved folding deformations: objectives

to control dihedral angles and mountain-valley assignments. We apply our

machinery to build the rst interactive freeform editing tool capable of

modeling bending and folding of complicated crease patterns.
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1 INTRODUCTION
There are innitely many ways to deform a planar sheet without

stretching or tearing it. One can either bend it, form sharp creases
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by folding it, or combine the two. Folding and bending isometries

are dierent by nature, and historically there has been a dichotomy

in the study of the two. Smooth bending deformations are typically

studied in dierential geometry [do Carmo 1976], whereas straight

folds are explored in the eld of computational origami [Demaine

and O’Rourke 2007]. Curved folded surfaces [Human 1976] (Fig.

1) can be viewed as a combination of the two, since folding an

inextensible sheet along a curve necessitates global bending around

the crease. These elegant geometries have garnered the attention of

architects, artists, and industrial designers [Buri et al. 2011; Demaine

et al. 2011c; Gramazio and Kohler 2014; Pottmann et al. 2015; Tachi

2011, 2013].

The design of a curved folded surface is manual and time consum-

ing and is usually done using an empirical trial and error approach

[Demaine et al. 2011a,c]. The known theory on curved folds is con-

ned to a narrow set of folds, and contrary to classical origami,

bending and folding instructions are hard to write down and multi-

ple creases must be folded simultaneously [Kilian et al. 2017]. Artists

generally pre-crease the paper using a ball burnisher or a CNC plot-

ter before carefully folding and bending, making the process of

shape exploration even slower.

Although manual and slow, playing with paper is still the predom-

inant approach for curved folded surface design. Existing works on

modeling such surfaces are either limited to previously discovered

surfaces [Kilian et al. 2008, 2017] or model a small, partial set of

folded surfaces generated by reections or rotational sweeps [Mi-

tani 2009; Mitani and Igarashi 2011]. Modeling the folding process

of novel forms remains a challenge [Demaine et al. 2011c].

In this paper we set out to develop the basic tools for freeform

modeling of curved folds, with the objective of aiding the explo-

ration, analysis and study of new curved folded surfaces. Our work

builds upon discrete orthogonal geodesic nets (DOGs) [Rabinovich

et al. 2018a,b] as a discrete model forC2
developable surfaces. DOGs
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Fig. 2. Folding and bending the same curved crease paern (le) into two
dierent surfaces, with some of their rulings ploed. Methods that model
the rulings explicitly must remesh in order to model these surfaces, since
the rulings can change drastically, connecting vertices of dierent patches
to one another. Representing the curved folded surface as a piecewise DOG
avoids the need to remesh because a DOG is parameterized by intrinsic
invariants – orthogonal geodesics – and does not explicitly encode the
developable rulings in its mesh.

are regular quadrilateral meshes where around each vertex all an-

gles are equal. Unlike other computational models for developable

surfaces, DOGs do not suer from locking of various deformation

modes [Alessio 2012; Chapelle and Bathe 1998; Grinspun et al. 2003],

are not limited by an initial choice of meshing or rulings [Kilian et al.

2008; Solomon et al. 2012; Stein et al. 2018; Tang et al. 2016] (see Fig.

2) and do not require remeshing while deforming the surface [Kilian

et al. 2017; Narain et al. 2013; Schreck et al. 2017]. Therefore DOGs

are particularly suited for modeling curved folds. Given an input

crease pattern, we represent a curved folded model as a collection of

DOGs, with boundary constraints enforcing equal discrete geodesic

curvature along their intersections, as done in [Rabinovich et al.

2018b].

In practice, deforming a set of DOGs while keeping the geodesic

boundary constraints does not usually result in amodel that is folded

along all creases (see Fig. 3). Part of the diculty of modeling these

deformations stems from the need to fold all curves simultaneously

starting from a at conguration. The primary goal of our work is

to deal with this diculty.

1.1 Contributions
– We present a discrete binary characterization for folds be-

tween discrete developable surfaces based on supporting

planes along creases, motivated by a novel analysis on curved

folded smooth surfaces.

– We use the previous derivation to devise an optimization

algorithm capable of enforcing folds while deforming a piece-

wise DOG, without requiring any folding angles or moun-

tain/valley assignments as input.

– We further derive optional objectives to control dihedral an-

gles and mountain/valley assignments along folds.

Though we use DOGs as an underlying model for developable sur-

faces, our work and derivations can be applied on top of other

discrete models for developable surfaces such as ruling based mod-

els [Kilian et al. 2008; Liu et al. 2006; Tang et al. 2016] or models

based on discrete shells simulations[Burgoon et al. 2006; Grinspun

et al. 2003].

2 RELATED WORK

2.1 Modeling developable surfaces
A smooth surface is called a developable surface if it is locally iso-

metric to the plane, or equivalently has zero Gaussian curvature.

Though well understood mathematically [do Carmo 1976; Pottmann

and Wallner 2001; Spivak 1999], computer aided modeling of devel-

opable surfaces has been proven to be a challenge and is an active

research area. The primary diculty lies in nding a discrete model

that is able to capture the full set of deformations while keeping

the surface developable. Deformations can be extrinsic as well as

intrinsic. The latter stretch the surface while keeping it developable,

and are used for geometry exploration tasks where the size and

shape of the attened developable surface is unknown [Liu et al.

2006; Rabinovich et al. 2018b; Tang et al. 2016]. A failure of a dis-

crete model to represent the full range of smooth deformations is

often termed locking [Chapelle and Bathe 1998; Solomon et al. 2012]

and is the bane of most discrete developable models. Ruling based

models [Kilian et al. 2008; Liu et al. 2006; Solomon et al. 2012; Stein

et al. 2018; Tang et al. 2016] are limited to a partial set of extrinsic

deformations, while isometry based methods [Burgoon et al. 2006;

Fröhlich and Botsch 2011; Goldenthal et al. 2007; Grinspun et al.

2003] do not model intrinsic deformations by design, and are also

prone to locking of various bending deformations [Alessio 2012;

Chapelle and Bathe 1998], and often must be coupled with dynamic

remeshing [Kilian et al. 2017; Narain et al. 2013, 2012; Schreck et al.

2015].

Our work is based on modeling a developable surface as a dis-

crete orthogonal geodesic net (DOG) [Rabinovich et al. 2018a], a

model that has been shown both theoretically and empirically to

avoid extrinsic and intrinsic deformation locking. We further rely

on [Rabinovich et al. 2018b] to explore the shape space of DOGs, but

we replace their Laplacian ow based deformation with a sequential

quadratic programming (SQP) based algorithm, detailed in Sec. 6.

