
Data-Driven Interactive Quadrangulation

Giorgio Marcias∗

CNR of Italy, University of Pisa
Kenshi Takayama†

National Institute of Informatics
Nico Pietroni‡

CNR of Italy
Daniele Panozzo§

ETH Zurich
Olga Sorkine-Hornung¶

ETH Zurich
Enrico Puppo‖

University of Genova
Paolo Cignoni∗∗

CNR of Italy

Figure 1: Given a set of hand-made quadrangulated input models, our algorithm learns the quadrangulation patterns used to design them.
This knowledge is employed in a sketch-based retopology tool to interactively quadrangulate user-sketched patches with subdivided edges. The
user can sketch strokes inside a patch to suggest a a specific edge-flow and the system automatically selects a quadrangulation following it.

Abstract

We propose an interactive quadrangulation method based on a large
collection of patterns that are learned from models manually de-
signed by artists. The patterns are distilled into compact quad-
rangulation rules and stored in a database. At run-time, the user
draws strokes to define patches and desired edge flows, and the
system queries the database to extract fitting patterns to tessellate
the sketches’ interiors. The quadrangulation patterns are general
and can be applied to tessellate large regions while controlling the
positions of the singularities and the edge flow. We demonstrate the
effectiveness of our algorithm through a series of live retopology
sessions and an informal user study with three professional artists.

CR Categories: I.3.5 [Computer Graphics]: Computational geom-
etry and object modeling—Curve, surface, solid and object repre-
sentations.

∗e-mail:giorgio.marcias@isti.cnr.it
†e-mail:takayama@nii.ac.jp
‡e-mail:nico.pietroni@isti.cnr.it
§e-mail:panozzo@inf.ethz.ch
¶e-mail:sorkine@inf.ethz.ch
‖e-mail:puppo@disi.unige.it
∗∗e-mail:paolo.cignoni@isti.cnr.it

Keywords: quad meshing, polygon quadrangulation, retopology

1 Introduction

Quadrilateral meshes are ubiquitously used in the animation and
CAD industry as control grids for subdivision surfaces and NURBS.
Many approaches have been proposed to convert an unstructured,
triangulated surface into a high-quality polygonal mesh, ranging
from local decimation strategies to global field-aligned optimizations
[Bommes et al. 2013b]. While dense quadrilateral meshes can be
robustly created with existing methods, the creation of coarse patch
layouts, or so-called retopology, is a challenging open problem,
since the connection between the geometry of a surface and its
ideal, application-dependent quad mesh is weak or nonexistent. For
example, if the mesh was intended to be used for animation, its
connectivity should be tailored to its articulation and optimized to
reduce skinning deformation artifacts; such properties are impossible
to automatically extract from static meshes.

In the industry, coarse quad layouts are manually created by profes-
sional designers, who employ their semantic knowledge and experi-
ence to adjust the layout in the context of the particular application

needs. Typical modeling systems used in the industry [Autodesk
2007; Pilgway 2013; Pixologic 2013] allow the user to manually
draw vertices and edges on a surface. Since this manual procedure
is time-consuming and error-prone, a series of sketch-based retopol-
ogy approaches [Campen and Kobbelt 2014; Takayama et al. 2014]
have been proposed to assist the user, automating a large part of the
process while allowing the user to efficiently modify the topology
of the layouts without having to start from scratch.

We propose a novel data-driven method for interactive quadrangula-
tion that supports the design of complex tessellations from sparse
sketches. The contributions of this paper can be summarized as
follows:

• A sketch-based user interface to specify the desired edge flow
in the final tessellation;

• A data-driven approach to explore a wide range of quadrangu-
lations of a polygonal patch.

The data-driven exploration approach is based on a large collection
of tessellated exemplars that are extracted from a database composed
of manually designed quad meshes. The effectiveness of our ap-
proach lies in the integration of these two contributions: the use of a
database composed of manually-designed quadrangulations offers
both generality and plausibility of the proposed tassellations; con-
currently the use of the sketch interface allows the artist to designate
the final solution in a very efficient manner. While independently in-
teresting from a research perspective, the two contributions must be
combined to effectively design quadrangulations: on one hand, the
sketching interface is useful to select among a large set of possible
quadrangulations and, on the other hand, having a large collection
of tessellations becomes impractical without an efficient exploration
strategy (Section 5).

We integrate our algorithm into the interactive sketch-based retopol-
ogy system of [Takayama et al. 2013], and we demonstrate its practi-
cal impact in an informal user study, where three professional artists
used the system to retopologize three high-resolution models.

Our algorithm can automatically fill large polygonal regions (up to
34 sides with our current database) while allowing careful tuning of
small details in critical areas. The different tessellations presented
to the user are sorted taking into account user-controlled structural
and geometric criteria.

We made an initial step towards learning-based quadrangulation by
limiting our focus on the topological aspect. Our database is based
on mesh connectivity because it is the most crucial quality measure
in retopology and the most difficult due to its combinatorial nature
(see, e.g., Figure 14).

