Cusps of Characteristic Curves
and Intersection-Aware Visualization
of Path and Streak Lines

Tino Weinkauf, Holger Theisel, Olga Sorkine

Abstract We analyze characteristic curves of vector fields and report on locations
where they have cusps in their spatial projection, i.e., isolated points on the curve
with abruptly turning tangent direction. Cusps appear in places where a projection
of the corresponding tangent curve vector field exhibits critical points. We show that
such cusps are only possible for streak and path lines, whereas they cannot appear
on stream and time lines. Cusps turn out to be closely related to self-intersections
of characteristic curves. We utilize this information in a new algorithm to create
uncluttered static visualizations of path and streak lines.

1 Introduction

Dynamic flow phenomena play an important role in many applications. In this paper,
we are particularly interested in 2D time-dependent flows. Their three-dimensional
space-time domain allows essentially for the following visualization options:

e Static space-time visualization: Time is explicitly incorporated as the third di-
mension and the geometry or texture to be visualized is shown in the space-time
volume. Examples are tracked critical points shown as line-type structures in
space-time [11, 12], or path lines stretching through the volume (cf. Figure 2b).

e Dynamic visualization in space: The temporal behavior is captured in an ani-
mation of a 2D visualization. Examples are particle animations [4], animations
of FTLE color plots [2], animated texture-based flow visualizations [15, 17], and
many more.

Tino Weinkauf and Olga Sorkine
Courant Institute of Mathematical Sciences, New York University, 715 Broadway, New York, NY
10003, U.S.A., e-mail: {weinkauf, sorkine } @courant.nyu.edu

Holger Theisel
AG Visual Computing, Otto-von-Guericke-Universitit, Universititsplatz 2, 39106 Magdeburg,
Germany, e-mail: theisel @isg.cs.uni-magdeburg.de

2 Tino Weinkauf, Holger Theisel, Olga Sorkine

e Static visualization in space: The temporal behavior is encoded in the 2D vi-
sualization by means of color or other graphical attributes. An example is the
visualization of path lines where time can be mapped to the width of the line. An
example for 3D flows is given by Wiebel and Scheuermann [16], where bundles
of path and streak lines running through the same spatial location are visualized
in a static image.

Static visualizations not only have the advantage of being perfectly suited for non-
dynamic types of media such as paper, but they also compile all information into
a single image, whereas animations break it into several transient impressions.
Clearly, both the dynamic and the static approach have their merits.

In this paper we are concerned with static visualizations of characteristic curves
(stream, path, streak, time lines; Section 2). While visualizing them in 3D space-
time is always a valid option, note that this boils down to a 2D projection anyway
once a snapshot is taken for purposes such as printing, and the non-orthogonal, per-
spective projection inevitably introduces distortions as showcased throughout the
paper. In contrast, visualizing characteristic curves in the spatial domain (by means
of an orthogonal, orthographic projection) leaves the physically meaningful spa-
tial domain undistorted and the temporal dimension can be encoded in graphical
attributes.

Various stream line placement methods are available that aim at expressive visu-
alizations by distributing stream lines (of a time step or a steady flow) in an evenly-
spaced manner [3, 6, 8, 13], or for 3D steady flows in a view-dependent fashion to
reduce visual clutter [5]. To the best of our knowledge and much to our surprise,
there seem to be no existing methods for the placement of the other three types of
characteristic curves in time-dependent flows. There are many texture- or geometry-
based approaches for path, streak and time lines in general [1, 9, 15], but none of
them take care of the distances between lines or possible intersections.