In addition to the above literature, it is worth mentioning the

large body of works focused on designing developable surfaces

by tting a developable to a target shape [Pottmann and Wallner

1999; Stein et al. 2018; Tang et al. 2016] or to a set of boundary

curves [Bo et al. 2019; Frey 2002, 2004; Rose et al. 2007]. Rather than

modeling freeform developable deformations, these works deal with

the challenges of ambiguity when tting to sparse inputs, as well as

approximation quality.

2.2 Curved folding
Curved folded sculptures are beautiful works of art almost a hun-

dred years old, dating back to the 1920’s works of Josef Albers in

the Bauhaus art school [Adler 2004], and continuing with the inves-

tigations of David Human and Ron Resch in the 1970’s [Human

1976; Resch 1974]. This direction in art, though intimately linked to

the mathematics of developable surfaces, is mostly driven by phys-

ical experiments with paper [Demaine et al. 2011c]. As opposed

to smooth developable surfaces [do Carmo 1976] or straight fold

origami [Demaine and O’Rourke 2007], the mathematics of curved

folding is lagging behind the manual craft and mostly concerns the

local behavior of a single folded curved crease [Demaine et al. 2011c;

Duncan and Duncan 1982; Fuchs and Tabachnikov 2007]. Notable
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Fig. 3. Comparison of the same deformation objective with and without our folding algorithm. Up: Crease paerns given as input. Center: Applying a
positional based deformation objective of the crease paerns without our folding algorithm results in most crease curves being ignored, i.e. not folded. At
this stage, one cannot bend these creases without first flaening the surface. Down: Result of applying the same deformation with our folding algorithm.
Our folding algorithm simultaneously folds all crease points while deforming a surface by adding a bias that eectively push flat points towards a folded
configuration while not aecting already folded points. The crease mountain/valley assignments, which in these examples are in fact fixed given one choice,
are determined automatically without any input. The objective of all of these deformations were the same positional constraints defined on mesh vertices or
on a part of a crease curve based on a curve-constraining flow [Rabinovich et al. 2018b].

crease patterns, such as the Humann Tower [Demaine et al. 2011a;

Wertheim 2004], are not yet understood [Demaine et al. 2018] and

the known mathematics on the folding and bending of multiple

curved creases is limited to few particular cases, coupled with a

specic folding movement and guided by xed rulings [Demaine

et al. 2015, 2018; Mundilova 2019]. In essence, we do not know much

about which crease patterns can fold, and we do not know in which

ways they can fold. Unlike straight origami, there are often inn-

itely many ways of folding and bending a curved crease pattern by

varying the dihedral angles as well as the developable rulings along

the dierent creases.

Curved folding was introduced to the geometry processing com-

munity by the work of Kilian and colleagues [2008], where the

authors devised an algorithm to reconstruct scanned paper curved

folded surfaces by estimating their ruling directions, resulting in

a mesh with a xed torsal/planar patch decomposition and moun-

tain/valley assignments. Our work directly deals with the diculty

of folding starting from a at conguration (Fig. 3) and can also be

applied to the model of [Kilian et al. 2008], possibly combined with

remeshing to accommodate the locking issue (Fig. 2).

Several works on modeling curved folded surfaces focus on a

given subset of folding deformations, such as planar creases gener-

ated by reection [Mitani 2012; Mitani and Igarashi 2011], surfaces

generated by rotational sweeps [Mitani 2009] or surface folded with

a xed ruling pattern [Tang et al. 2016]. In [Kilian et al. 2017] the au-

thors simplify the process of fabrication for a wide range of curved

folded models using a network of strings, solving the problem of

which surface points to pull in order to actuate a folding move-

ment. To model the folding deformation the authors of [Kilian et al.

2017] employ the model of [Botsch et al. 2006] with the remesh-

ing algorithm in [Narain et al. 2012]. Their deformation is guided

by mountain/valley assignments of all creases, which are provided

as input, as well as prescribed soft constraints on folding angles,

as well as a bending objective. We note that prescribing dihedral

angles on a single curve results in an undetermined system, while

prescribing the folding angles of multiple creases often results in an

overdetermined system. There are innitely many ways to fold a

surface with the same prescribed folding angles [Duncan and Dun-

can 1982; Fuchs and Tabachnikov 1999], however dihedral angles

across multiple folds must be compatible with each other [Demaine

et al. 2018].

To the best of our knowledge, the rst freeform handle based

system for curved folding deformations was introduced by Rabi-

novich et al. [2018b]. They employed multiple DOGs bound by a

set of stitching and attability constraints to model curved crease

deformations. Our work builds and extends upon [Rabinovich et al.

2018b] by deriving a discrete characterization for a fold along a

crease, allowing us to devise a point handle based editing system

that ensures folding of the creases of a given pattern rather than

smoothly ignoring them, all without requiring the user to specify

dihedral angles or mountain/valley assignments (see Fig. 3). In cases

where more explicit control is desired, we also derive simple qua-

dratic constraints to control dihedral angles along folds, as well as

mountain/valley assignments – a degree of freedom that is often

only available along one curved crease (see Fig. 13 and Fig. 14).

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.



1:4 • Rabinovich, Homann, Sorkine-Hornung

Fig. 4. Curved crease paerns, decomposing a paern into multiple com-
ponents Pi and intersecting at crease vertices. Boundary curves in black,
crease curves in blue.

3 SETUP

3.1 Definitions
Throughout the paper, we use the following denition for a curved

folded surface:

Denition 3.1. A surface S is called a curved folded surface if it is

locally isometric to the plane and can be written as a nite union

S =
⋃
Si where each Si is a C

2
developable surface termed a patch,

and the intersections of dierent patches Si ∩ Sj are either empty

or are C2
curves.