2 Related work

Automatic quad meshing. Algorithms for the automatic genera-
tion of quad meshes have been studied extensively; see [Bommes
et al. 2013b] for a recent comprehensive survey. In particular, many
methods have been proposed to design coarse quad layouts [Bommes
et al. 2011; Tarini et al. 2011; Campen et al. 2012; Bommes et al.
2013a]. The method proposed by [Marcias et al. 2013] drives the
remeshing process by considering the deformation the mesh under-
goes during an animated sequence, to obtain a mesh that approxi-
mates well all animation frames. While the quality of these methods
is high in terms of singularity placement and coarseness, they are
difficult to apply in a production pipeline due to the lack of control.
Small changes in the user-provided constraints may completely alter
the final quadrangulation due to the global nature of the problem;
the combination of this global behavior with the non-interactive

nature of these algorithms makes the tuning of their parameters an
unintuitive and time-consuming task.

User-assisted methods. Our work is mostly related to sketch-
based retopology techniques [Takayama et al. 2013; Peng et al.
2014; Takayama et al. 2014]. Their general idea is to interactively
sketch polygonal patches over the input surface, which are then
automatically quadrangulated. The patches can have several sides,
and each side is subdivided into a number of edges prescribed by
the user [Schaefer et al. 2004; Nasri et al. 2009; Yasseen et al.
2013]. The filling patterns are procedurally generated using a greedy
algorithm in [Peng et al. 2014]. In [Takayama et al. 2013; Takayama
et al. 2014], a set of manually designed patterns are expanded to
tessellate arbitrary polygons with up to 6 sides. Our method differs
from previous approaches in the way patterns are obtained: we learn
them from manually designed models and we fetch them on-the-fly
according to the user constraints.

Inspired quadrangulation [Tierny et al. 2011] is also related to our
method. Although we share the basic motivation, their approach is
quite different: it transfers quadrangulations between surfaces on
a per-part basis (e.g., head, arm, torso) via cross-parameterization.
This approach does not provide precise local control over the mesh
layout, while our method enables localized and flexible retopology
reuse with fine-grained control over the resulting quadrangulations.

Connectivity editing operations have been developed to enable users
to modify existing quad meshes by moving pairs of irregular vertices
[Peng et al. 2011]. This method provides lower-level local operators,
and it can be integrated with methods of the previous class to fine-
tune the mesh topology. It is optimized to edit existing models and
cannot be used to retopologize models from scratch.

A global, sketch-based retopology algorithm has been recently pro-
posed in [Campen and Kobbelt 2014], which assists the user in
creating edge loops; these are then transformed into chains of quadri-
laterals. This method requires less manual input than the previous
works, but it sacrifices the ability to locally modify the quadrangula-
tion, since it is only possible to insert entire chains of quads.

3 Method

Our method is based on the pattern-based quadrangulation frame-
work proposed in [Takayama et al. 2014], briefly summarized in
Section 3.1. Their general idea is that an unstructured triangle mesh
is retopologized incrementally by automatically quadrangulating
polygonal regions sketched by the user using manually designed
quadrangulation patterns. The user can impose constraints on the
number of edge subdivisions at the boundary of the patch. Our
method generalizes this approach by learning complex quadrangula-
tion patterns from manually designed mesh models.

Our data-driven approach relies only on patterns which are used in
manually designed meshes. This strategy ensures a more effective
sampling of commonly used patterns with respect to the approaches
based on procedural generation.

By analyzing meshes in a learning dataset, we extract a large number
of patterns (477k in our current implementation) containing complex
constellations of singularities with a plethora of internal edge-flows;
this learning phase is executed off-line on a number of representative
models to build a database of patterns (Section 3.2). Every pattern is
uniquely represented by a code, which constitutes a fast, compress-
ible, encoding of the pattern and acts as a primary key for database
records (Section 3.3). Queries are executed at interactive rates to
find the patterns that satisfy the given boundary conditions and such
that the pattern edges are aligned with the desired edge flow. The

Figure 2: The basic patch filling pipeline. A region to be filled de-
fines a boundary constraint: five sides with their respective numbers
of subdivisions (a). We search all five-sided patterns in the database
(b); for each pattern, we find all possible polychord expansions
(colored edge chains) matching the given boundary constraint (c);
we fit the expanded patches to the input geometry (d).

retrieved patterns are presented to the user in a sorted sequence that
favors patches with higher quality (Section 4).

3.1 Pattern-based quadrangulation

The pattern-based quadrangulation approach of [Takayama et al.
2014] relies on the relation between a boundary constraint in the
form of a polygon with subdivided sides, which the user draws
on the surface (Figure 2(a)), and a pattern in the form of a quad
mesh filling a polygonal domain (Figure 2(b)). The pattern can
be adapted to the boundary constraint if it is possible to expand
its edge chains, i.e., sequences of consecutive edges that make no
turns (a.k.a. edge loops in the modeling practice), into polychords,
i.e., corresponding chains of quads, so that the boundary of the
expanded pattern matches the subdivision of the boundary constraint
(Figure 2c). Finding whether or not a pattern matches a given
boundary constraint has been formalized in [Takayama et al. 2014]
as an integer linear programming problem (ILP), which can be
solved efficiently using [Achterberg 2009].

While [Takayama et al. 2013; Takayama et al. 2014] rely on a small
set of predefined patterns, we rely on a large database of learned
patterns, which is queried as depicted in Figure 2. Note that we
consider many possible matching patterns (Figure 2(b)), and for
each pattern that matches the boundary constraint, we generate all
possible expanded patterns (Figure 2(c)).

Due to the large size of our database, a query is likely to retrieve
hundreds of matching patches. We provide an intuitive interface to
restrict this search to patterns that follow user-defined edge-flows;
moreover, we sort the patches according to user-defined topological
and geometric criteria in order to facilitate selection (see Section 4
and Figure 3).