In this paper, we develop a method to create uncluttered, static visualizations of
path and streak lines. To that end, we first analyze the challenges that come with
the purely spatial depiction of these curves. Besides their obvious intersections in
space, we pay special attention to cusps (isolated points on the curve with abruptly
turning tangent direction) and self-intersections (Sections 3 and 4). It turns out that
both phenomena are closely related to the occurrence of critical points in the original
flow. Based on the gained insight into the intricacies of visualizing path and streak
lines in space, we design a placement algorithm for them that makes use of the flow
topology and aims at cusp-free and intersection-aware visualizations (Section 5). As
we will show in our results (Section 6), an entirely intersection-free visualization is
of limited use for turbulent flows. We therefore allow for a small number of (self)-
intersecting path or streak lines.

Notation. We consider a 2D time-dependent vector field v(x,7) over the domain
D x T where D C IR? is the spatial domain and 7 is a time interval. We write (24 1)-
dimensional variables with a bar like P, and (2 + 2)-dimensional variables with a
double bar like q.

Cusps of Characteristic Curves and Intersection-Aware Path/Streak Line Visualization 3

2 Characteristic Curves of Vector Fields

A curve L is called a tangent curve of a vector field v(x), if for all points p € L the
tangent vector of L coincides with v(p).

In a time-dependent vector field v(x,¢) there are four types of characteristic
curves: stream lines, path lines, streak lines and time lines. We can start a stream
line in a space-time point (Xg,%), staying in time slice t = fy, by integrating a
tangent curve in the vector field §(x,t) = (v(x,¢),0)7. Similarly, path lines of
the original vector field v are described as the tangent curves of the vector field
p(x,t) = (v(x,),1)T in space-time. Path lines describe the trajectories of massless
particles in time-dependent vector fields.

A streak line is the collection of all particles set out at different times but the same
point location. In an experiment, one can observe these structures by constantly
releasing dye into the flow from a fixed position. The resulting streak line consists of
all particles which have been at this fixed position sometime in the past. Considering
the vector field p introduced above, streak lines can be obtained in the following
way: apply a path surface integration in p where the seeding curve is a straight line
segment parallel to the t-axis; a streak line is the intersection of this path surface
with a hyperplane perpendicular to the 7-axis. As shown in [14], streak lines can be
described as tangent curves of the vector field

) (Vor(x) ™" 2260 4 y(x,r)
q(x,1,7) = 0 , (1)
-1

where ¢ (x) denotes the flow map computed from particles seeded at (x,t) and
integrated over a time interval 7. We call q the streak line vector field. It is defined
in the domain D x T x ¥ with T € T, i.e., q is a 4D vector field if the original flow v is
a 2D time-dependent field. The streak lines of a constant time step can be integrated
as tangent curves in the subspace D x T, i.e., q simplifies to

q'(x,7) = (W(f’f)) . 1=const, ©)

where w(x,T) = (Vo (x)) - % + v(x,t) denotes the spatial components.

A time line is the collection of all particles set out at the same time but different
locations, i.e., a line which gets advected by the flow. An analogon in the real world
is a yarn or wire thrown into a river, which gets transported and deformed by the
flow. However, in contrast to the yarn, a time line can get shorter and longer. It
can be obtained by applying a path surface integration in p starting at a line with
t = const, and intersecting it with a hyperplane perpendicular to the ¢-axis. Whether
time lines can be described as tangent curves of some derived vector field is still an
open research question.

See [14] for a more thorough discussion of characteristic curves.

4 Tino Weinkauf, Holger Theisel, Olga Sorkine

Fig. 1 Plot of the function Y
x*>—y3 =0. It has a cusp at
the origin, where the tangent !
vector of the curve abruptly
changes its direction. 0s AN //

\\//

-0.2

1 0.6 -0.2 0.2 0.6 1 x

3 Cusps of Characteristic Curves

Cusps are isolated points on a curve where its tangent vector abruptly changes, i.e.,
the tangent has a discontinuity. Figure 1 shows this for a simple example: the zero-
levelset of x> —y*, which has a cusp at the origin.