By this denition, a smooth developable surface is a curved folded

surface with a single patch. The denition is suitable for various

topologies, such as a cylinder, but throughout this paper we work

with surfaces that are isometric to a subset ofR2
. Borrowing terms

from [Demaine et al. 2011b; Demaine and O’Rourke 2007], we often

refer to the surface crease pattern as the planar domain P isometric

to S , subdivided into patches Pi (attened Si ), whose intersection
curves are the attened creases (see Fig. 4). Flattened creases with

nonzero curvature are said to be curved, while those with vanishing

curvature are straight. A crease might be partly curved and partly

straight, or curved almost everywhere but with inection points

where the curvature vanishes (see Fig. 3, the rst and third models

from the left). The attened domain boundaries together with the

attened crease curves form a planar arrangement [Grünbaum 1972],

inducing a planar graph that decomposes P into the planar faces Pi .
The vertices of this graph are the intersection points of the curves

with each other or the boundary curves, which we call crease vertices.
The edges of this graph are the pairwise intersections of the various

patches, and we refer to the inner points of these curves as crease
points, i.e., the points on these curves that are not crease vertices. We

say that S is folded at a crease point p if at that point the patches

Si , Sj sharing it have a tangential discontinuity (see Fig. 3).

We are interested in deformations of curved folded surfaces that

keep them curved folded. Viewed separately on each patch Pi , these
deformations are C2

, though they often introduce folds along the

creases as tangent plane discontinuities of neighboring patches.

In particular, we are interested in continuous deformations, or de-

formation ows [Rabinovich et al. 2018b], which we refer to as

curved folding ows. We denote these ows by a continuous map

S (t ), 0 ≤ t ≤ 1, where each S (t ) is a curved folded surface, and the

ow is C2
when restricted to each patch. We often look at the case

where the starting point S (0) is planar. We apply our tools to model

isometric curved folding ows, which we also refer to as folding.

Fig. 5. Representation of a discrete curved folded surface, as done in [Ra-
binovich et al. 2018a]. Top le: A given curve arrangement, representing
the domain via its boundary (in black), and two curves intersecting at their
inflection point in the center of the domain (in blue). Top center: The curves
segment the domain into four patches, each intersecting with two other
patches along a segment of a crease curve. Top right: Placing an orthogonal
grid on top of the crease paern. Boom le: We model the surface by a
separate DOG for each patch, where faces intersecting the crease curves are
duplicated for the dierent patches. Each pair of intersecting DOG patches
satisfies the continuity constraints specified in [Rabinovich et al. 2018a].
Boom center: A closeup on a deformation of the planar model. Boom
right: Culling the extraneous parts of the duplicated faces.

Such ows can be used to model physical paper or sheet metal fold-

ing, though most of our observations and tools can also be used to

model curved folding ows that stretch a developable surface while

keeping it developable. Non-isometric developable deformations

can be useful for design tasks where the a priori attened shape is

unknown [Rabinovich et al. 2018a,b; Tang et al. 2016].

3.2 Model
We follow the work of [Rabinovich et al. 2018b] by modeling each

patch Si as a discrete orthogonal geodesic net, together with align-

ment constraints on the shared boundaries. Our input is an ar-

rangement of curves representing our crease pattern. On top of

this arrangement we place an orthogonal grid while ensuring that

every vertex of the arrangement lies on a grid line. We then split

the grid into overlapping patches, sharing the faces where curves

pass. Finally, we compute the intersections of the curves with the

grid edges and represent the resulting curve points as linear com-

binations, one for each patch sharing that curve point. See Fig. 5

for an illustration. Following [Rabinovich et al. 2018a] we maintain

continuity of curve points along edges while penalizing deviation

of the edge lengths across duplicated quads.

3.3 Desiderata
Our goal is to develop tools for the exploration of curved folded

shapes on top of piecewise DOGs by means of deformations. Our

choices are guided by the two following ground rules for deforming

DOGs: (1) Perform homotopy based optimization, and (2) Minimally

constraining the DOGs.

Homotopy based optimization is motivated both theoretically and

empirically: Modeling DOGs requires solving highly constrained
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Fig. 6. Seing so positional constraints on a curve (le). The same opti-
mization algorithm fails completely when seing all constraints at once,
returning a mesh that does not satisfy the non-linear DOG constraints (cen-
ter). In contrast, using a curve-constraining flow [Rabinovich et al. 2018b]
returns a smooth DOG (right). The laer approach is a homotopy based
method that interpolates the positional constraints.

and nonlinear optimization problems, yet the theory of DOGs guar-

antees the existence of nearby solutions if one starts at a feasible

point. In fact, generally the shape space of DOGs is a smooth mani-

fold [Rabinovich et al. 2018b]. This observation is useful in practice:

DOGs exploration has been demonstrated to perform well using

smooth ows or homotopy based optimization methods both for

handle based deformation tasks as well as more complicated defor-

mations such as curve-constraining ows [Rabinovich et al. 2018b]

(see Fig. 6).

Minimally constraining the DOGs. Since DOGs are already heavily
constrained objects, one needs to carefully choose which quanti-

ties to x by hard constraints, and which to optimize using soft

constraints. This is essential in order to avoid locking or ill-posed

problems in case the constraint gradients are linearly independent

[Rabinovich et al. 2018b]. In particular, the rigidity analysis in [Ra-

binovich et al. 2018a] demonstrates that one cannot x all edge

lengths, or likewise demand a DOG to also be a Chebyshev net. We

note however that this can be done approximately and to a low

tolerance, because a smooth orthogonal geodesic net is Chebyshev,

and it admits a rich set of exact isometries. Our folding constraints

in Sec. 4 are chosen such that they can be satised exactly. They
capture an important characteristic of curved folded surfaces: a

folded crease point remains folded under small deformations.

4 FOLDING CREASE PATTERNS
In this section we explore the dierent ways one can fold a given

crease pattern. Our result is a discrete combinatorial characterization

for the local existence of a fold in a piecewise DOG.

4.1 The smooth and combinatorial degrees of freedom
around a single curved crease

Straight creases are rather boring, mathematically speaking. Straight

lines can only be folded as in classical origami, i.e., by keeping them

straight [Demaine et al. 2015], unless one rst folds a crease by 180

degrees, such that the two incident sheets coincide. Hence a folding

of a single straight crease can be described by a single real num-

ber representing the constant dihedral angle between the incident

planes. There are innitely many ways, or degrees of freedom, to

fold a curved crease. If S is a surface with a folded crease, and P is

its attened isometric reference, then one can locally deform the

curved surface S by freely deforming the crease curve, as long as

Fig. 7. Illustration of the combinatorial degrees of freedom in curved folding.
If a crease paern of a curved folded surface (le) is isometrically folded such
that a given curve lies in some configuration inR3, then there are only two
smooth surfaces that isometrically flaen into the crease paern (center).
One can also choose a dierent surface for each patch P1, P2, resulting in
two other, curved folded surfaces (right).

the absolute value of the crease curvature stays greater than its

attened curvature in P [Fuchs and Tabachnikov 1999]. Up to a rigid

motion, a curve is dened by its curvature and torsion functions.