3.2 Learning quadrangulation patterns

We extract the patterns used in all our experiments from 40 manually
modeled meshes of the Blender open movies “Big Buck Bunny” (25)
[Blender Found. 2008] and “Sintel” (15) [Blender Found. 2010].
Our learning phase is divided into two main steps (see Figure 4):

1. Patch enumeration: we extract disk-like patches made of con-
nected sets of quads from each mesh in the training set.

2. Pattern reduction: each patch is reduced to a pattern by col-
lapsing its polychords into edge chains.

Figure 3: The user can sketch the desired edge-flow (red line): the
system retrieves from the DB only those patterns that conform the
given flow and sort the generated patches accordingly.

Figure 4: Overview of the learning phase. A patch is sampled from
the original mesh, and the corresponding pattern is generated by
polychord collapse before storing its encoded connectivity in the
database.

This process involves a number of technical details that are discussed
in the following.

Patch enumeration. Patches are enumerated by a depth-first
traversal of a mesh, starting at each quad and growing a patch by
attaching new quads to its boundary. The basic algorithm generates
patches by adding one quad at a time. However, the combinatorial
explosion of this scheme quickly becomes intractable, so we limit
the application of this scheme to patches with at most 7 quads. This
is sufficient to generate patterns with a simple structure but possibly
complicated boundary. A similar enumeration scheme generates
patches by expanding a whole side of an existing patch at a time,
adding all quads beyond a corner-to-corner chain, as in the blue
patches of Figure 5. This allows us to generate larger patches with
up to 12 quads, possibly with a concave boundary. A further spe-
cialization of this approach allows us to extract even larger convex
patches with up to 40 quads: every time a reflex corner (i.e., a corner
with valence 4 or higher) appears on the boundary of the expanded
patch, we expand it further by adding quads in the star of the reflex
corner, and we repeat this process until the patch becomes convex.

Convex patches would be sufficient for the entire retopology task,
since concave patches can be decomposed into convex parts. How-
ever, we found that an expanded database that includes patches with
a concave boundary may improve the user experience. Our choice to

Convex corner

Reflex corner

Side edges to be expanded

Other side edges

Quad in current patch

Quad at concavity

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Whole-side and convex patch expansion along one path
in the tree. Two steps of expansion between the first and the second
image are omitted. All blue patches are generated during whole-side
expansion; while during convex patch expansion, patches (e), (i), (j),
(k) that contain reflex vertices do not generate any pattern.

Figure 6: A patch with bundles of polychords in color; the result of
valid polychord collapses is order-independent.

balance the content of the database between large convex patches and
smaller non-convex patches provides a trade-off between flexibility
and efficiency of the system. Note that we are able to reproduce
exactly the results as in [Takayama et al. 2014], since our algorithm
automatically learns the 15 patches that they manually encoded in
their method.

Pattern reduction. Patches are reduced to patterns by the poly-
chord collapse operation. A polychord can be collapsed into an edge
chain if: it is not self-intersecting, it does not have extraordinary
vertices on both edge-chains bounding it at its sides, and the collapse
does not change the number of sides of the patch. Polychords are
collapsed as long as the conditions above can be met. The result is
order-invariant, as shown in the following (see also Figure 6). Note
that a polychord can be collapsed only if it is parallel to another
polychord with the same structure. Thus, we may organize our patch
in bundles of parallel polychords, where each quad belongs to two
distinct bundles. If we collapse any polychord in a bundle, we do not
prevent subsequent collapse of other polychords in the same bundle,
until the bundle reduces to a single polychord. Therefore, the order
in which we collapse the polychords belonging to a single bundle is
irrelevant. On the other hand, collapsing a given polychord shortens
other polychords that it orthogonally intersects by one quad each,
and the collapsed polychord necessarily intersects all polychords in
the same bundle, thus preserving the structure of the bundle. There-
fore, the order in which we process the different bundles does not
affect the outcome.

Mesh preprocessing. The majority of extracted patches are
equivalent up to polychord collapse; this equivalence is exactly what

Figure 7: During patch enumeration, we may encounter the same
patch along different paths.

our patterns factor out. We can thus simplify each mesh, remov-
ing all non-intersecting polychords where no singularity collapse
occurs. This preprocessing has a twofold benefit. It reduces the
search space, thus speeding up the generation process: for instance,
on the main character of the BigBuckBunny movie, the number of
generated patches decreases from ca. 40 millions to ca. 22 millions,
and processing time reduces from ca. 90 minutes to ca. 53 minutes.
More importantly, it greatly increases the number of unique patterns
learned: for instance, on the same dataset, the number of extracted
patterns increases from ca. 2,400 to ca. 17,200. The reason of this
latter benefit is that extraordinary vertices become closer to each
other after polychord collapse: in spite of using relatively low thresh-
olds for the maximum number of quads in a patch, this fact allows
us to capture complex patterns that would require traversing much
larger patches on the original mesh.

Managing duplicates. The patch enumeration procedure often
generates the same patch multiple times, since the same set of
patches can be found starting from different seed faces (Figure 7).
To speed up the extraction, we keep track of all the visited patches
through hashing: for every visited patch we compute a signature us-
ing the MD5 hashing of the sorted string obtained by concatenating
the IDs of the boundary vertices in lexicographic order. Checking
whether a patch has already been created is fast, and it greatly re-
duces the learning time, since it allows us to prune the enumeration
tree. For instance, in the BigBuckBunny dataset, the learning time
decreases from almost 7 hours to mere 2 minutes, using the basic
algorithm and a limit of 7 quads per patch.