The previously introduced characteristic curves can be described as tangent
curves (except for time lines) in their higher-dimensional domains D x T or D X T X
Y. Given that the respective tangent curve vector fields §, p, q are continuous, their
tangent curves are smooth, i.e., they cannot have cusps in these higher-dimensional
spaces. This follows since the vector field gives the first derivative of the tangent
curve: if the vector field is continuous (C?), then the first derivative of the tangent
curve is CY, which makes the tangent curve itself smooth (C h.

However, a projection of a characteristic curve into a subspace may very well
have a cusp. In this paper, we are interested in a spatial projection, since we wish to
create static, two-dimensional visualizations of these curves in Section 5. We strive
for high expressiveness of these visualizations by reducing the amount of clutter that
is likely to be introduced by the projection. To that end, we analyze the occurrence of
cusps in these projections, since the abrupt turning of the tangent direction at cusps
communicates a non-smoothness to the viewer despite the fact that the underlying
field is actually smooth or at least continuous. Hence, we want to exclude cusps (and
nearby areas) from these visualizations. In the following, we study cusps in spatial
projections of all four types of characteristic curves.

Stream Lines. The case for stream lines is rather trivial. Stream lines live in a
constant time step, i.e., a spatial projection does not alter their geometry and they
cannot have cusps in a continuous vector field.

Time Lines. Although a tangent curve description for time lines is not yet avail-
able, we can already remark the following: a time line can be seen as the front of
a path surface integration in p. Assuming that p is smooth and remembering that it
does not have any critical points, the front line undergoes only smooth transforma-
tions during the integration. Since ¢ is constant for a time line, a spatial projection
will not alter the geometry of the curve. Hence, time lines cannot have cusps. They
may however be subject to strong bending during the integration, which may distort
the region around some point in a way that resembles a cusp, but those points would
not be cusps in the infinitesimal sense.

Cusps of Characteristic Curves and Intersection-Aware Path/Streak Line Visualization 5

(a) Stream lines shown with LIC. Tracked criti- ~ (b) 28 path lines, three of them highlighted. See
cal point shown as straight green line. below for their spatial projection.

(c) Forward (red) and backward (blue) path sur- (d) Spatial projection of the path lines from (b).
face started from the tracked critical point. In- Highlighted path lines are scaled by distance to
tersection with #(yields cusp seeding line. to (shown in (b) by the large quad).

(e) Every path line started on the cusp seeding (f) Spatial projection of (e). Path lines shown in
line (red/blue) runs through the critical point. black and scaled by distance to cusp.

Fig. 2 Cusps in the spatial projection of path lines shown for the 2D time-dependent vector field
(3). The red and green axes denote the spatial (x,y)-domain, whereas the temporal dimension is
depicted by the blue axis. The time step 7y is denoted by the large quad in (b) and (c).

6 Tino Weinkauf, Holger Theisel, Olga Sorkine

3.1 Cusps in the Spatial Projection of Path Lines

Path lines of v(x,7) are the tangent curves of p in space-time. The first two com-
ponents of p become zero at locations ¢ where v has a critical point, i.e., p(c) =
(0,0,1)7. A path line running through ¢ advances there only in temporal direction,
but stays at the same spatial location (for an infinitesimally small time). Conse-
quently, a following spatial projection will lead to a cusp at this point.

We can see this in Figure 2, where the vector field

V(1) = (-) (3)

xX—t

is visualized. It contains a critical point of type center that moves over time in x-
direction. Figure 2a shows its evolution as a straight green line in space-time to-
gether with LIC visualizations of the stream lines in three selected time steps. Note
that the spatial dimensions in all following visualizations are depicted by the red
and green axes, whereas time is denoted by the blue axis.

Figures 2b and 2d show a number of path lines in space-time and in the spa-
tial projection, respectively. Three of them have been highlighted in pink, red, and
yellow. We make the following observations for the spatial projection (Figure 2d):

e A lot of visual clutter is apparent due to path lines intersecting each other.

e Path lines may have self-intersections as exemplified by the yellow curve.

e Path lines have cusps when they run through a critical point of v during their
integration, as exemplified by the red curve. Note that this curve is perfectly
smooth in space-time (Figure 2b).