One can ip this point of view: Given a planar domain P , a curve
on the domain γ (t ) and a deformed, isometric space curve Γ(t ) with
greater absolute curvature than that of γ (t ), there are only two

smooth surfaces isometric to P passing through Γ(t ) such that the

unfolding of the surface to the plane maps Γ(t ) to γ (t ) [Fuchs and
Tabachnikov 2007] (see Fig. 7 left and center).

If one permits the surface S to have a fold along Γ(t ) but remain

smooth around it, then there are four possible surfaces: two of them

are smooth, while the other two are folded along the curve (see

Fig. 7). If S = S1 ∪ S2 is folded along Γ(t ) = S1 ∩ S2 then the angle

between the tangent planes of S1, S2 along the curve is called the

folding angle, which we denote by θ (t ) > 0. Unlike the case of a

straight crease, θ (t ) often varies along the curve. The bigger the

curvature of Γ(t ), the bigger the folding angle. Ifκ (t ) is the curvature
of the space curve Γ(t ), κд (t ) is its geodesic curvature, which is also

the curvature of γ (t ), then κд (t ) = κ (t ) cos
θ (t )
2
, implying that the

osculating plane of the crease Γ(t ) bisects the tangent planes of

the smooth patches intersecting at Γ(t ) [Duncan and Duncan 1982;

Kilian et al. 2008]. The folding angle does not dictate the shape of

the surface, as dierent surfaces can be generated with the same

θ (t ) by varying the torsion of Γ(t ), thereby changing the ruling

pattern of each developable patch. The connection between θ (t ),
the curvature and the torsion of Γ(t ), the curvature of γ (t ) and the

rulings of each incident patch is further detailed in [Demaine et al.

2018].

To summarize, the shape of a curved folded surface S with a single
curved crease Γ(t ) can be locally described by two real functions for

the curvature and torsion of Γ(t ) under the condition of sucient

absolute curvature, as well as an additional combinatorial parameter

distinguishing between four possible surfaces, two of which have a

fold.
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Fig. 8. Propagation of constraints in crease paerns. Boom row: Crease
paerns. Top row: Curved folding of the crease paerns. Le and center
columns: A deformation in the patch P1 dictates most of the shape of the
patch P2, which in turn dictates most of the patch P3. The propagation of
deformation is generally global, and depends on the directions of the rulings.
In these cases one can choose a mountain/valley assignment for one fold,
which already determines the M/V assignment of the next fold (le: valley-
mountain, center: valley-valley). Right column: In more complicated crease
paerns, for instance those with a vertex, the process is more involved, as
there are also some compatibility conditions the patches must satisfy.

4.2 The combinatorial parameters of multiple creases
The previous analysis explains the local behavior of curved folding

around a single curve. Understanding crease patterns globally still

remains a challenge. In essence, deforming one patch propagates a

global deformation of the patch on the other side of the crease, a

process that depends on the locations of the creases and the possibly

changing ruling lines along the developable. When there are multi-

ple creases, the propagation dictates the shape of other patches. The

process becomes more complicated when some creases intersect,

due to compatibility constraints (see Fig. 8).

Generally speaking, one may be able to choose between four

dierent congurations of the surface at one crease, but this choice

already xes the patch shape for nearby creases. The combinatorial

degrees of freedom that remain are whether each crease is folded or

not (see Fig. 3). The diculty in modeling folding of a planar surface

stems from the fact that these combinatorial choices often need to

be enforced at the beginning of the folding process, as explained by

the following theorem.

Theorem 4.1. Let S (t ) be a curved folding ow and let p (tk ) be a
point on a curved crease of S (t ) lying on two patches S1 (t ), S2 (t ) at a
given time in the ow, t = tk . If p (tk ) is not a planar point on S1 (tk )
(or equivalently on S2 (tk )), then there exists an ϵ > 0 such that one of
the following holds:

(1) S (t ) is folded at p (t ) for every t ∈ (tk − ϵ, tk + ϵ );
(2) S (t ) is not folded at p (t ) for every t ∈ (tk − ϵ, tk + ϵ ).

Proof. Let κ (p (t )) be the crease curvature at the point p (t ), and

let κд (p (t )) = κ (p (t )) cos
θ (p (t ))

2
be the crease’s attened (geodesic)

curvature. If θ (p (t )) , 0, the claim follows from the discontinuity of

the two tangent planes at p (t ): a folding corresponds to a dierent

choice of the tangent planes, forming an angle of θ (p (t )) with each

other, and any small continuous deformation cannot move from

a folded to a non-folded conguration or vice-versa. Finally, the

non-planarity of p (tk ) implies θ (p (tk )) , 0, since θ (p (tk )) = 0

would mean that the normal curvature of the crease curve is 0, and

therefore the tangent of the crease curve is parallel to the ruling

direction. But by Lemma 12 and Corollary 16 in [Demaine et al. 2015]

this implies that the curve has a kink at p (tk ), contradicting the fact
that S (t ) is C2

when restricted to the patches S1 (t ), S2 (t ). �

Therefore it is impossible to fold a crease point that is non-planar.

For a non-planar point that is not folded, any small deformation

keeps it that way. Folding can only happen after attening the point,

and if the surface is already folded, any small deformation keeps

it folded. Thus, the decision whether to fold or not can only be

done when the crease points are planar, and no extra care needs be

taken if the crease is already folded. With this in mind, we note the

following observation.

Theorem 4.2. A non-planar curved crease point p on a curved
folded surface S is folded if and only if the osculating plane of the
crease curve at p is locally a supporting plane for the patches S1, S2
intersecting at p.

This follows directly from the fact that the tan-

gent planes on both sides of a crease curve coincide

if the surface is smooth there, but along a folded

crease they are reections of one another through

the crease curve’s osculating plane. Planar crease

points along a curved crease, while not folded, still

satisfy this constraint, since around these points the

tangent planes are exactly the same as the osculating

plane of the curve, though even the slightest surface deformation

might change that.