Database organization. The database is partitioned into classes
of patterns, each class corresponding to a given number of sides.
Within each class, patterns are sorted by the number of extraordinary
vertices they contain, and for the same number of extraordinary
vertices they are sorted by the frequency with which they were
encountered during the learning.

3.3 Encoding patterns

Storing and retrieving millions of patterns requires an efficient en-
coding scheme to reduce the memory and disk footprints and to
support efficient querying. We convert each pattern into a string
describing its connectivity. Note that geometric information is not
relevant here and is not encoded. The code must be non-ambiguous
and unique: if two patterns are identical, we want to efficiently detect
this to avoid storing duplicates.

We propose a code inspired by Edgebreaker [Rossignac 1999]: we
navigate the pattern and, as we traverse it, we encode the operations
in a string. We perform a breadth-first visit of the vertices of the

0 1

2

#

code: 12# #32 14# #56 6## ##6 5#4

30

code: 12#

#
4

#

5

6

#

#

#

#

0 1

2

#

code: 12# #32

(a) (b) (c)

1

2

#

#

3

#V0 V0 V0

Figure 8: The enumeration of faces in a template pattern, start-
ing the visit at corner V0. Special symbol # is used to represent
boundary edges in the code.

pattern, starting from a corner and always visiting the vertices in a
counterclockwise order, starting from a boundary or the parent node
(Figure 8(a)). Each face that is encircled during the visit gets an
increasing index (Figure 8(b)). The code is formed by traversing the
faces in order and appending to the code the index of the neighboring
faces, proceeding in counterclockwise order and starting from the
parent face (Figure 8(c)). If a face does not have a neighbor, the
special character] is used instead. The code obtained with this
algorithm is unique up to the choice of the starting corner, and it
is lossless: the connectivity is trivial to reconstruct from the code.
To make the code invariant to the choice of the starting corner, we
compute it starting at all corners and pick the first code according to
lexicographic order.

4 Sketching queries

The user sketches curves on the surface to identify boundary con-
straints (Figure 2(a)), as well as additional edge-flow constraints,
explained in the following. The system generates the set of patches
that satisfy the given constraints on-the-fly and proposes them to the
user in a sorted sequence.

For the simple case of just a boundary constraint without any edge-
flow constraints, we perform a query on the database to retrieve all
the patterns with the given number of sides (Figure 2(b)), then we
test them by solving the ILP and expand them into patches, as shown
in Figure 2(c). To provide an interactive response, we process the
patterns on all available CPU cores in parallel and visualize the valid
patches as soon as they are found. By default, patches come in the
same order as they are stored in the database, with the rationale that
patterns containing fewer extraordinary vertices and encountered
more frequently during learning phase are more likely to be used.
The user can set some thresholds, e.g., on the maximum number
of extraordinary vertices in a patch, or on the range of valences of
extraordinary vertices, which helps to restrict the search and speed
up the query. However, it can still happen that hundreds of patches
match a given boundary constraint, while the best patches for the
user’s needs are not top-ranked by this default criterion. We thus
allow the user to provide additional edge-flow constraints: each
constraint is either a simple stroke touching the patch boundary
at its endpoints, or a loop inside the patch. On the one hand this
additional feature greatly enhances the performance of the system
as it reduces the search space, and on the other hand it allows us to
sort the retrieved patterns in a way that provides the most desirable
patch among the first few in the sequence.

Edge-flow constraints. For each pattern in the database, we store
an additional code that describes the behavior of the edge-flows
traversing it. Each boundary edge is labeled with a symbol (Figure
9a) in such a way that two edges have the same symbol if and only
if they are crossed by the same polychord. We also add a flag to
mark whether or not the pattern contains a loop polychord in its
interior. By using this code, we immediately reject patterns that

cannot satisfy the sketches, as demonstrated in Figure 9(b).

x0

x0 x1 x2

x1 x2

x3

x4

x5x5

x4

x3

(a) (b)
x0

x0 x4 x2

x1 x2

x3

x4

x5x5

x1

x3

Figure 9: Boundary labeling of two patterns: both patterns are
compatible with the boundary-to-boundary edge-flow constraint, but
only pattern (a) is compatible with the loop edge-flow constraint;
pattern (b) is rejected.

Furthermore, for patterns that pass the test, we restrict the solutions
of the ILP by additional constrains, asking that a given boundary-
to-boundary edge-flow constraint traverses the boundary close to its
corresponding polychord. This allows us to improve query efficiency
without losing accuracy. Let us consider a boundary-to-boundary
edge-flow constraint s that starts from the i0-th edge of side e0 to
i1-th edge of another side e1 of a given boundary constraint; let xq

be an integer variable corresponding to a polychord that is present
on both e0 and e1 sides of a pattern to be tested against the given
constraints. Note that patterns that do not contain such xq have been
previously filtered out, as explained above. Generally speaking, xq

stands for the width of the bundle of polychords that replace the
corresponding polychord in the expanded patch. Let us consider the
side e0: the basic constraint for the ILP problem is:

x0 + . . .+ xq + . . .+ xk = L0, (1)

where L0 is the number of edges subdividing e0 in the boundary
constraint polygon. For each variable xq that is common to both
sides e0, e1, we set-up a different ILP system. We decompose xq

into three parts: xq = xq0 + 1 + xq1 , where the ’1’ stands for the
polychord that we are considering for alignment with the edge-flow,
while xq0 and xq1 are the widths of the two parts of the bundle on
its sides. The flow constraint can be expressed by imposing that
the left and right parts of the bundle plus the left and right parts of
the constraint (1) (e.g. the variables xj before and after xq) sum up
to the position i0 indicated by the sketch. In order to collect non
perfectly-aligned polychords as well, we add tolerance variables
xqδ0