We will deal with the (self-)intersection issues in Sections 4 and 5. Here it remains
to understand which subset of all space-time seeding locations gives rise to path
lines with cusps in their spatial projection. Later, we will exclude those areas from
our seeding algorithm.

The critical points of v are line-type structures in space-time. They can be ex-
tracted with a number of methods, for example using Feature Flow Fields [10, 11].
Since all path lines with cusps have to intersect these critical lines, we can collect
all their possible seeding locations using two path surface integrations in p started
from each critical line: one in forward and one in backward direction. Figure 2c il-
lustrates this. Intersecting the surfaces with a time step g yields cusp seeding lines:
they describe all seeding locations at fy which give rise to path lines with cusps in
their spatial projection. Note that depending on where we start a path line integra-
tion on a cusp seeding line, the actual crossing of the critical point might be before,
after or at #y. Figure 2e shows this in space-time, Figure 2f in space.

3.2 Cusps in the Spatial Projection of Streak Lines

As described in Section 2, streak lines live in a constant time step and are given
there by Equation (2) as the tangent curves of q’ in the 3D domain D x T, where T’

Cusps of Characteristic Curves and Intersection-Aware Path/Streak Line Visualization 7

r 4

(a) Spatial components of @’ (b) 28 streak lines, three of (c) Spatial projection of the

shown with LIC. Tracked crit- them highlighted. See right for streak lines from (b). High-

ical point shown as green line. their spatial projection. lighted streak lines are scaled
by distance to 7y (shown in (b)
by the large quad).

(d) Forward (red) and back- (e) Every streak line started on (f) Spatial projection of (e).

ward (blue) integral surface in the cusp seeding line (red/blue) Streak lines shown in black and

q started from tracked criti- runs through the critical point. scaled by distance to cusp.

cal point. Intersection with T
yields cusp seeding line.

Fig. 3 Cusps in the spatial projection of streak lines shown for the 2D time-dependent vector field
(3). Shown is the (x,y, T)-subspace (red, green, yellow axes) at # = 0, where streak lines are given
as tangent curves of q'. The large quad in (b) and (c) denotes 7o = 0.

refers to the 7-dimension denoting the integration interval. Hence, a projection that
removes the T-dimension is required regardless of whether we visualize streak lines
in space-time or just space.

Such a projection leads to cusps, in a similar way as for path lines, at locations
¢ where w has a critical point, i.e., (¢) = (0,0,—1)7. It can be shown that this
implies v(¢](x)) = 0. In other words, the critical points of the original flow are
closely related (via the flow map ¢) to the critical points of the spatial components
of the streak line vector field.

Figure 3 shows this for the example vector field (3), that we already used in the
previous section. Its streak line vector field is given as q(x,y,7,7) = (cos(7) — 1 —
y,—sin(t)+x—t,0,—1)T. We show only the (x,y, T)-subspace at t = 0, where streak
lines are given as tangent curves of q'(x,y, 7) = (cos(t) — 1 —y, —sin(7) +x,—1)7.

The spatial components of q’ are visualized using LIC in Figure 3a together with
the tracked critical point. Note the difference to the tracked critical point of v shown
in Figure 2a.

8 Tino Weinkauf, Holger Theisel, Olga Sorkine

Figures 3b and 3c show a number of streak lines in D x 1" and in the spatial
projection, respectively. The three highlighted streak lines exemplify, that we have
to deal with (self-)intersections and cusps for streak lines as well.

We collect all possible seeding locations for streak lines with cusps similar to the
path line case: integrate two surfaces (forward/backward) in q’ starting from every
critical line (Figure 3d). Their intersection with a certain 7y gives the cusp seeding
lines, that describe all seeding locations at 7y which give rise to streak lines with
cusps in their spatial projection (Figures 3e-f).