4.3 Discretization
We saw that folding happens exactly when both sides of the surface

around a crease are in the same half-space of the osculating plane

of the crease curve. We discretize this condition by constraining

the tangents of the discrete parametric (grid) lines of the two DOG

patches to be on the same side of the crease curve’s discrete osculat-

ing plane. See Fig. 9 for the notation. The DOG edges intersecting

the crease can be considered as discrete surface tangents originating

at the crease points. In the notation of Fig. 9, each of the two patches

has its own duplicate of the edge (e1 or e2) intersecting the crease
curve. In the starting, at conguration the two edges coincide, but

a folding movement creates a discontinuity between them. We de-

note the discrete surface tangents on both sides of the crease curve

as t1 =
e1
‖e1 ‖
, t2 =

e2
‖e2 ‖

. The binormal of the crease curve, i.e., the

normal of its osculating plane, is B =
ef ×eb
‖ef ×eb ‖

, noting that ef , eb
always coincide for both patches.

The supporting plane constraint can be written as

sgn(〈t1,B〉) + sдn(〈t2,B〉) = 0 (1)

with

sgn(x ) =



−1 : if x < 0,

0 : if x = 0,

1 : if x > 0.
(2)
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Fig. 9. Notation for edges in a discrete crease paern. Le: a flat DOG
with a discrete crease curve. Center: Following [Rabinovich et al. 2018b], we
represent creases by duplicating the quads that contain the crease curve,
which results in dierent connected components, or patches. The positions
of the vertices on the curve, i.e., its intersection points with the grid edges,
are constrained to match on both patches. Right: Notation for a duplicated
grid edge (e1, e2) intersecting the crease curve at the blue point, and the
two crease edges ef , eb .

Constraint (1) can be simplied by replacingBwith the cross product

ef × eb . Furthermore, if one assumes an isometric deformation, it is

possible to replace t1, t2 by the non-normalized edges e1, e2, arriving
at:

sgn(〈e1, ef × eb 〉) + sдn(〈e2, ef × eb 〉) = 0. (3)

In Sec. 6 we show how to plug this constraint into an optimization

framework to model folding and bending of curved folded DOGs

(see Fig. 3).

4.4 Discussion
There are multiple equivalent characterizations for a folded crease

over a curved folded surface. We now point out some key proper-

ties of our chosen discretization (1) and briey discuss how these

properties are not satised by other possible constraint choices.

Suitable for homotopy based optimization methods. Our constraint
is satised on a at mesh. In this sense we consider a point along a

curve with zero normal curvature as both folded and not folded.

Minimal and generally non-intrusive. Once a curved crease on a

piecewise DOG is folded, one no longer needs to take explicit care

for it to stay folded. The eect of Eq. (3) on an already folded surface

is null. The tangent discontinuity caused by the folding implies

that a folded crease remains folded under local deformations, and

in order for it to become unfolded, one needs to rst atten it, as

is the case for a piecewise smooth curved folded surface. We also

capture the converse: a discrete curved crease can only be folded

when starting from a planar point (Theorem 4.1).

An alternative constraint for folding could be e.g. enforcing dis-

continuities along the tangents t1, t2, but this results in losing the

feasibility of the at models. Moreover, in the discrete case a mi-

nor discontinuity can still arise even though there is no fold, i.e.,

where Eq. (1) is not satised, thus numerically giving the impres-

sion of a fold when visually there is none. Another option is to

dene folded congurations as those satisfying a similar but simpler

smooth constraint:

〈t1,B〉 + 〈t2,B〉 = 0. (4)

This condition is satised exactly in at models and in any piecewise

smooth curved folded surface, since tangent planes along a folded

creased curve are reections of each other w.r.t. the osculating plane

of the crease curve. However, this condition is not satised exactly
on every folded piecewise DOG (as evident by all models in this

paper). An exception to this is the class of curved creases with

zero torsion, in which case the folds are simply formed as a global

plane reection [Mitani and Igarashi 2011]. Therefore, enforcing

constraint (4) as a hard constraint is too restrictive in practice, while

enforcing it softly creates a condition that, unlike the smooth case,

does not vanish once a crease is folded and hence is not minimal in

our sense.

5 FOLDING ANGLES AND MOUNTAIN-VALLEY
ASSIGNMENTS

In this section we propose tools to constrain the folding angles

and their direction (mountain or valley) during deformation, in

order to provide designers with additional expressive and intuitive

control.We rst showhow to constrain folding angles, i.e., the angles

between the tangent planes around a crease. We implement this by

constraining DOG tangent angles, resulting in a simple quadratic

constraint. We then devise a tool to dierentiate between mountain

and valley folds. Our derivations work for both curved and straight

origami creases.

5.1 Folding angle
A folding deformation can be seen as a rotation of the surface

patches’ tangent planes hinged on the tangent of the crease curve.

The tangent of a straight fold is constant, and so is the folding angle,

while on a curved crease, the tangent varies and often the folding

angles change along the crease. In both cases, if the folding angle at

a given point is θ , then the surface tangent vectors on both sides

of the crease that are orthogonal to the crease tangent form an

angle of θ , while the surface tangent vectors that are parallel to the

crease remain parallel to each other. The following lemma shows

the relation between the angle formed by surface tangent vectors

Fig. 10. Le: A flaened configuration of a crease curve and its tangent
t , forming an angle α with surface tangents t1, t2, which are equal in
this flat state (t1 = t2). Right: A folded isometric configuration with a
tangent discontinuity t1 , t2. Lemma 5.1 shows the connection between
the angle α and the folding angle θ in the smooth case, stating that 〈t1, t2〉 =
cos

2α + sin2α cos θ .
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Fig. 11. Discretizing Lemma 5.1 (see Fig. 10) at a crease point by using
the normalized DOG edges emanating from the crease point as surface
tangents.

that are equal in the attened conguration and the folding angle

(see Fig. 10):

Lemma 5.1. Let t1, t2 be surface tangent vectors on two sides of a
crease curve at a given point p that are equal to each other in the
isometrically attened state of the developable surface. Let t be the
crease curve tangent at p. Assuming the surface went through a curved
folding isometric deformation and the folding angle at crease point p
is θ , the surface tangent vectors satisfy:

〈t1, t2〉 = cos
2α + sin2α cosθ , (5)

where α is the angle between t and t1. Note that this angle is preserved
under isometry.

Proof. We denote by t ,n,b the vectors of the Frenet frame of

the curved crease at p. We wish to express the surface tangent

vectors t1, t2 in the local coordinates of this Frenet frame. In the

at isometric conguration, t1, t2 coincide and can be written as

cos(α )t + sin(α )n. A folding angle of θ means that relative to the

Frenet frame of the curve, the surface tangent on one side of the

curve was rotated by angle
θ
2
about the crease curve tangent t , and

the surface tangent on the other side by − θ
2
. Thus w.l.o.g.

t1 = cos(α )t + sin(α )
(
cos

(
θ
2

)
n + sin

(
θ
2

)
b
)
,

t2 = cos(α )t + sin(α )
(
cos

(
θ
2

)
n − sin

(
θ
2

)
b
)
.