, xqδ1
to the previous conditions, one for each side e0, e1. We

implement this by adding, for a side e0, the following constraints:

xq = xq0 + 1 + xq1 ,

q−1∑
j=0

xj + xq0 − xqδ0
= i0,

xqδ0
+ xq1 +

k∑
j=q+1

xj = L0 − i0 − 1,

xq0 ≥ 0, xq1 ≥ 0,

−K ≤ xqδ0
≤ +K.

This set of constraints is added also for the other side e1 in a sym-
metric way, with an inverted left-right ordering to correctly match
the xq0 , xq1 variables. Given that xqδ0

, xqδ1
specify the tolerance

in matching, if we set K = 0 then only exact matching is allowed,
while for larger values of K flow-polychords can cross the boundary
at a distance of at most K edges from the edge-flow constraint. In
all our experiments, we use K = 1.

Figure 10: Sketching an edge-flow constraint allows the user to
filter out patterns, as well as to set additional constraints that reduce
the set of generated patches to the ones having a polychord exactly
starting from and ending to the same edges as the sketch (c) or just
close to that edges (d).

Figure 10 shows a concrete example: part (a) depicts an edge-flow
constraint sketched from side e0 at the bottom of the polygon to side
e1 at its top-right, and we have L0 = 6; part (b) shows a pattern
under test and the variable x2 matches the edge-flow constraint
that we are considering. Please note that also x4 is shared between
e0, e1 so we will set up a ILP system also for that variable in the
corresponding way, for sake of brevity we will show just the x2 case.
The ILP constraint for e0 is x1 + x2 + x3 + x4 = 6. We expand
variable x2 and add the following constraints for the first edge:

x2 = x20 + 1 + x21 ,

x1 + x20 − x2δ0
= 2,

x2δ0
+ x21 + x3 + x4 = 3.

The first constraint imposes that the new variables are actually act-
ing as a substitution, while the last two equations reflect the sketch
condition and impose that only solutions with a polychord at dis-
tance 2 and 4 from the beginning and end of side e0 are generated,
respectively. If we do not allow any tolerance, e.g., imposing that
the two variables x2δ0

, x2δ1
are exactly 0, we get only the following

solution:

x20 = 0, x2δ0
= 0, x2δ1

= 0, x21 = 0,

which is shown in Figure 10(c). On the other hand, if we allow some
tolerance K > 0, we can obtain the solution shown in (d):

x20 = 0, x2δ0
= 1, x2δ1

= 0, x21 = 0.

Sorting. We sort the generated patches according to their align-
ment to the edge-flow constraints (Figure 11). We measure align-
ment in a patch by mapping each sketch to all possible polychord
skeletons, i.e., the set of segments connecting all the midpoints of
the transversal edges in a polychord, which connects the same sides
of the patch as the sketch. This mapping is computed by parame-
terizing both polylines using arc-length parameterization. We then
measure the integral of the distance between the sketch and all skele-
tons, and we pick the one with the smallest value. This procedure
is repeated for all sketches, and the sum of the distances is used
as the sorting criterion. Note that the sorted sequence is updated
dynamically as new solutions are provided by the system. The use
of sketches to filter and sort patches allows the artist to intuitively
and quickly search the database, as we show in our informal user
study (Section 5).

1° 40° 106°

Figure 11: Sorting solutions according to edge-flow constraints:
alignment of polychords to the sketched flow is measured by integral
error.

(a) (b)

Figure 12: The first patch found by quad quality ranking (a) has
a much lower perceived quality than the first patch found by flow
alignment ranking (b), which was the criteria preferred by the artists
in our informal user-study.

Figure 13: Some of the meshes used to populate the database.

Geometric sorting. We also experimented with an alternative
ranking solution based on the average quality of the quads, which
we measured as the squared sum of the angle deviation from right
angles. However, the results are unintuitive and lead to lower quality
patches (Figure 12).

Deformation. To further improve the alignment with the sketches,
we deform the patch using Laplacian editing [Sorkine et al. 2004].
Note that this has to be performed on all the extracted patches, since
it affects the sorting criteria.

5 Results

We implemented our algorithm in C++, and we run learning on a
workstation with a 2.7 GHz 12-Core Intel Xeon E5 and 64GB of

(a) (b)

Figure 14: A comparison between the automatic method proposed
by [Bommes et al. 2009] (a) and our approach (b).

memory. We use the Eigen library for all linear algebra operations,
with the exception of the solver for the ILP, which uses [Achterberg
2009]. The timings and statistics for the off-line learning phase are
presented in Table 2. We learned 477,567 template patterns from 40
manually modeled meshes, which can tessellate polygons with up to
34 sides (see Table 1). It is interesting to observe that the number of
patterns is increasing up to polygons with 10 sides, then it decreases
with about the same progression. The rapid growth with the number
of sides reveals that complex polygons have more degrees of freedom
and thus they can be tessellated with many nontrivial topologies. On
the other hand, patches with many corners are only convex, because
of the thresholds we put on patch expansion during learning: convex
patches with very many sides are rare on manually modeled meshes,
being mostly dedicated to polar configurations.