4 Remarks on Self-Intersections of Characteristic Curves

For the sake of simplicity, the following remarks are made for path lines. They
extend to streak lines in a similar manner.

Consider a path line seeded at (x, 1) that exhibits a self-intersection in its spatial
projection — as it is shown in the leftmost image of Figure 4. Assume that it is pos-
sible to change its spatial seeding location (staying in fy) such that the loop created
by the intersection becomes gradually smaller. Eventually, the loop will degenerate
to a point: a cusp. The seeding location is now on a cusp seeding line ¢, and the
previous seeding locations have been on one side of ¢, (in a local sense). Placing the
seed on the other side of /. yields a path line without a self-intersection.

XD <P

Fig. 4 Gradually changing the seeding location (gray ball) of a path line (black) leads to a qualita-
tively different behavior when crossing a cusp seeding line (red/blue curve). Shown is the example
vector field (3), where only seeding locations inside the circle (yellow area) give rise to non-self-
intersecting path lines.

Itis easy to see, that cusp seeding lines play a vital role in the binary segmentation
of a time step into areas where seeding a path line leads to self-intersection(s) and
where it does not. Figure 4 illustrates this for our example vector field (3) from the
previous section. Here, we have a single cusp seeding line in the shape of a circle.
In general, cusp seeding lines are not closed and are of arbitrary shape. It turns out
that all seeding locations outside the circle give rise to self-intersecting path lines,
whereas only path lines seeded inside the circle do not have a self-intersection in
their spatial projection.

Cusps of Characteristic Curves and Intersection-Aware Path/Streak Line Visualization 9

(a) Path lines seeded where the (b) Spatial projection of (a). (c) Only a rather small part of

boundary prematurely prevents the domain is left to give rise
their self-intersection. to self-intersecting path lines.

Fig. 5 Defining a boundary [—2.5 72.5]3 for the example vector field (3) limits the area (white)
where seeding path lines leads to their self-intersection in the spatial projection.

At least one other component contributes to the self-intersection segmentation of
a time step: the boundary of the domain — may this be a boundary given as a hard
constraint by a numerical simulation, or as a soft constraint defined by a user. A
possible self-intersection of a path line is prevented if the integration stops at the
boundary before having reached the intersection point. In other words, introducing
a boundary reduces the number of self-intersecting path lines. Figure 5 illustrates
this.

There is an equivalent to cusp seeding lines associated with the boundary: one
could call them “boundary touching lines.” They consist of seeding locations at the
boundary giving rise to path lines, which have one end touching another part of
the spatially projected path line. To one side of a “boundary touching line”” we find
self-intersecting path lines, to the other side the ones that could not make it to the
self-intersection due to the premature integration stop at the boundary.

As alast remark, we also suspect topological separatrices (emanating from saddle
points) to play a role in the self-intersection segmentation.

However, for the purposes of this paper, it suffices to understand that only a
subset of all possible seeding locations (in some flows actually a rather small subset)
gives rise to self-intersecting path lines. This will guide some algorithmic decisions
in the following section.

5 Intersection-Aware Visualization of Path and Streak Lines

Our method for creating uncluttered, static visualizations of path or streak lines
follows these principles:

e Only a very limited, predetermined number of field lines is allowed to have self-
intersections and intersect each other. This is required to highlight turbulent ar-
eas.

10 Tino Weinkauf, Holger Theisel, Olga Sorkine

Algorithm 1 Intersection-Free Placement of Field Lines (Python-like syntax)
def FieldLinePlacement(nDesiredLines):

ResultLines =[]

Pool = IntegrateFieldLines(m) #Initialize with m randomly seeded field lines. default: m = 100

while len(ResultLines) < nDesiredLines:
Pool += IntegrateFieldLines(n) #Get n new randomly seeded field lines. default: n = 30
Pool.SortByLength() #Sort field lines in descending order; longest comes first.
LengthOfLastLongLine = Pool[0].Length()
ResultLines += Pool.pop(0) #Add the currently longest line to the result.

while len(ResultLines) < nDesiredLines:
Pool.CutFieldLinesIntersectingWith(ResultLines) #Intersection-free!
Pool.SortByLength() #Sort field lines in ascending order; longest comes first.
if Pool[0].Length() / LengthOfLastLongLine > x: #default: x = 0.98
ResultLines += Pool.pop(0) #Add the currently longest line to the result.
else:
break #Available field lines got too small. Get new ones.