The proof is concluded by computing 〈t1, t2〉 and plugging in the

trigonometric identity cosθ = cos
2 θ
2
− sin2 θ

2
. �

We discretize Lemma 5.1 by looking at angles between edges

of the DOG emanating from crease points (see Fig. 11). Using the

notation of Fig. 11, we discretize the tangent of the crease curve at

a given point by looking at the incident edge vectors ef , eb :

t =
‖eb ‖ef + ‖ef ‖eb
‖eb ‖ef + ‖ef ‖eb


. (6)

If the two edge vectors eb , ef are not collinear, t as above is the

tangent at the point to the unique circle passing through the point

and its two neighbors.

Under an isometric deformation, t1, t2 are linear in the vertex

positions, α is constant and Eq. (5) is quadratic.

5.2 Mountain/valley assignments
As mentioned in Sec. 4.1, there are a few combinatorial degrees of

freedom in choosing the type of fold, i.e., the choice of surfaces on

each side of the curve (Fig. 7). We follow [Demaine et al. 2015] to

distinguish between the two types of folded congurations in Fig.

7 by calling one choice a mountain fold and the other a valley fold.
We would like to emphasize that for straight folds, this degree of

freedom always exists, but on curved creases it often does not. In

fact, in many crease patterns it is often only possible to choose one

mountain/valley (M/V) assignment, and the remaining assignments

are determined by the propagation of the rulings, leaving only the

combinatorial degrees of freedom of whether a crease is folded

or not, embodied by Eq. (1). We distinguish M/V folds by looking

at whether a tangent of one surface patch is above or below the

tangent plane of the second surface patch at the crease point, for

a consistent choice of orientation. This can be achieved by the

following constraint:

〈t1, t × t2〉 ≤ 0, (7)

where t is the tangent of the oriented crease curve and t × t2 is

the normal of the tangent plane of the second surface patch (the

one that has t2 as a tangent vector). The orientation of t determines

whether a mountain or a valley fold is chosen. By the cyclic property

of the triple product, the left hand side of Eq. (7) is also equal to

〈t2, t1 × t〉. As we are only interested in the sign of the left side of

(7), we can replace t with the simpler t∗ = ‖eb ‖ef + ‖ef ‖eb , which
is linear under isometry.

To simplify notation for Sec. 6, we reformulate ourmountain/valley

constraint with an equality by using the Heaviside step function:

H(x ) =

{
0 : if x ≤ 0,

1 : if x > 0,
(8)

and write the mountain/valley condition as:

H (〈t1, t
∗ × t2〉) = 0. (9)

6 OPTIMIZATION
We employ the tools developed in Sec. 4 and Sec. 5 to devise a simple

folding and bending algorithm for deforming piecewise DOGs. The

algorithm aims to minimize an objective function while keeping

the DOG constraints and ensuring the formation of folds along all

crease curves and a specic M/V assignment on a crease when such

an assignment is given as input.

6.1 Problem setup
Wemodel our curved folded surfaces as a quadmesh, with a separate

connected component for each patch. We denote the set of n mesh

vertices in R3
by V , the vertex positions (variables) by x ∈ R3n

,

and the quad mesh faces by F . Each connected component is a DOG,

i.e., it has the connectivity of a subset of Z2
and satises the DOG

angle constraints [Rabinovich et al. 2018a], which we denote as

ϕdi (x ) = 0, 1 ≤ i ≤ m.

We are interested in deformations that fold the surface along

all crease curves in a given crease pattern using Theorem 4.2 and

enforcing Eq. (3) and optionally the mountain/valley assignment

Eq. (9). We enforce these constraints on all crease points, which
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are points on crease curves that are not crease vertices, with the

exception of crease points that have the following degeneracies on

the attened mesh (see Fig. 12):

(1) degenerate osculating plane: crease points with a curvature

smaller than a threshold κε ;
(2) degenerate edge: crease points on an edge, splitting it into

two parts where one is shorter than εr% of the other;

(3) degenerate angle with the intersecting DOG tangent: crease

points where the tangent directions t1, t2 form an angle with

one of the edges ef , eb that is smaller than εα .

We use the constants κϵ = 1e-5, εr = 5, εα = 3
◦
. We denote the set

of all folding constraints and the mountain/valley constraints (Eq.

(9)) by ϕfj (x ) = 0, 1 ≤ fj ≤ nf .

regular folding constraint osculating plane degeneracy edge degeneracy angle degeneracy

Fig. 12. A folding edge constraint defined on a blue crease point spliing
the blue edge and degenerate cases where we do not enforce the constraint.
From le to right: A regular folding edge constraint, instabilities in the os-

culating plane’s normal as
eb×ef
‖eb×ef ‖

caused by eb, ef being almost collinear,

degenerate edges as one part of the edge split by the blue crease point is
comparably very short, and lastly a very small angle between eb and the
DOG edge crossing the blue point. An angle degeneracy oen occurs before
or aer an edge degeneracy.

We only enforce the DOG angle constraints and the folding and

mountain/valley constraints as hard constraints. The objective func-

tion, which we denote by f (x ), is composed of a weighted sum

of a bending objective, soft positional constraints, soft dihedral

constraints and soft patch-continuity constraints.

Isometry is enforced as a soft constraint as advised by the degrees

of freedom analysis in [Rabinovich et al. 2018a,b], but we emphasize

that all our results have an average relative edge stretch that is less

than 0.003, and a maximum stretch below 0.004, where our surfaces

are normalized to have an average edge length of 1. As opposed

to [Rabinovich et al. 2018b], we also encode the linnear continuity

constraints between patches as a soft constraint, as we have noticed

a signicant improvement in the quality and smoothness of crease

patterns when these are enforced as a soft penalty with a large

weight, and our results have an average continuity deviation of

0.0002 and a maximum of 0.0035. We note that the constrained

shape space analysis in [Rabinovich et al. 2018b] only concerns the

DOG angle constraints, and complicated crease patterns give rise to

a large set of additional linear constraints.