Comparisons with automatic methods. The majority of the au-
tomatic quadrangulation algorithms rely on a guidance field, which
is extracted by a static geometric analysis. These approaches can
only capture geometric features, resulting in meshes with a high reg-
ularity but missing semantic features such as the cheeks of a human
face (Figure 14). Instead, our method allows the artist to manually
align quads to semantic features, producing meshes that are ideal for
applications in the animation and entertainment industry.

Comparisons with [Takayama et al. 2014]. To evaluate the ef-
fectiveness of combining the flow sketch interface with the large
database of learned patches, we performed four tests mixing the
individual contributions of this paper with the original approach
proposed by [Takayama et al. 2014] (Figure 15):

• Figure 15 (a): the patch is tessellated with [Takayama et al.
2014]. When possible, the user changed manually the position
of the singularities to improve the quality. This is a time
consuming and difficult to master approach. In certain cases
(e.g. the eye of the bunny), this manual operation is still not
sufficient to produce the desired edge flow due to the minimal
number of singularities introduced in each patch.

• Figure 15 (b): the patch layout is refined into smaller patches
which are then tessellated using [Takayama et al. 2014]. Since
the final tessellation is highly influenced by the number of
subdivisions, the user needs to tune the boundary constraints
to obtain a high-quality tessellation, leading to longer editing
sessions.

corners patterns corners patterns corners patterns

0 88 12 51,447 24 516
1 44 13 40,189 25 135
2 649 14 30,816 26 17
3 1,650 15 21,578 27 4
4 5,537 16 14,638 28 1
5 11,201 17 9,318 29 1
6 20,553 18 6,182 30 15
7 31,747 19 3,501 31 1
8 45,692 20 2,412 32 2
9 56,144 21 1,179 33 1

10 61,023 22 1,439 34 1
11 59,257 23 589

Table 1: Number of patterns stored in the database for a given
number of corners.

Mesh Time Mesh Time

rabbit 00:50 alekkosinski 00:12
f.squirrel 01:05 ishtarguard 00:13
chinchilla 00:54 zoyd 00:04
bird 00:13 l.aztec 00:07
i.femme 12:30 bending tree 00:10
l.cycles 08:07 dragon 00:21
religious 07:55 butterfly 00:03
i.matron 00:23 rock 00:02
dimetrii 00:33 arrow 00:02
taylee 01:21 ground stick 00:18

Table 2: Timings (hh:mm) of the enumeration process.

• Figure 15 (c): we use a database composed of the 15 template
patches proposed by [Takayama et al. 2014]. The patches
are then selected using our novel sketch interface (Section
4). Since the database is small, the query usually returns the
same result of [Takayama et al. 2014], thus not improving the
edge-flow.

• Figure 15 (d): The sketch interface is combined with a large
patch database, producing a quad mesh with the desired edge-
flow.

An additional comparison with the approach of [Takayama et al.
2014] is provided in our informal user-study.

For the sake of comparison, we remind that [Takayama et al. 2014]
can fill polygons up to 6 sides by using just 15 predefined patterns.
Such patterns are sufficient to cover all possible boundary constraints,
but they do not provide a sufficient variety of expanded patches to
support effectively arbitrary edge-flow constraints.

Informal User-Study. We integrated our system into the pub-
licly available sketch-based modeling user interface proposed by
[Takayama et al. 2013] and performed an informal user study with
three professional artists: two from a game company and one from a
CGI animation studio. Each one of them retopologized one of the
three models shown in Figure 16, after a short training session of 45
minutes, using both the method proposed in [Takayama et al. 2014]
and our method.

The limited vocabulary of patches of [Takayama et al. 2014] forced
the artists to draw by hand finer quad layouts (yellow lines) in
search of the desired flow, while our complex patches and edge-flow
constraints helped them find better solutions with larger patches in

(a) (b) (c) (d)

Figure 15: A comparison between different approaches using two patches of the bunny and the hand tessellation: (a) The approach proposed
by [Takayama et al. 2014]; (b) The same approach with a larger set of smaller patches; (c) User sketches are used to retrieve a tessellation
using a database composed by the 15 template patches of [Takayama et al. 2014]; (d) The proposed approach.

Previous New

Artist Dataset Time Patch Quad Time Patch Quad

1 Torso 80 72 3566 45 12 4522
2 Hand 80 73 1973 60 23 1755
3 Ear 80 143 758 50 25 784

Table 3: Statistics from the informal user-study.

shorter time. As shown in Table 3, the time needed to accomplish
the task was 25% to 45% lower with our tool. Obviously, there can
have been some learning effect during training, which influenced
the artists. However, while a strictly objective study is impractical,
this simple informal study suggests that our method has potential to
speed-up productivity.

The feedback was positive, despite the short training period and
a GUI not as polished as the commercially available tools artists
are used to work with. We report a few excerpts from the artists’
feedback, which we include in their original form in the additional
material. Note that artists refer both to our contribution and to the
original software of [Takayama et al. 2013; Takayama et al. 2014] as
SketchRetopo in their comments, since our contribution was added
as an additional set of tools in a single UI.