#Delete small lines from the pool before we add new ones in the next loop.
Pool.RemoveLinesSmallerThan(LengthOfLastLongLine * y) #default: y = 0.5

return ResultLines

All other field lines shall not have any intersections.

Long field lines are preferred.

A good coverage of the domain is desired.

Field lines shall have a certain minimal distance to each other.
Cusps and cusp-like shapes shall be avoided.

The main ingredient of our method is Algorithm 1, which achieves a completely
intersection-free placement of field lines with a reasonable domain coverage and
preference for long lines. The basic idea is to randomly seed a large number of field
lines, put them in a pool of available lines, and iteratively copy the longest one into
the result. After adding a new line to the result, all remaining lines in the pool have
to be shortened such that they do not intersect one of the result lines. We continue
with the process of adding the currently longest line to the result and shortening the
remaining ones in the pool until the lines in the pool become too short. Then we add
a number of new field lines to the pool and continue to do so until we have reached
a desired number of field lines in the result.

We use a texture-based approach to check for intersections: all field lines in the
result are also rendered into a 2D texture. Testing a field line from the pool for
intersection with the result lines is then just a matter of checking for overlapping
pixels. The texture also allows us to maintain a certain minimal distance between
lines by using a certain pixel width when rendering new lines into the texture. This
works nicely together with the intersection test and also with the seeding of new field
lines, where spatial locations with covered pixels are excluded from the seeding.

Cusps of Characteristic Curves and Intersection-Aware Path/Streak Line Visualization 11

CRYA TR BNZ T\

Fig. 6 Path lines in the flow behind a cylinder have been seeded using Algorithm 1, but without
excluding the areas around cusp seeding lines. While the result is free of (self-)intersections, some
path lines exhibit cusps or cusp-like shapes (highlighted by red circles).

Furthermore, we use a simple voxel bit mask to exclude certain space-time loca-
tions from the seeding of new field lines. This includes obstacles in the flow (such
as a cylinder), and most importantly areas around cusp seeding lines: cusps commu-
nicate discontinuities in the flow which are actually not there, since cusps are due to
the spatial projection and not due to the underlying flow. We exclude these areas as
follows (see also Section 3):

e Track all critical points, which yields lines in space-time.

e Integrate two surfaces (forward/backward) from each of these lines.

e Render the surfaces into the voxel bit mask with a certain width such that larger
areas around the actual cusp seeding lines are avoided.

Applying this algorithm yields cusp-free and intersection-free visualizations, but it
turns out that turbulent parts of the domain are only sparsely or not at all covered
since the field lines have numerous (self-)intersections there. We think that an ex-
pressive visualization of unsteady flows demands the inclusion of a small number of
(self-)intersecting lines as a trade-off between visual clarity and a faithful represen-
tation of the flow. Hence, we let the user select a desired number of such lines from
an automatically computed set optimized by length and domain coverage, and feed
this information into the above algorithm such that the rest of the domain can be
filled with non-intersecting field lines. In all visualizations of the following results
section we render the selected self-intersecting lines with color (blue for path lines,
red for streak lines) and halos to enhance their perception. Furthermore, we encode
time into the width of the path lines, and 7 into the width of the streak lines.

Streak lines are always seeded at a certain time step, but we allow the user to
choose either a time step or a time interval for seeding path lines. A small time
interval is suggested as it allows for a better temporal coherence between the path
lines. However, due to the boundary and the cutting of the path lines in Algorithm 1,
not all path lines will start or end in the same time steps.