The problems we solve in this paper can be written in the form:

argmin

x
f (x )

subject to

ϕdi (x ) = 0, i = 1, . . . ,m,

ϕfj (x ) = 0, j = 1, . . . ,nf ,

(10)

where f is specied in Sec. 6.2. We handle the combinatorial con-

straints ϕfj by using a penalty based method (Sec. 6.3), and solve our

problem with an iterative sequential quadratic programming (SQP)

solver with a line search (Sec. 6.4). The line search strategy ensures

that the DOG angle constraints ϕdi are satised numerically while

the combinatorial constraints ϕfj are satised exactly.

6.2 Objectives and convex Hessian approximations
Our objective f is composed of a weighted sum of various func-

tionsmeasuring bending, stretch, positional constraints and dihedral

angles. We use an integrated squared mean curvature bending ob-

jective taken from [Rabinovich et al. 2018b], and we exploit the

fact that it is quadratic and convex under isometric deformations

[Bergou et al. 2006]:

fH (x ) = 0.5xt (LtM−1L)x , (11)

where L is the DOG Laplacian and M is a diagonal mass matrix

dened by the DOG vertex area [Rabinovich et al. 2018b].

We employ Lemma 5.1 to constrain the folding angle at a given

crease point using the constraint

ϕ
dci

(x ) := 〈t i
1
, t i
2
〉 − cos2 (α i ) − sin2 (α i ) cos(θ i ) = 0, (12)

where ci is the index of the crease point along the edge dened as a

linear combination of two vertices, t i
1
, t i
2
, α i are as dened in Sec.

5.1 and Fig. 11, and θ i is the desired dihedral angle at the crease

point ci . Under isometry t i
1
, t i
2
are linear in the net vertex locations,

α i is xed, and the constraint is quadratic.

Let e be an edge on the net mesh, le its length and l0e the length in

the reference net mesh. We dene the following quadratic isometry

constraints:

ϕiso (x )e := l2e − l
0

e
2

= 0. (13)

We maintain continuity along the patches with a set of linear equal-

ity constraints on duplicated crease points [Rabinovich et al. 2018b],

which we denote byϕcont (x ) = 0. Lastly, we allow the user to specify

positional constraints on vertices or crease edge points, including

constraints requiring two points to have the same coordinate, as

used in the creation of the ring at Fig. 15 and the annulus at Fig.

1 (also see accompanied video). We denote this user dened set

of constraints by ϕpos (x ) = 0. We enforce the dihedral, positional,

isometry and patches continuity constraints in a soft manner by

using a penalty on their squared deviation, denoted accordingly

by fD (x ), fpos (x ), fiso (x ), fcont (x ). These sum of squared objectives

are not convex, and we replace their Hessian in our optimization

with their Gauss-Newton’s Hessian approximation. We do the same

for

∑
‖ϕ∗fi

(x )‖2
2
.

The objective we optimize is then:

f (x ) = wH fH +wpos fpos +wD fD +wiso fiso +wcont fcont. (14)

Throughout the paper, unless stated otherwise, we use wH = 1,

wpos = 5, wD = 100, wiso = 20000/|E |, wcont = 1e4, where |E | is
the number of edges in the net mesh (i.e., for a mesh with 1000

edgeswiso = 20). Our meshes are always scaled to have an average

edge length of 1 and therefore using a dierent resolution for the

same geometry keeps our bending objective the same, but scales

the isometric objective by the number of edges.
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6.3 Folding constraints
Motivated by the fact that in the smooth case, one cannot move from

a folded to a non-folded conguration around a non-planar point,

we strive to always satisfy ϕfj (x ) = 0 exactly. The common starting

point of a at surface is an interesting case, as it is a bifurcation

point between surfaces satisfying Theorem 4.2 and those that do not,

which also holds for the discretization Eq. (1). To that end, we solve

our problem with an iterative sequential quadratic programming

(SQP) solver with a line search, complemented with two simple

strategies to handle the constraints ϕfi (x ):

(1) a penalty term [Nocedal and Wright 2006] punishing devia-

tion from the constraints;

(2) a line search method that backtracks if the resulting mesh

does not exactly satisfy ϕfj (x ) = 0, i = 1, ...,nf .

Since the functions sgn(x ),H (x ) involved in the constraints ϕfj (x )

are not C1
, we replace them by the approximations:

sgn(x ) ≈ tanh(hx )

H (x ) ≈



0 : if x ≤ 0,
x 2

x 2+δ : if x = 0,δ > 0

(15)

using the xed parameters h = 1000,δ = 1e-5. Our approximation

forH (x ) is taken from [Li et al. 2012; Poranne et al. 2017]. The use in

a homotopy based optimization necessitates an approximation for

H (x ) that vanishes on a at mesh, and therefore we do not use the

common approximation for the Heaviside function H (x ) ≈ Ĥ (x ) =
1+tanh(hx )

2
because Ĥ (0) = 1

2
.

We refer to the approximated constraints as ϕ∗fj
(x ) and replace

the optimization problem (10) with the following problem:

argmin

x
f (x ) + ω

∑
‖ϕ∗fj

(x )‖2

subject to

ϕdi (x ) = 0, i = 1, . . . ,m.

(16)

Fig. 13. Using the optional mountain/valley assignment input (Sec. 5.2)
on a single crease curve. Each crease paern is deformed with the same
positional constraints, induced by a curve constrained flow, but with a
dierent mountain/valley assignment along one crease, enforced by Eq. (9).
In the banana shaped model (boom row), the rest of the mountain/valley
assignments are then uniquely determined.

Fig. 14. Using the optional folding angle constraints (Sec. 5.1) on a sparse
set of crease points. These examples are deformed by constraining the
folding angle of a set of points (in green), without specifying their folding
orientation, and by seing a single positional constraint (in blue).

Here, ω > 0 is a metaparameter initialized as ω0 = 1, which doubles

its value if the line search cannot nd a point satisfying the sup-

porting plane conditions exactly. In practice, the penalty term only

aects points that are very close to being planar, while approaching

zero very quickly around already folded points.