Artist 1 (from a game company) pointed out the limitations of fully
automatic remeshing tools: “Lately Zbrush added the command

“Zremesh” that creates an automatic retopology of the mesh, but
this function, that emerged as an incredible leap forward and a
help to reduce production time, isn’t correct enough and requires
a lot of cleaning and optimization from the artist. I started to use
SketchRetopo to retopologize some test mesh and I was immediately
impressed about it: [. . .] the Query Database is the most impressive
part of the SketchRetopo program. If just using big patches reduces
retopology time, now by using this function and creating patches
even bigger, then defining/suggesting the principal lines of the final
wireframe and leaving the program to calculate the possible solu-

tions, now the time of production for a character can easily move
from one or two days to few hours. It is obvious that at the end there
will be some hand work, but this is just for refining/cleaning few
parts, but the gain is undeniable.”.

Artist 2 (from a CGI company) appreciated the edge-flow sketching
tool “The new feature with ‘S’ hotkey that suggests many solutions
computed by the system is also really innovative. The idea of propos-
ing many topologies from which the user can choose is really novel.”
and in particular “I also like the ability to create a clean edge loop
by drawing a circle in that mode.”.

Artist 3 (from a game company) raised concerns for very low res-
olution retopology tasks: “With the need to create meshes with
relatively low triangle count, I’m not sure how this tool fits into a
game development pipeline. Maybe with more usage and a greater
understanding of how things work I could figure out a way. I found
it difficult to work on the ear to start off. It seems the tool would
be great with the bigger forms of the body (torso, waist, arms and
legs).”.

Sorting criteria. As we already remarked, if just boundary con-
ditions are used to select patches, the many possible results are
presented to the user in a sequence sorted by number of extraordi-
nary vertices inside the patch and pattern frequency during learning.
This topological/statistical criterion is sufficient to select simple
patches with a quite regular internal structure, as depicted in the
top row of Figure 17. However, if the user wishes to select a more
complex internal structure, this criterion may rank the most appro-
priate solutions in the back positions of a long list (29,389 solutions
for the top row). Adding one stroke, as depicted in the middle row
of Figure 17 filters the space of solutions (only 1,310 solutions are
accepted in this case) and changes the sorting criterion by consider-
ing the compatibility to the edge-flow constraint. Adding another
stroke, as depicted in the bottom row of Figure 17 filters the space of
solutions further to just 55 patches and updates the sorted sequence
in such a way that patches in the first few positions are likely to
satisfy user needs. We have experienced that with more than two
strokes sometimes the search is overconstrained and may fail to find

Figure 16: Models used for the user study. Retopology with
[Takayama et al. 2014] (left) forces the artist to draw by hand
a much finer patch layout (in yellow) than our approach (right):
our edge-flow constraints allow the user to fill large patches with
complex structures following shape features.

a reasonable solution. In this case, the user may better subdivide the
patch into simpler patches.

Loop edge-flows. In some cases, the user may need to specify
patches that contain edge loops in their interior. This is very useful
to follow features such us eyes, knuckles and sphincter muscles in
general. Figure 18 shows some examples of results obtained by
specifying just a single loop constraint.

Concave vs. convex patches. Topologically convex patches are
sufficient to deal with most situations and they are used in the great
majority of our results. However, we also learned a moderate number
of concave patterns and we experimented they are sufficient to cover
quite a few non-trivial patches. Figure 19 shows an example of
concave patch that we could use to cover a rather extended and
morphologically complex portion of surface.

Polygons with many sides. Our system is able to tessellate poly-
gons with a high number of sides using a nontrivial quad mesh
connectivity. We demonstrate this feature in Figure 20 by filling
a patch with eight sides that connects all tentacles of the Octopus.
Note how the sphincter corresponding to the mouth of the octopus
is captured by sketching a loop flow around it.

6 Limitations and concluding remarks

Designing a coarse quad layout is an application-specific task, which
is difficult to solve without any user input. We proposed an interac-
tive solution, based on a preprocessing step that learns high-quality

55°28°1°

55°28°1°

55°28°1°

Figure 17: Different sorting criteria for solutions with the same
boundary constraint: the top row is sorted by number of extraor-
dinary vertices and pattern frequency; the middle row is sorted by
using an additional edge-flow; and the bottom row is sorted by using
two edge-flows.

quadrangulation patterns from existing quad meshes. We demon-
strated that our data-driven approach provides a richer set of solu-
tions compared to previous methods, reducing the amount of work
needed to retopologize complex models.

Our current database has 477,567 patterns learned from 40 meshes.
While being sufficient to demonstrate the effectiveness of our ap-
proach, it is not large enough to cover all the possible configurations
for patches with more than six sides. In this sense, our approach
does not warrant a valid solution for any possible boundary con-
straint, even on the limited range of polygon sides that we store
in our database. In particular, our database contains many convex
patterns, but a relatively small number of patterns with concavities,
hence a query made with a boundary constraint with many reflex
vertices might easily not find an answer. However, in our interactive

Figure 18: Circular sketches are used to find patches with loop
edge-flows in their interior, like for the eye of the bunny to the left,
or the cheekbone of the old man to the right.

Figure 19: A concave patch is used to cover a large patch on the
back of the Stanford bunny.