Discussion of possible alternatives. Topological information might not be readily
available in every visualization system. Simply applying Algorithm 1 without ex-
cluding the areas around cusp seeding lines, however, does not yield satisfying re-
sults as exemplified in Figure 6: cusps and cusp-like shapes are clearly visible. Nev-
ertheless, an alternative to our topology-based approach can be formulated based
on our theoretical findings from Sections 3 and 4: we know that cusps appear next
to an area of self-intersecting path lines. To exclude them from the seeding, one
could determine for every grid point whether it gives rise to a self-intersecting path
line. If so, this grid point and a certain number of grid points in its neighborhood

12 Tino Weinkauf, Holger Theisel, Olga Sorkine

are excluded from the seeding. This would serve as the voxel bit mask described
earlier, but without actually using topological information. We tested this and it
gave results similar to the ones shown in the next section. However, this brute-force
method needs more computation time (depending on the resolution of the voxel bit
mask) than the topological approach.

6 Results

The following results have been computed single-threaded on a laptop with an In-
tel Core 2 Duo T9550 (2.66GHz). The timings for the topological analysis and the
subsequent field line placement are given in the respective figure captions. All in-
tegrations have been done with a 4th order Runge-Kutta scheme and adaptive step
size control.

Figure 7 shows the flow above a heated cylinder which has been simulated us-
ing The Gerris Flow Solver [7]. It is given on a 41 x 70 x 241 uniform grid. The
comparison between the particle animation and our path line placement clearly elu-
cidates the differences between showing transient impressions and a static visual-
ization comprising all time steps. Furthermore, the seeding of the particles turned
out to be a cumbersome, time-consuming process since seeding location and den-
sity had to be properly adjusted to achieve the shown effect. With the new path line
placement method we were able to produce a meaningful result within seconds.

Path and streak lines for a flow behind a cylinder [7] are shown in Figure 8
(400 x 50 x 1001 uniform grid). As reasoned earlier, one finds self-intersecting field
lines near critical points of the underlying tangent curve vector field. The topology

Fig. 7 Heated cylinder data set. Shown is a particle animation (left) and the result of our path line
placement method (right). Topology/Placement: 6/2 sec.

Cusps of Characteristic Curves and Intersection-Aware Path/Streak Line Visualization 13

Fig. 8 Flow behind a cylinder. The path lines (left) are shown in the vicinity of the cylinder where
critical points appear. Topology/Placement: 2/1 sec. The streak lines (right) are shown further
downstream where the von Kdrmdn vortex street is fully developed. Our algorithm was able to
fill the domain with streak lines properly, i.e., no additional streak lines have been seeded. Topol-

ogy/Placement: 7/6 sec.

Fig. 9 Streak lines of the
Double Gyre flow for r = 10
in the t-interval [—10,0].
The two red curves have

~—
been selected by the user

from a set of pre-computed

self-intersecting streak lines

in order to fill the domain. [

Otherwise the left part would ([

not have been filled by Al-

gorithm 1 since it contains

mainly self-intersecting streak

lines. Topology/Placement:

0.5/0.5 sec.

of the original flow field has only a few critical points directly behind the cylinder,
which makes the path lines interesting there while they become rather simple further
downstream. The situation is different for streak lines: the spatial components of q
have critical points where v(¢(x)) = 0. In other words, the critical points of the
original flow have been “transported” downstream and create interesting streak line
patterns there.

Figure 9 shows the streak lines of the well-known Double Gyre flow. We have
chosen a rather long t-interval for computing the streak line vector field (256 x
128 x 1280 uniform grid), which yields long streak lines in the final visualization.
Two streak lines in the left part had to be selected by the user since this part contains
only self-intersecting streak lines.

7 Conclusions and Future Work

We analyzed the spatial projections of characteristic curves in terms of cusps and
self-intersections. These insights allowed us to develop a novel placement method
for streak and path lines.