6.4 Equality constrained SQP
For ease of notation, we use the following to refer to the objective

of Eq. (16):

fω (x ) = f (x ) + ω
∑
‖ϕ∗fj

(x )‖2. (17)

We minimize (16) using SQP with a line search [Nocedal and Wright

2006]. Given a set of variables at a given iteration xk and current

values of Lagrange multipliers λk , a line search equality constrained

SQP algorithm iteratively nds the next direction for a line search

of Eq. (16), by which it sets the next variables xk+1 by solving a

KKT system of the form:

K

(
dk+1

λk+1

)
= b, where

K =

(
∆2

xxL (x
k , λk ) JT (xk )

J (xk ) 0

)
, b =

(
∇fω (xk )

−ϕdi (x
k )

)
,

(18)

where J (x ) is the Jacobian of the equality constraints in Eq. (16),

∆2

xxL (x , λ) = Hfω (x ) +
∑
λki ∆

2

xxϕdi (x ) is the Hessian of the La-

grangian of the problem and Hfω (x ) is the Hessian of fω (x ).
Following [Rabinovich et al. 2018b], we use a minimally modied

Jacobian J∗ (x ) to deal with singularities in DOGs. We also replace

the Hessian of the objective Hfω (x ) by a convex approximation,

which we denote by H∗fω
(x ), as detailed in Sec. 6.2, and thus replace

the system (18) by:

K

(
dk+1

λk+1

)
= b, where (19)

K = *
,

H∗fω
(xk ) +

∑
λki ∆

2

xxϕdi (x
k ) J∗

T
(xk )

J∗ (xk ) 0

+
-
, b =

(
∇fω (xk )

−ϕdi (x
k )

)
.

ACM Trans. Graph., Vol. 38, No. 4, Article 1. Publication date: July 2019.



Modeling Curved Folding with Freeform Deformations • 1:11

We note that in [Rabinovich et al. 2018b] the authors discretize

Laplacian metric ows by solving a similar system with a Laplacian

instead of the Lagrangian’s Hessian. However, we found that replac-

ing the Laplacian by the Lagrangian followed by convexifying the

Hessian performs signicantly better, especially on larger models.

As common in SQP algorithms, we use a merit function to guide

our line search, dened as a combination of the objective and the

constraints. The line search chooses step sizes that reduce the objec-

tive and keep the DOG angle constraints numerically feasible, while

backtracking if a point does not satisfy the constraints ϕfj exactly.

This removes the need for the slower LBFGS constraints’ pro-

jection used by [Rabinovich et al. 2018a,b]. We use the L2 merit

function [Nocedal and Wright 2006]:

ψ (x ; µ ) = fω (x ) + µ
∑
‖ϕdi (x )‖2, (20)

where we update the parameter µk at each iteration using the abso-

lute values of the Lagrange multipliers [Nocedal and Wright 2006]:

µk = max{cµ ·max{|λki |}, µ0}, (21)

with cµ = 1.1 and µ0 = 0.05.

7 RESULTS
We employ the optimization described above (see Eq. (14)) in an in-

teractive freeform editing system. The input to our system is the at

domain boundary and the curves of the crease pattern, represented

by polylines. These can be easily generated from any standard vec-

tor graphics format by sampling the smooth curves therein. Our

system computes an arrangement of the input curves using CGAL’s

arrangement model [The CGAL Project 2019; Wein et al. 2019; Zuk-

erman et al. 2019] and solves the symmetric indenite linear systems

as required by the optimization (Eq. (19)) using Pardiso [De Con-

inck et al. 2016; Kourounis et al. 2018; Verbosio et al. 2017]. We ran

our experiments on a 16-core Ryzen Threadripper 1950X clocked at

3.4 GHz. Our editing system supports setting point handle positional

constraints, as can be seen in Figures 1, 8, 15, and the second and

last model from the left in Fig. 3. A stress test for our algorithm

is shown in Fig. 15, with a crease pattern containing 20 dierent

creases that all automatically bend and fold, driven only by point

handle positional constraints. We also support constraining a crease

curve by specifying its curvature and torsion in a curve constrained

ow, see Figures 3 and 13, as well as prescribing a sparse set of

dihedral angles along crease points, see Fig. 14.

Fig. 13 is the only case where we supply a mountain/valley as-

signment as input, while Fig. 14 displays the only models designed

by constraining dihedral angles. The curve constrained positional

constraints, as well as the dihedral angles, are interpolated for im-

proved quality (see Fig. 6). To maintain interactive frame rates in

handle based editing tasks, we run a xed number of SQP iterations

per frame, which we set to 5. On models with 500, 1000, 2000, 4000

vertices these 5 SQP iterations run on average at more than 39, 19,

9, 4 frames per second. Hence our system is able to handle realtime

interaction of meshes with around 2000 vertices. The two concentric

circles folds in Fig. 1 originate from a mesh with about 5500 vertices.

They are designed by simply penalizing the distance of a single

pair of vertices while interpolating the penalty weight, and their

nal forms are reached in about 30 seconds. We refer the reader to

Fig. 15. A curved folded ring. The crease paern is taken from [Mitani
2019] and contains 20 dierent creases. It was deformed by enforcing our
folding constraints (Sec. 6), without specifying any folding angles or moun-
tain/valley assignments, together with positional constraints pushing the
vertices on the right and le boundary to match such that a loop is formed,
while also minimizing an additional bending energy term for the glued area
to smooth it.

our supplementary video for further results, including interactive

editing examples.

8 CONCLUSIONS AND FUTURE WORK
This paper is a rst step towards unhindered freeform modeling of

curved folded surfaces. Basing our models on DOGs [Rabinovich

et al. 2018a] allows us to capture the full set of curved folded defor-

mations, and our discretization in Sec. 4, together with the folding

algorithm in Sec. 6, allows us to steer the modeled deformations

towards those that simultaneously fold and bend crease curves.

Our deformation algorithm is able to model bending and folding of

complicated crease patterns by merely using positional constraints,

making it highly suited for exploration of new curved folded sur-

faces. We supply further optional objectives to constrain dihedral

angles and mountain/valley assignments in Sec. 5, providing design-

ers additional expressiveness.

Similar to other works on modeling DOGs [2018a; 2018b], the

most obvious limitation of our algorithm is speed. Our optimization

framework allows us to interactively model up to 2000 vertices.

We leave scaling of the optimization to future work, possibly by

using a multigrid solver on the DOG grids. In addition, we nd that

we lack tools and objectives to enforce symmetry of the designed

shapes. In particular, we would like to look at folding of curved

symmetric plane wallpapers and tessellations [Demaine et al. 2015;

Mundilova 2019]. We also do not take physical reality constraints

into account, such as collisions, material thickness and elasticity

properties, making the models created in our system not necessarily

realizable. Incorporating our model into a physically accurate design

system could potentially alleviate this limitation. Finally, we note

that we model deformations of a given xed input crease pattern.

Optimizing and changing an input crease pattern, as done in origami

modeling tools [Tachi 2010], could oer new and exciting ways to

discover and design curved folded surfaces.
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