Figure 20: An example of successful tessellation of patches with 8
corners at the bottom of the Octopus model.

sessions we hardly found situations in which our database fails to
provide a satisfactory answer. We also tested our system with 10,000
random queries for convex patches with 2 to 20 sides: the tool has
failed only in two cases. In these cases, the user can try splitting a
complicate patch into a set of simpler patches, thus generating a finer
quad layout; alternatively, the system could be easily complemented
with traditional tools for manual design. It would also be interesting
to allow the system to dynamically learn new patterns as an artist
uses the tool. In fact, in spite of using known patterns inside patches,
new patterns may arise, which span across different patches of the
quad layout.

We will release the source code of our application in the hope that
users would share the patch layouts extracted from their meshes
with us, helping in our efforts to create a large patch database,
which we plan to release publicly. Having access to a database with
millions of patches will open many new opportunities, improving
the effectiveness of our system. Caching strategies and advanced
querying system will likely be necessary to interactively explore
the immense solution space. More sophisticated algorithms for
connectivity compression, like the extended version of Edgebreaker
[King et al. 2000] for quad meshes, may be used to reduce the overall
memory occupancy keeping the efficiency of the querying system.

7 Acknowledgements

This work was supported in part by the ERC grant iModel
(StG-2012-306877), by EU FP7 project ICT FET Harvest4D
(www.harvest4d.org, G.A. 323567) and a gift from Adobe.

References

ACHTERBERG, T. 2009. SCIP: Solving constraint integer programs.
Mathematical Programming Computation 1, 1, 1–41.

AUTODESK, 2007. Mudbox. http://www.autodesk.com.

BLENDER FOUND., 2008. Big buck bunny. http://peach.
blender.org.

BLENDER FOUND., 2010. Sintel. http://durian.blender.
org.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3.

BOMMES, D., LEMPFER, T., AND KOBBELT, L. 2011. Global
structure optimization of quadrilateral meshes. Comput. Graph.
Forum 30, 2.

BOMMES, D., CAMPEN, M., EBKE, H.-C., ALLIEZ, P., AND
KOBBELT, L. 2013. Integer-grid maps for reliable quad meshing.
ACM Trans. Graph. 32, 4.

BOMMES, D., LEVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., AND ZORIN, D. 2013. Quad-mesh generation and
processing: A survey. Comput. Graph. Forum 32, 6.

CAMPEN, M., AND KOBBELT, L. 2014. Dual strip weaving:
Interactive design of quad layouts using elastica strips. ACM
Trans. Graph. 33, 6, 183:1–183:10.

CAMPEN, M., BOMMES, D., AND KOBBELT, L. 2012. Dual loops
meshing: quality quad layouts on manifolds. ACM Trans. Graph.
31, 4.

KING, D., ROSSIGNAC, J., AND SZYMCZAK, A. 2000. Con-
nectivity compression for irregular quadrilateral meshes. CoRR
cs.GR/0005005.

MARCIAS, G., PIETRONI, N., PANOZZO, D., PUPPO, E., AND
SORKINE, O. 2013. Animation-aware quadrangulation. Com-
puter Graphics Forum SGP 2013.

NASRI, A., SABIN, M., AND YASSEEN, Z. 2009. Filling N-sided
regions by quad meshes for subdivision surfaces. Comput. Graph.
Forum 28, 6.

PENG, C.-H., ZHANG, E., KOBAYASHI, Y., AND WONKA, P.
2011. Connectivity editing for quadrilateral meshes. ACM Trans.
Graph. 30, 6.

PENG, C.-H., BARTON, M., JIANG, C., AND WONKA, P. 2014.
Exploring quadrangulations. ACM Trans. Graph. 33, 1.

PILGWAY, 2013. 3D-Coat 3.0. http://3d-coat.com/.

PIXOLOGIC, 2013. ZBrush 4.4. http://pixologic.com.

ROSSIGNAC, J. 1999. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Trans. Vis. Comput. Graph. 5, 1, 47–61.

SCHAEFER, S., WARREN, J., AND ZORIN, D. 2004. Lofting curve
networks using subdivision surfaces. In Proc. SGP.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL,
C., AND SEIDEL, H.-P. 2004. Laplacian surface editing. In Proc.
Eurographics Symposium on Geometry Processing, 179–188.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4, 97:1–97:8.

TAKAYAMA, K., PANOZZO, D., AND SORKINE-HORNUNG, O.
2014. Pattern-based quadrangulation for N -sided patches. Com-
puter Graphics Forum 33, 5, 177–184.

TARINI, M., PUPPO, E., PANOZZO, D., PIETRONI, N., AND
CIGNONI, P. 2011. Simple quad domains for field aligned
mesh parametrization. ACM Trans. Graph. 30, 6.

TIERNY, J., DANIELS, II, J., NONATO, L. G., PASCUCCI, V., AND
SILVA, C. T. 2011. Inspired quadrangulation. Computer Aided
Design 43, 11.

YASSEEN, Z., NASRI, A., BOUKARAM, W., VOLINO, P., AND
MAGNENAT-THALMANN, N. 2013. Sketch-based garment de-
sign with quad meshes. Computer Aided Design 45, 2.

http://www.autodesk.com
http://peach.blender.org
http://peach.blender.org
http://durian.blender.org
http://durian.blender.org
http://3d-coat.com/
http://pixologic.com