Future work needs to address the issue of intersecting field lines. Here, we
avoided them as much as possible, but this may also leave certain areas less cov-

14

Tino Weinkauf, Holger Theisel, Olga Sorkine

ered. Also, such visualizations could communicate other properties of the flow (cur-
vature, vorticity, converging/diverging, etc.) by allowing a varying density of the
shown field lines. Of course, incorporating intersections and dense areas into an im-
age calls for new rendering approaches for these kinds of visualizations to maintain
a certain visual clarity.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Cuntz, N., Pritzkau, A., Kolb, A.: Time-Adaptive Lines for the Interactive Visualization of

Unsteady Flow Data Sets. Computer Graphics Forum 28(8), 2165-2175 (2009)

Garth, C., Li, G.S., Tricoche, X., Hansen, C.D., Hagen, H.: Visualization of coherent structures
in transient 2d flows. In: H.C. Hege, K. Polthier, G. Scheuermann (eds.) Topology-Based
Methods in Visualization II, Mathematics and Visualization, pp. 1-13. Springer (2009). Topo-
In-Vis 2007, Grimma, Germany, March 4 - 6

Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density. In: Proceedings
8th Eurographics Workshop on Visualization in Scientific Computing, pp. 57-66. Boulogne
(1997)

Kenwright, D.N., Lane, D.A.: Interactive time-dependent particle tracing using tetrahedral
decomposition. IEEE Transactions on Visualization and Computer Graphics 2(2), 120-129
(1996)

Marchesin, S., Chen, C.K., Ho, C., Ma, K.L.: View-dependent streamlines for 3d vector fields.
IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization 2010)
16(6), 1578-1586 (2010)

Mebarki, A., Alliez, P., Devillers, O.: Farthest point seeding for efficient placement of stream-
lines. In: Proc. IEEE Visualization 2005, pp. 479-486 (2005)

Popinet, S.: Free computational fluid dynamics. ClusterWorld 2(6) (2004). URL
http://gfs.sf.net/

. Rosanwo, O, Petz, C., Prohaska, S., Hotz, 1., Hege, H.C.: Dual streamline seeding. In: Proc.

IEEE Pacific Visualization, pp. 9-16 (2009)

Sanna, A., Montrucchio, B., Arinaz, R.: Visualizing unsteady flows by adaptive streaklines.
In: Proc. WSCG’2000. Plzen, Czech Republic (2000)

Theisel, H., Seidel, H.P.: Feature flow fields. In: Data Visualization 2003. Proc. VisSym 03,
pp. 141-148 (2003)

Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Topological methods for 2D time-
dependent vector fields based on stream lines and path lines. IEEE Transactions on Visu-
alization and Computer Graphics 11(4), 383-394 (2005)

Tricoche, X., Wischgoll, T., Scheuermann, G., Hagen, H.: Topology tracking for the visualiza-
tion of time-dependent two-dimensional flows. Computers & Graphics 26, 249-257 (2002)
Turk, G., Banks, D.: Image-guided streamline placement. In: Proc. Siggraph ’96, pp. 453-460
(1996)

Weinkauf, T., Theisel, H.: Streak lines as tangent curves of a derived vector field. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings Visualization 2010) 16(6),
1225-1234 (2010). URL http://tinoweinkauf.net/. Received the Vis 2010 Best Paper Award
Weiskopf, D.: Dye Advection Without the Blur: A Level-Set Approach for Texture-Based
Visualization of Unsteady Flow. Computer Graphics Forum (Eurographics 2004) 23(3), 479-
488 (2004)

Wiebel, A., Scheuermann, G.: Eyelet particle tracing - steady visualization of unsteady flow.
In: Proc. IEEE Visualization 2005, pp. 607-614 (2005)

van Wijk, J.J.: Image based flow visualization. In: Proc. ACM SIGGRAPH ’02, pp. 745-754
(2002)

